WOSP-C Workshop

ICPE’18 Companion, April 9-13, 2018, Berlin, Germany

How to Detect Performance Changes in Software History:
Performance Analysis of Software System Versions

David Georg Reichelt
Universitat Leipzig
Leipzig, Germany
reichelt@informatik.uni-leipzig.de

ABSTRACT

Source code changes can affect the performance of software. Struc-
tured knowledge about classes of those changes could guide soft-
ware developers in avoiding negative changes and improving the
performance by positive changes. Neither a comprehensive overview
nor a mature method for structured detection of those changes
exists for this purpose. We address this research challenge by pre-
senting Performance Analysis of Software Systems (PeASS). PeASS
builds up a comprehensive knowledge base of changes affecting
the performance of a software by analyzing the version history
of a repository using its unit tests. It is based on a method for de-
termining the significant performance changes between two unit
tests by measurement and statistical analysis. Furthermore, PeASS
uses regression test selection for saving measurement time and
root cause isolation method for performance changes analysis. We
demonstrate our methodology in the context of Java by analyzing
the versions of Apache Commons IO.

KEYWORDS
Performance Testing, Mining Software Repositories

ACM Reference Format:

David Georg Reichelt and Stefan Kithne. 2018. How to Detect Performance
Changes in Software History: Performance Analysis of Software System
Versions. In ICPE ’18: ACM/SPEC International Conference on Performance
Engineering Companion , April 9-13, 2018, Berlin, Germany. ACM, New York,
NY, USA, 7 pages. https://doi.org/10.1145/3185768.3186404

1 INTRODUCTION

In commit 1d0c2d, error handling in Apache Commons IOUtils.copy
was changed from throwing an exception to return a value. If this
value is -1, the execution of the method is considered as erroneous.
Therefore the execution time in 1d0c2d of IOUtilsCopyTestCase
.testCopy_inputStreamToOutputStream_I084, which tests an er-
roneous case, is reduced by 50%. Creating an exception in Java
introduces computation time cost, since the stack is saved into an
exception. Therefore, when introducing and removing exception
handling, performance aspects should be considered.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPE ’18, April 9-13, 2018, Berlin, Germany

© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.

ACM ISBN 978-1-4503-5629-9/18/04...$15.00
https://doi.org/10.1145/3185768.3186404

183

Stefan Kiithne
Universitat Leipzig
Leipzig, Germany
stefan.kuehne@uni-leipzig.de

Source code changes affecting performance, like in 1d0c2d, occur
in software projects frequently [1]. Those performance changes at
code level, i.e. performance changes which are measurable by unit
test, might improve or degrade the performance. By elaborating
a method capable of automatically finding performance changes
at source level in the version history of a project, it is possible
(1) to classify the performance changes at source level, (2) to find
performance regressions in an existing software and, if they are still
present, fix them and (3) to understand better, which performance
changes occur and when they occur. Therefore, it is a research
challenge to find a method for structured detection of performance
changes in software repositories. We address this research challenge
by presenting Performance Analysis of Software Systems (PeASS).
PeASS is able to identify performance changes by measurement of
the performance of every version.

This papers presents (1) a description of the method of PeASS,
(2) a method for comparing the performance of two versions and
(3) the results of a case study which analyzed Apache Commons IO.

The remainder of this paper is organized as follows: Section 2
gives an overview about the PeASS method. Section 3 describes the
method for comparing the performance of two software versions.
The results based on the described method are presented in section
4. Afterwards, section 5 describes related work. Finally, a summary
and an outline of future work are given.

2 METHOD

In order to determine performance changes, the central step of
PeASS is the measurement and comparison of the performance
of the code. Since this takes much time, regression test selection
determines which test needs to be run in which version. After
changes are found, they need to be understood. Therefore, root
cause isolation is executed after measurement. Finally, the found
changes are classified. All in all, detection of performance changes is
done by the steps indicated: (I) Regression test selection in order to
determine tests that need to be run, (II) distinguishing performance
by measurement, (III) performance change root cause isolation
and (IV) performance change classification. These steps will be
described in the remainder of this section. They are summarized in
figure 1.

