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ABSTRACT
When processes join a common FCFS queue to acquire or release
resources in an object pool of fixed size, deadlock occurs if the
process at the head of the queue wishes to acquire a resource when
the pool is empty, even if a process wishing to relinquish a resource
is queued behind. We describe a state machine representation of
this problem. We use the representation to develop a discrete time
Markov chain analysis to identify the load conditions under which
deadlock is most likely to occur and how soon it is likely to occur.
We show that deadlock occurs almost surely regardless of the load,
and that the time to the onset of deadlock depends on combinations
of the request rate for resources in the pool, the average holding
time of the resources, and the size of the pool. Calculations corrob-
orate the intuition that deadlock will occur sooner at heavy loads
or when the resource pool is small. A connection will be made
between this problem and the problem of random walks with a
single absorbing and a single reflecting barrier.
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1 INTRODUCTION
Identifying the cause of deadlock in a computer system and the
possible circumstances and events leading to its onset can be com-
plicated because deadlock usually occurs in a non-deterministic
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manner. The conditions and events leading to deadlock may be
hard to reproduce, even though the load conditions under which
it is likely to occur might be readily identifiable in some instances.
Our aim is to quantify the time from the onset of a particular load
condition to the onset of deadlock, because of the insight this can
give us into system reliability. This is difficult to do in general, be-
cause the numbers of way in which deadlock can occur is vast, and
because the way in which deadlock occurs is sometimes obscure
and complex.

In some cases, it is possible to describe sequences of events
that lead the system into deadlock with the aid of a finite state
machine. The states could correspond to the states of resources
under contention, while the alphabet might correspond to events
that trigger transitions. The probability that the next symbol in the
alphabet takes one value or another is equivalent to the probability
of a transition into state k given that the system is currently in state
j . The transition probabilities define the mapping from a finite state
machine to a discrete time Markov chain with the same states and
topology.

Deadlock states are inherently trap states in the context of finite
state machines and absorbing states in the context of discrete time
Markov chains. Hence, our approach to predicting the likelihood
and the time to the onset of deadlock consists of formulating a
FSM description of how deadlock arises, mapping the FSM descrip-
tion into a discrete time Markov chain, and then computing the
transition probabilities and first passage times of the Markov chain.

Here, we examine the onset of deadlock in a system in which
the elements of a resource pool are acquired and released singly
by processes that pass through a common FCFS queue to do one
and then the other. We have seen this performance antipattern in
a number of computer systems that we are not allowed to name.
We call it the Museum Checkroom with FCFS queueing, because
visitors to the Metropolitan Museum in New York join the same
queues to leave and claim their coats in the checkrooms. In [6] and
in [8], we showed that deadlock could be avoided by giving priority
to those tasks that wish to return a resource to the pool. In the
case of the Museum Checkroom, those wishing to claim their coats,
thus freeing hangers, would be given priority over those wishing
to leave coats, thus occupying hangers. There are separate queues
for those claiming and leaving their coats at the Louvre in Paris.

Modeling the system by tracking the state of the checkroom
queue involves keeping track of the history of arrivals of visi-
tors leaving and claiming their coats. That makes the problem
intractable. Instead, we develop a deterministic finite state machine
model (FSM) and a discrete time Markov chain model with the
same topology. They describe the changes in the occupancy of the
hangers based on the order in which visitors are admitted. When
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the admission sequence reflects FCFS queueing, deadlock can oc-
cur. When priority is given to those wishing to claim their coats,
a sequence leading to a transition into the deadlock state cannot
occur. The state of the system is entirely described by the number
of occupied hangers. For the FSM, the alphabet of events is {L,C},
where L denotes leaving a coat and C denotes claiming it back.

Our simple model of an object pool whose state is solely the
number of occupied resources has the following benefits: (1) it
enables us to predict the time for deadlock to ensue under various
load conditions by computing expected first passage times into the
absorbing state; (2) it obviates the need to consider the possible
states of the external queue or queues of jobs waiting to acquire and
release the resources in the pool; (3) the predictions of the model
can be used to specify load test scenarios in which deadlock could
be provoked if its possibility is suspected.

Since our model tells us that deadlock occurs with probability
one if one waits long enough, it cannot be used to predict the
probability of deadlock occurring; only the expected amount of
time until deadlock occurs. This value could be used in an analysis
of the mean time to failure of the system in specified operating
ranges.

The present work raises a question: is it possible to develop a
generalized method for building state machine representations of
the progression of an arbitrary system into deadlock, or at least a
principle or technique for doing so? We suspect that this method
could be applied to other deadlock problems, but that there is no
generalized method. We conjecture that such a method could be
reduced to the Halting Problem. We believe that it would be pos-
sible to derive specific FSM representations and hence discrete
time Markov chain models for other systems in which one can de-
scribe sequences of inputs and actions leading to deadlock, as is the
case here. We note in passing that other authors have approached
the problem of predicting the time to the onset of deadlock using
stochatic Petri nets [21],[18].

The remainder of this paper is organized as follows. We first
describe our FSM representation of the problem, and map it to a
discrete time Markov chain. Following an analysis of the algebra
of the Markov chain representation, we present some numerical
results. This is followed by a discussion of related work, conclusions,
and directions for future work.