In order to consume as little test time as possible, regression test
selection (I) selects tests with potentially changed performance for
every version. Performance tests rely on execution of the same
load more than once in order to produce statistical reliable mea-
surements. Since a one time execution of a test is usually fast, it is
feasible to execute every test once in order to determine whether
the execution trace changed and therefore the performance of two
versions may differ. By analyzing this single execution and the

https://doi.org/10.1145/3185768.3186404
https://doi.org/10.1145/3185768.3186404

WOSP-C Workshop

Potential Changed

((I) Regression Test Selection Tests per Version

%

[(II) Measurement Distinguishment F

%
%

Changed
Tests per Version

Change-causing

((II) Root Cause Isolation)
Lines

Change Class
Definitions

((IV) Change Classification
Y

®

Figure 1: Steps of PeASS

diff of the version control system, it can be determined which test
needs to be executed in which version. A regression test selection
based on this idea is implemented [14]. Its result is a list of potential
changed tests for every version.

For detecting performance changes, it is necessary to distinguish
the performance of two different software versions (II). This could
be done by code analysis, e.g., by model based performance pre-
diction [3] or by measurement. Measurement provides a reliable
empirical basis to observe small changes. Since we focus on per-
formance changes at code level and those may be small, we apply
measurement. This results in a list of changes per version.

Software performance is the efficiency regarding time and re-
source consumption. Usually, it is measured by exposing a system
to a load, which is specified in load tests or benchmarks. Since
most repositories do not maintain a set of benchmarks or load tests,
those cannot be used for measuring the performance of a software
[20]. Therefore, we make the following “unit test" assumption: The
performance of relevant use cases of a program correlates with the
performance of at least a part of its unit tests, if the performance
is not driven mainly by external factors. This holds for environ-
ments where the performance of one execution of the program
units mainly drive the overall performance, like backend compo-
nents or end user applications and for environments where every
method could be called in different contexts and therefore become
performance relevant, like in libraries or frameworks. The unit test
assumption does not hold in environments where performance is
mostly driven by calls to other services, like enterprise applications,
or by parallel executions, like database systems. Furthermore, using
unit tests has technical limitations: For comparison of performance
by a unit test, the unit test needs to be unchanged or the API needs
to be unchanged, so the old test can be used, and functional util-
ities for unit testing, like mocks, must not mainly drive the tests
performance.

In some special cases, unit test performance might not correlate
with application performance: Performance regressions at unit level
are not always regressions for the application, i.e., introduction of
a cache may slow down a unit test but improve the system perfor-
mance, and performance improvements at unit level are not always
improvements for the application, i.e., initialization of an ArrayList

184

ICPE’18 Companion, April 9-13, 2018, Berlin, Germany

with smaller array size may improve the unit test performance
but slow down the overall performance. Furthermore, functional
behavior changes may cause performance changes.

Since unit tests usually have high code coverage, they mostly
cover source paths where performance changes are caused. There-
fore, they are able to detect a big part of all performance changes
in environments where the unit test performance correlates to the
use case performance.

In order to measure the performance of unit tests, they need to
be transferred to performance unit tests. Since existing methods are
missing the capability to precisely identify a performance change
in an unit test, we develop an measurement and analysis method
in order to examine whether a performance change exists between
two test case versions. This method is presented in section 3.

After a performance change is identified, we need to isolate the
root cause (IIT) of the change. Therefore, we get traces by instrumen-
tation of multiple executions of the test case. In order to assign the
methods of the old trace to the methods of the new trace, we use
maximal bipartite matching. Afterwards, we compare the perfor-
mance measurements by statistical tests. While first experiments
show promising results, this is still an active research challenge.

Based on the performance change root causes, performance change
classification (IV) is done. Therefore, the properties of change classes
need to be developed. Classification might be done based on dif-
ferent properties, like type of changed code elements, magnitude
of change, time of change in relation to the next release date or
intention of change. While some of the properties can be detected
automatically, others, like the intention, can only be detected au-
tomatically in some cases, e.g., if the intention is written in the
commit comment. Currently, the whole process of classification is
done manually. We plan to first gather a set of classes and after-
wards automate the assignment of classes by analyzing the elements
of the changed code.

3 DISTINGUISHING PERFORMANCE

In order to distinguish the performance of two unit tests by mea-
surement, a measurement method and an analysis method need
to be defined. We define an approach capable of assessment of the
quality of the methods, i.e., capable of determining how good mea-
surement method and analysis method are able to distinguish tests.
This approach will be described in the first subsection. Afterwards,
the creation of the measurement method will be described. Finally,
the determination of measurement parameters and the selection of
an analysis method will be described.

3.1 Approach

In order to assess the quality of a measurement and analysis method
and their parameters, we (I) define artificial unit test pairs, where
it is known whether their performance differs, (II) execute the mea-
surement and analysis with those methods and (III) get precision
and recall based on the measurement results. If precision and re-
call are below acceptable thresholds, we repeat measurement and
analysis. This process is visualized in figure 2.

In general, the artificial unit test pairs should cover all possible
workload type and size combinations in order to be a proper test set
for a generic measurement and analysis method. This could be done

WOSP-C Workshop

by defining unit test pairs for all workload types and automatic
combination of those types. To simplify matters, we chose to im-
plement only five artificial unit test pairs!. If we recognize that the
resulting measurement and analysis method and their parameters
are not able to distinguish performance measurements correctly,
we extend those tests.

?

((I) Artificial Test Definition)—'
!

Artificial Tests

>

((II) Measurement and Analysis)—' Measurement Results |

((IIT) Result Assessment)—' Precision/Recall |

JIud1oLNS
UOISIORIJ

[no]

Figure 2: Steps of Approach for Distinguishing Performance

The artificial test pairs are: (1) Addition of 10 and 11 random num-
bers, (2) printing 10 and 11 random numbers to system out, (3) ad-
dition of 10 random int and 10 random long numbers, (4) adding
3 ints and 4 ints to a long and (5) entering a try-catch block with
throwing an exception 10 and 11 times. Given each pair of tests, a
measurement configuration and a statistical method need to be able
to correctly identify that a performance change happened, e.g., that
adding 10 random numbers is faster than adding 11 random num-
bers. Furthermore, they need to determine that executions of the
same test case have no change in execution time. Therefore, the sta-
tistical method needs to identify two subsets of the measurements
of one equal test as equal.

In order to implement the performance unit tests, we use the
KoPeMe framework [17]. That framework for measuring the per-
formance allows to extend a JUnit-test in order to specify a count of
warmup iterations and executions which are executed. The results
including all individual measurements are saved afterwards. Since
this fulfills our requirements, we chose KoPeMe for measuring the
performance.

3.2 Measurement Method

Performance could be represented by different measurements, e.g.,
time, CPU, memory or energy consumption. We concentrate on
time consumption, since time consumption is the most noticeable
performance property to the end users. Since the characteristic of
other performance measurements, e.g., memory, is different, the
measurement and analysis methods can not be re-used.

!These can be found in the repository precision-experiments, available in
https://github.com/DaGeRe/precision-experiments

185

ICPE’18 Companion, April 9-13, 2018, Berlin, Germany

Influences like parallel processes or memory partitioning result
in different execution time for every execution. Since we cannot re-
liably predict the effects of those effects, we consider time consump-
tion a random variable characterized by a statistical distribution.
The duration of a function in a managed environment like Java is
influenced additionally by parallel processes inside the Java Vir-
tual Machine, garbage collections, compilations and optimizations.
They result in different measurements and optima of the same use
case [6]. It is possible to tune parameters in order to avoid or force
garbage collection, compilation and optimization events. Since ev-
ery test case has different memory reservations and thus different
garbage collection behaviour, the configuration of these parameters
needs to be different for every test case. If we tuned those parame-
ters, the performance may differ from real-world scenarios, where
tuning might be done differently. Therefore, we consider the unit
test as a black-box and omit tuning of those parameters.