2 STATE MACHINE FORMULATION
Suppose there are N hangers in the checkroom. The set of check-
room states is the number of occupied hangers, together with the
deadlocked state occurring when all hangers are occupied and the
when the first customer in the queue wishes to leave a coat. Initially,
at opening time, there are no coats in the checkroom, so state 0 is
the starting state. We tag arrivals at the checkroom who wish to
leave their coats with an L and those who are claiming their coats
with a C . Since a coat cannot be claimed unless it has been left,
we cannot have more Cs in any finite sequence of arrivals at the
checkroom than there are Ls. Moreover, the number of potential
coat claimants cannot exceed the number of hangers N .

Figure 1 shows that state transition diagram of the number of
occupied hangers in the checkroom, and the deadlock state D. By
inspection, the number of sequences that could lead to deadlock

Figure 1: Finite state machine representation

Figure 2: Queue of visitors with gate keeper

Figure 3: Discrete time Markov chain.

is infinite. This can be shown formally using Arden's Lemma [13].
To prevent deadlock, we must ensure that an arriving C is served
ahead of any waiting Ls. We do this by installing a transducer or
gatekeeper between the arrival stream and the checkroom that
forces Ls to queue outside when all hangers are occupied, even if
noCs are present, and admits theCs ahead of waiting Ls when they
appear. In other words, we give the Cs priority over the Ls so that
no admission sequence can occur that would be recognized by the
FSM in Figure 1. The configuration is shown in Figure 2.

3 FORMULATION AS A DISCRETE TIME
MARKOV CHAIN

Suppose there are N hangers in the checkroom. The set of check-
room states is the number of occupied hangers together with the
deadlocked state D = N + 1. Initially, at opening time, there are no
coats in the checkroom. Figure 3 shows the corresponding discrete
time Markov chain in which deadlock occurs. When N = 1, this
state transition graph has a topology similar but not quite identical
to that of the spider trap in [12]. We ignore the order in which
visitors wishing to leave or claim coats are queued in the system,
and do not consider priorities at this stage. Visitors are assumed
to arrive at the checkroom according to a Poisson process with
rate λ. For ease of modeling, we assume that the time between
leaving a coat and being admitted to the checkroom to claim it is
exponentially distributed with rate µ or, equivalently, with mean
1/µ. The rate at which visitors return to the checkroom to claim
their coats is nµ when n hangers are occupied, for n = 0, 1, 2, . . . ,N .
The rate is slow when visitors who have left their coats spend more
time in the museum, or more time queueing to claim their coats.
Under FCFS queueing, 1/µ would be increased for those claiming
their coats, because they would have to queue behind some visi-
tors leaving their coats. The hanger holding time would also be
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increased. This formulation reflects the notion that FCFS queueing
causes self-expansion of the patrons' waiting times, thus undermin-
ing load scalability [6]. The number of occupied hangers can only
decrease if a visitor arrives to claim a coat and is admitted to do
so. It will only increase if a visitor arrives and is admitted to leave
a coat. Since deadlock is possible, the Markov chain in Figure 3 is
not irreducible and therefore cannot be ergodic. This is because it
consists of two classes of states, D ′ = {0, 1, 2, . . . ,N } and D. These
two classes do not communicate, because sequences of transitions
fromD ′ toD are possible, but not fromD toD ′. The states inD ′ are
transient, while D is absorbing. Transition into deadlock depends
on the sequence of admissions of L andC visitors to the checkroom.
We model the state of the hangers as a discrete time Markov chain
in which a transition from state k to state k + 1 occurs if the first
admitted visitor after a transition into state k wishes to leave a coat.
Similarly, a transition from state k + 1 to k only occurs if the first
visitor to arrive after a transition into state k wishes to claim a coat
arrives and is admitted to the checkroom to do so. Let αk denote
the probability that a visitor returns and is admitted to claim a coat
before another visitor arrives to leave a coat after the system has
moved into state k . Let βk be the probability of a visitor arriving
and being admitted to leave a coat before one arrives to claim a
coat. We have αk + βk = 1. For simplicity, we assume that the time
each coat spends on a hanger is exponentially distributed with rate
µ. Now, if there are two Poisson processes of events of types A and
B with rates a and b respectively, the probability that an event of
type A occurs before an event of type B is a/(a + b) [10]. Hence,
since the rate at which visitors return to claim coats is kµ when k
hangers are occupied, we have

αk =
kµ

λ + kµ
, k = 1, 2, ...,N (1)

βk =
λ

λ + kµ
, k = 1, 2, ...,N (2)

We have αD = 0 since deadlock has ensued. Recall that deadlock
ensues if the first visitor to enter the checkroom after all hangers
have been filled seeks to leave a coat. Notice also that β0 = 1 because
no returning visitor can arrive to claim a coat before the next new
visitor if no coats are in the checkroom.