Comparing the performance of two unknown unit tests is diffi-
cult, since (1) the kind of workload is unknown, (2) the duration of
unit tests is low compared to the inaccuracy of the time function
and (3) the variation of time measurements due to measurement
errors is relatively high compared to the variation of performance
measurements due to source code changes. Since the time consump-
tion is a random variable, we use the measurements as input for
a statistical test which determines whether a performance change
happened.

When measuring performance in managed environments, the
startup performance, the performance during optimization and com-
pilation, or steady state performance, the performance after those
processes, could be measured [6]. Since performance changes, that
are only measurable during warmup, disappear after the warmup,
we decide to measure steady state performance.

The usual approach is to sequentially start the virtual machine
(VM) vm times, execute the use case w times for the warmup and m
times for the measurement [6]. Since it is unclear, how many execu-
tions are needed, it is recommended to choose a count of iterations
k, measure the coefficient of variation v, i.e. the standard deviation
of k measurements divided by its mean and finish execution iff v
drops below a threshold which should be 0.01 or 0.02 [6].

We could reuse the method if it would be able to identify all
changes correctly. We evaluated this method using the artificial
unit tests. In those tests, the coefficient of variation was not reach-
ing the recommended threshold nor was it a proper indicator for
reaching the steady state. Figure 3 shows the average mean and
average coefficient of variation for both alternatives of test case
(1) for 30 VM executions for every iteration.? The average mean
stays at the same level after about 5000 iterations, but the average
coefficient of variation is changing and not falling below 0.3 during
the measurement. This example shows that the coefficient of varia-
tion is not a good indicator for reaching the steady state: While the
measurement values nearly stay equal and indicate that the steady
state is reached, the coefficient of variation still stays high.3

2We always summarize 100 measurement iterations in one display point for display
purposes.

3This measurement can be reproduced by the repository precision-experiments, see
section Comparing Coefficient of Variation in README.

WOSP-C Workshop

40 T T T T T 0,5
Mean 11
2 Cov1ll X
35 E Mean 10 0.4

[
o
S
“ e
] CoV 10 ©
Sl X - >
5 ‘ S
e 02 &
g | g
25 ©
\ | 01 g3
LT Y TSP —
20 L 1 1 1 1 1 0
0 50000 100000 150000 200000 250000

Iterations

Figure 3: Graph of Average Mean and Average Coeflicient of
Deviation for Adding Numbers

I Repeltitionslﬁ_
=

70
65 -
60 -

55

Duration

50 -
45 R
i 1 1 1 1 1 1 1 1 1 1

V110 V2 10 V1 20 V2 20 V1 30 V2 30 V1 40 V2 40 V1 50 V2 50

Version and Repetitions

40

35

Figure 4: Confidence Intervals of Duration of Test Execution
with Different Repetition Count

The performance of the two (1)-test cases is nearly equal, as
shown in figure 3. This is still the case if we execute the measure-
ments further. We assume that this happens because the measure-
ment inaccuracy is too big compared to the workload itself. There-
fore, we chose to measure after we have repeated the benchmark
multiple times. Figure 4 shows the evolution of the average differ-
ence of the measurements for 10.000 iterations with no warmup.
This shows that, if we repeat two different benchmarks, the dif-
ference gets bigger and therefore analysable. Unfortunately, we
lose the ability to measure performance changes which only hap-
pen when executing a small count of repetitions, e.g., because the
garbage collector is triggered earlier in the measurements, but not
more often.*

3.3 Measurement Parameters and Analysis
Method
With a sufficient high amount of repetitions, warmup executions,

measurement executions and VMs, it is possible to decide whether
two measurements are equal. Since we want to execute performance

4This measurement can be reproduced by the repository precision-experiments, see
section Comparing Different Repetition Counts in README.

186

ICPE’18 Companion, April 9-13, 2018, Berlin, Germany

100 —— —T=T T T =T 7 T
Precision T-Test
90 | Recall T-Test i
Precision G-Test
Recall G-Test
= 80 Precision Mann-Whitney 7]
9 Recall Mann-Whitney
€ 70p —\ &
c
S \
2 60 4
<
o
50 - B
40 B
30 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100
Repetitions

Figure 5: Precision of T-Test, G-Test and Mann-Whitney-Test

comparisons as fast as possible, we search for the parameters and
statistical method with the lowest measurement time and preci-
sion. We assume that the performance comparison is correct with
a sufficient high count of iterations and warmup executions. There-
fore, we chose 50.000 iterations and 60 VMs. We determine after
the measurement how many iterations and VMs could be skipped
without changing the result. In order to determine the amount of
repetitions, we tested different repetition counts from 1 to 100.

In order to analyze the measurement results, we tested different
methods for comparing the results. Confidence Interval Compar-
ison, T-Test and Mann-Whitney-Test are recommended for com-
paring two performance measurements [4] [6]. We used those and
additionally tested G-Test. These statistic tests assume the null hy-
pothesis that two given distributions are equal. Every test states
the conditions under which this null hypothesis can be disproved.
For Confidence Interval Comparison, the a-confidence intervals
with confidence level a of both distributions are determined and
if they do not overlap, the distributions are considered different.
The other tests use a significance level, which states the maximum
probability of rejecting the null hypothesis when it is true. We use
0.05 as significance level. T-Test assumes normal distribution and
equal means and Mann-Whitney-Test and G-Test assume indepen-
dence of the measurement values. Since we do not know which
assumption holds for our workload, we checked whether the tests
are able to distinguish two measurement results correctly.

In order to determine which statistic test to use, we took i iter-
ations and w warmup iterations from v VM executions from the
artificial test results of both versions. Afterwards, we determined
if the test identified them as performance change correctly. If so,
it is considered a true positive, else a false negative. Afterwards,
we took v VM executions from the same version and determined if
the test correctly identified it as no performance change. If so, it is
considered a true negative, else a false positive. We repeated this
1000 times for every test and every tested repetition count. Based
on the values, we determined precision and recall of every method.

Figure 5 shows graphs of precision and recall. Confidence Inter-
val Comparison only finds performance changes if the intervals do
not overlap. Since the tests have a small difference, this happens
rarely and Confidence Interval Comparison is therefore not capable

WOSP-C Workshop

of finding changes at all. While T-Test has a high precision, G-Test
has a high recall. Since the T-Test still gets a recall of more than
80%, we decided to use it for comparing performance results.

We use the same method for determining the count of VMs, it-
erations and warmup iterations: We execute the tests with more
VMs, warmup and measurement iterations than needed and deter-
mined which parameters with minimal execution duration have
sufficient precision and recall. We assume that the overall duration
d of one measurement is d = vm * (overhead + duration = (w + i))
where vm is the count of VM executions, overhead is the constant
time overhead needed for checking out a version, compiling etc.,
duration is the average execution time of one measurement, w is
the count of warmup executions and m is the count of measurement
iterations. The duration is higher than the actual duration, since
the time function call and the data processing needs more time
than the unit test itself. We determined the average overhead time
and the average execution time based on measurement timestamps,
which were taken along the duration measurement.

We determined that the average overhead is 4018 ms and the
execution duration is on average 11.5 ms. We search for a config-
uration with a precision above 99 %, a recall above 95 % and the
lowest execution time. Therefore, we split the 50.000 iterations in
up to 25.000 warmup and measurement iterations. We determined
that 60 repetitions, 5 VMs, 1000 warmup and 4000 measurement
executions are sufficient.’ In summary, determining a change in
the artificial test cases needs on average 49,5 minutes.

Furthermore, we researched whether an early stop of VM ex-
ecutions if the result is clear would decrease precision or recall.
Therefore, we executed our analysis and stopped adding VMs if the
t-value is above or below a theshold. We found that we could prune
further VM executions without loss of precision and recall, if VM
10 executions took place and the t-value is above 10 or below 0.1.

4 CASE STUDY: APACHE COMMONS IO

In order to examine the usability of the PeASS approach, a mature
project with a big count of commits, maven-managed build process
and functional unit tests written in JUnit should by analyzed. We
decided to analyze Apache Commons I0°®. Apache Commons IO
provides basic functionalities for input and output, has currently
2157 commits with 114 test cases in its current version. Since it is
used widely’, the performance of its functions has an impact on a
wide range of other software.

We executed the tests on a cluster with 47 servers managed by
slurm®. Every server had an Intel(R) Xeon(R) CPU E5-2620 proces-
sor with 24 cores 4 2,4 GHz and 128 GB RAM. We analyzed 254
versions and found 93 changed test results. We classified them man-
ually into 6 classes. These classes, their frequency and the average
absolute change are summarized in table 1.

The classes are defined based on intention of the change and used
code elements. Exception Handling, Synchronisation and Library are

5This measurement can be reproduced by the repository precision-experiments, see
section Determining Parameters in README.

6Github Page of Apache Commons IO: https://github.com/apache/commons-io

7 Apache Commons 10 is used by 11 445 artifacts in maven central according to
https://mvnrepository.com/artifact/commons-io/commons-io/2.5

80fficial site of slurm scheduler: https://slurm.schedmd.com/ The script for executing
slurm can be found in misc/scripts/slurm/ in the PeASS-Repository

187

ICPE’18 Companion, April 9-13, 2018, Berlin, Germany

Name Count Increase Decrease |Change|
Functionality 46 12 34 2018,6 %
Condition Checking 15 15 0 217.4 %
Optimizations 12 7 5 3512,1 %
Exception Handling 7 4 3 2903,7 %
Synchronization 3 3 0 1097,6%

Library 1 1 0 89,7%

Test 9

Table 1: Performance Changes by Classes

based on code elements. They could be detected automatically by
checking whether a change contains a try, catch throw statement,
a synchronized statement or an import statement. An example is
the initially presented change in 1d0c2d, where in IOUtils.copy, a
return code marks the result instead of an exception. This reduces
the execution time of IOUtilsCopyTestCase.testCopy_input —
StreamToOutputStream_I084 by 50%.

The Functionality, Condition Checking and Optimizations-classes
are based on intentions. They could be detected in some cases by
analysis of the code commit. An Optimization happens in 09a6¢cb in
FilenameUtilsWildcardTestCase.test Match2, while calling toArray.
The method toArray of a List takes an Array as input. If this array
has the size of the List, the entries of the list are copied to the array;
otherwise, a new array is initialized. Using an array that has exactly
the size of the list therefore speeds up the test case. In this case, the
commit comment contains "optimisation" and might therefore be
automatically detected.

While the mentioned test cases are corner tests, the found changes
might also change the performance of live systems using Apache
Commons IO: Both, copying files and searching for files by Wild-
card, could be used in practice and be sped up by the particular
change. Therefore, we expect to find relevant change classes by
analysis of more projects.

5 RELATED WORK

PeASS analyzes repositories of a project in order to detect and
classify performance changes. We presented the first step of PeASS,
the distinguishing of the performance of two versions, in detail. In
the following, we discuss work that addresses the (I) search and
classification of performance changes in software repositories and
(IT) the measurement of performance changes.

Analysing repositories in order to detect performance changes
(I) can use (Ia) the documentation, i.e., commit comments, code
documentation or issue tracker information, or (Ib) the code itself.

Analysis of the documentation (Ia) has been done for different
kinds of desktop applications [9] [19] [15] [22] and Android applica-
tions [12]. Work analyzing performance bugs is also able to classify
root causes of performance problems, e.g., Jin et al. [9] identify
uncoordinated functions, skippable functions and synchronizations
issues as reasons of performance changes. While those works are
able to identify and classify performance problems, the complete-
ness of the problems is unclear since only performance regressions
actively recognized by users or developers will be listed.

Analysing code repositories (Ib) could aim for detecting per-
formance changes or performance regressions. Alcocer et al. [1]

WOSP-C Workshop

[18] identify and classify performance changes based on the mea-
surement of long running benchmarks provided by projects of the
Pharo framework. They find five classes of changes that decrease
performance and four classes of changes that improve performance.

There exists work which executes existing load test or bench-
marks [5], own generated parallel tests [16] or own generated load
[13] in order to find performance regressions between versions.
Heger et al. [7] identify root causes of performance regressions
by git bisect and trace analysis. Furthermore, the tool hopper [11]
analysis the change of performance of Java applications and the tool
GreenMiner [8] provides a hardware framework for determining
energy consumption changes during software versions. While those
works analyze performance issues by version history, this work
transforms existing unit test to performance tests and provides a
statical rigorous technique for distinguishing the measurement re-
sults. This makes it applicable to more projects, since many projects
contain unit tests, but the used tests may be less suitable.

Work providing methods for measuring performance (II) mostly
contains a measurement and an analysis part. Georges et al. [6]
summarizes methods for measuring the performance and analyzing
the results. Furthermore, they provide a own measurement method
which we used as base for definition of our measurement method.
Kalibera et al. [10] provide statistical rigor by manually determining
how many executions are needed in order to reach the steady state.
Barrett et al. [2] extend this work by automatically defining when
a steady state is reached by change point analysis. They find that
only 43,5 % of all benchmarks and VMs reach the steady state.

Furthermore, Stochastic Performance Logic [4] defines a lan-
guage and a tool for specifying a formula that defines whether a
performance change is detected. For measuring the performance in
a test environment, tools like jmh® and JUnitBench!? exist. Tools for
monitoring the performance of systems, like Kieker[21], Caliper!!,
AppDynamics!? and Dynatrace!® are less related since they focus
on measuring live systems.

6 SUMMARY AND FUTURE WORK

We presented the challenge of defining a method for structured de-
tection of performance changes in software repositories. We adress
this challenge by presenting the method PeASS, which is able to
identify performance changes if the performance of unit tests cor-
relates to the performance of relevant use cases of the application.
In order to distinguish the performance of unit tests, we created
a method which is capable of measuring the performance of unit
tests and determining whether a performance change has taken
place. Performance measurement of unit tests is done by repeating
the workload until the duration of the test itself overweights the
duration and variation of the time measurement. The applicabil-
ity has been demonstrated in terms of detection of performance
changes in Apache Commons IO.

The next step is to facilitate analysis of results by root cause
isolation of performance changes and providing a unified format
for definition of performance change classes.

“Website of JMH: http://openjdk java.net/projects/code-tools/jmh/
Owebsite of JUnitBench: https://github.com/tpounds/junitbench
HRepository of Caliper: https://github.com/Ilnl/Caliper

12Website of AppDynamics: https://www.appdynamics.com
3Website of Dynatrace: https://www.dynatrace.com

188

ICPE’18 Companion, April 9-13, 2018, Berlin, Germany

ACKNOWLEDGEMENTS

This work was funded by the German Federal Ministry of Education
and Research within a PhD scholarship of Hanns Seidel Founda-
tion and within the project Competence Center for Scalable Data
Services and Solutions Dresden/Leipzig (ScaDS, BMBF 011S14014B).
Computations for this work were done with resources of Leipzig
University Computing Centre.

REFERENCES

[1] J. P. S. Alcocer and A. Bergel. Tracking down performance variation against
source code evolution. In Proceedings of the 11th Symposium on Dynamic Lan-
guages, DLS 2015, pages 129-139, New York, NY, USA, 2015. ACM.

E. Barrett, C. F. Bolz-Tereick, R. Killick, S. Mount, and L. Tratt. Virtual machine
warmup blows hot and cold. Proceedings of the ACM on Programming Languages,
1(OOPSLA):52, 2017.

S. Becker, H. Koziolek, and R. Reussner. The palladio component model for model-
driven performance prediction. Journal of Systems and Software, 82(1):3-22, 2009.
L. Bulej, T. Bures, V. Horky, J. Kotr¢, L. Marek, T. Trojanek, and P. Tama. Unit
testing performance with stochastic performance logic. Automated Software
Engineering, 24(1):139-187, Mar 2017.

J. Chen and W. Shang. An exploratory study of performance regression intro-
ducing code changes. In Software Maintenance and Evolution (ICSME), 2017 IEEE
International Conference on, pages 341-352. IEEE, 2017.

A. Georges, D. Buytaert, and L. Eeckhout. Statistically rigorous java performance
evaluation. ACM SIGPLAN Notices, 42(10):57-76, 2007.

C. Heger, J. Happe, and R. Farahbod. Automated root cause isolation of perfor-
mance regressions during software development. In ICPE 13, pages 27-38, New
York, USA, 2013. ACM.

A. Hindle, A. Wilson, K. Rasmussen, E. J. Barlow, J. C. Campbell, and S. Romansky.
Greenminer: A hardware based mining software repositories software energy
consumption framework. In MSR 2014, pages 12-21, New York, USA, 2014. ACM.
G. Jin, L. Song, X. Shi, J. Scherpelz, and S. Lu. Understanding and detecting
real-world performance bugs. In Proceedings of the 33rd ACM SIGPLAN PLDI,
PLDI ’12, pages 77-88, New York, USA, 2012. ACM.

T. Kalibera and R. Jones. Rigorous benchmarking in reasonable time. In ACM
SIGPLAN Notices, volume 48, pages 63-74. ACM, 2013.

C. Laaber and P. Leitner. (h, g)opper: Performance history mining and analysis.
In Proceedings of the 8th ACM/SPEC on International Conference on Performance
Engineering, ICPE ’17, pages 167-168, New York, NY, USA, 2017. ACM.

Y. Liy, C. Xu, and S.-C. Cheung. Characterizing and detecting performance bugs
for smartphone applications. In Proceedings of the 36th ICPE, pages 1013-1024.
ACM, 2014.

Q. Luo, D. Poshyvanyk, and M. Grechanik. Mining performance regression in-
ducing code changes in evolving software. In Proceedings of the 13th International
Conference on Mining Software Repositories, pages 25-36. ACM, 2016.

T. H. Nguyen, B. Adams, Z. M. Jiang, A. E. Hassan, M. Nasser, and P. Flora.
Automated detection of performance regressions using statistical process control
techniques. In ICPE, pages 299-310, New York, USA, 2012. ACM.

A. Nistor, T. Jiang, and L. Tan. Discovering, reporting, and fixing performance
bugs. In MSR 2013, pages 237-246. IEEE Press, 2013.

M. Pradel, M. Huggler, and T. R. Gross. Performance regression testing of con-
current classes. In Proceedings of the 2014 International Symposium on Software
Testing and Analysis, pages 13-25. ACM, 2014.

D. G. Reichelt and L. Braubach. Sicherstellung von performanzeigenschaften
durch kontinuierliche performanztests mit dem kopeme framework. In Software
Engineering, pages 119-124, 2014.

J. P. Sandoval Alcocer, A. Bergel, and M. T. Valente. Learning from source code
history to identify performance failures. In Proceedings of the 7th ACM/SPEC on
International Conference on Performance Engineering, ICPE °16, pages 37-48, New
York, NY, USA, 2016. ACM.

M. Selakovic and M. Pradel. Performance issues and optimizations in javascript:
an empirical study. In Proceedings of the 38th International Conference on Software
Engineering, pages 61-72. ACM, 2016.

P. Stefan, V. Horky, L. Bulej, and P. Tuma. Unit testing performance in java
projects: Are we there yet? In Proceedings of ACM/SPEC ICPE 2017, pages 401~
412. ACM, 2017.

A.van Hoorn, J. Waller, and W. Hasselbring. Kieker: A framework for application
performance monitoring and dynamic software analysis. In Proceedings of the
3rd joint ACM/SPEC International Conference on Performance Engineering (ICPE
2012), pages 247-248. ACM, April 2012.

S. Zaman, B. Adams, and A. E. Hassan. Security versus performance bugs: a case
study on firefox. In MSR 2011, pages 93-102. ACM, 2011.

(10]

(1]

[12]

(14]

[15

[16

(17]

(18]

[19

[20

[21]

[22]

	Abstract
	1 Introduction
	2 Method
	3 Distinguishing Performance
	3.1 Approach
	3.2 Measurement Method
	3.3 Measurement Parameters and Analysis Method

	4 Case Study: Apache Commons IO
	5 Related Work
	6 Summary and Future Work
	References