4 CHAPMAN KOLMOGOROV EQUATIONS
Let π = [π0,π1, . . . ,πN ,πD ] denote the left eigenvector of the state
transition probability matrix P. Suppose that the admission policy
is FCFS. It can be shown that π = πP, where πD +

∑N
k=0 πk = 1

and P is the transition probability matrix given by

P =



0 1 0 0 . . . . . . . . . 0 0
α1 0 β1 0 . . . . . . . . . 0 0
0 α2 0 β2 . . . . . . . . . 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . αN − 1 0 βN − 1 0
0 . . . . . . . . . . . . 0 0 αN βN
0 . . . . . . . . . . . . 0 0 0 1


(3)

Since P is stochastic, its dominant eigenvalue is 1. Since the chain is
reducible, it is not ergodic and has either an infinity of solutions or

none. By inspection, we see that the equation π = πP has a solution
for which the entries sum to one,

π = [0, 0, . . . , 0, 1] (4)

This shows that the system eventually goes into the absorbing
deadlock state. This value of π does not indicate the proportions of
time that different numbers of hangers are occupied before deadlock
occurs. We will see that it is consistent with the theorem that a
random walk between a reflecting and an absorbing barrier crosses
the barrier with probability one.

5 FIRST PASSAGE TIME INTO DEADLOCK
Recall [4] that if a Markov chain is reducible, its transition proba-
bility matrixmathb f P can be partitioned into blocks of the form

P =
[
Q R
0 I

]
(5)

where Q is an (N + 1) × (N + 1) matrix of transition probabilities
between the communicating transient states 0, 1, 2, . . . ,N ; I is the
identity matrix, in this case of dimension 1, describing the transition
probability from deadlock to itself every time a new visitor arrives
to leave a coat, or every time a returning visitor arrives to claim
one; block 0 denotes a row vector of zeros of dimension N + 1; and
R is an (N + 1)-vector of transition probabilities from the transient
states to the single absorbing deadlock state, D = N + 1. The
transition probability into D from state N is βN , and zero from
states 0, 1, 2, . . . ,N − 1. Hence,

R = [0, 0, . . . , 0, βN ]T (6)

Let

M = (I − Q)−1 (7)

The vector of mean first passage times from the each of transient
states to the absorbing deadlock state is given by

t = M1 (8)

where 1 is an (N +1)-vector of 1s. Finally, the absorption probability
for state D = N + 1 given that the system started in state i is the
(i,D)th entry in the matrix

B = MR . (9)

We have already seen that R is a column vector with length (N + 1),
whileM is an (N + 1) × (N + 1)matrix, so B is also a column vector
with length (N + 1). For our problem,

(I − Q) =

1 −1 0 0 . . . . . . . . . 0
−α1 1 −β1 0 . . . . . . . . . 0
0 −α2 1 −β2 . . . . . . . . . 0
. . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . −βN−2 0

. . . . . . . . . . . . . . . −αN−1 1 −βN−1
0 . . . . . . . . . 0 0 −αN 1


(10)
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6 SYSTEM AND NUMERICAL PROPERTIES
6.1 I − Q is Ill Conditioned at Light Loads
I − Q is ill conditioned when λ << N µ. In the limit as the arrival
rate λ tends to zero, α → 1 and β → 0. Thus, in the limit, the
first and second rows of I − Q sum to zero. I − Q is nearly singular
and has a determinant with an absolute value close to zero in the
limit. Therefore, it is ill conditioned when λ is small compared with
N µ. Now, a formula for the inverse of a matrix can be expressed
as a matrix of cofactors divided by the determinant. It follows
that the physical interpretation is that when the arrival rate is
small compared with N µ, the time that may be expected to elapse
before the system goes into deadlock is very large. Our calculations
illustrate that this is the case, provided that the corresponding
system of linear equations is stable enough to be solved.

6.2 Deadlock Occurs Almost Surely
Our next result implies that deadlock is inevitable, whether or not
it takes a long time to occur. This is because the equation for the
vector of absorption probabilities is given by

B = MR (11)

with R = [0, 0, . . . , 0, βN ]T . It can be shown that

B = [1, 1, . . . , 1]T . (12)

This shows that deadlock is reached with probability one from any
state in the system. Interestingly, this result only depends on the
band structure of the transition probability matrix P and on that of
I − Q. It is independent of the forms of αn and βn , so long as they
both lie in [0, 1] and so long as αn + βn = 1∀n. When αn and βn
are constant and independent of n, our problem is equivalent to a
random walk with one absorbing barrier at state N + 1 = D and a
reflecting barrier at state 0. The theory of random walks tells us
that the absorbing barrier is crossed eventually with probability
one, but that the number of steps in the walk before the barrier is
crossed depends on the drift [3] [22]. Our results show that this
holds for more general forms of the probabilities of moving in one
direction or the other, including those that depend on the current
position of the process.

6.3 Other Properties
Space limitations prevent us from showing derivations or numeri-
cal examples of more properties of the system. In addition to the
properties described above, we can also show and illustrate that
the mean number of visits to a transient state before the onset of
deadlock is independent of the prior occurrence of the occupancy of
fewer hangers, and that the expected time for all hangers to reach
full occupancy is independent of the initial state of the system [7].

7 NUMERICAL EXAMPLES
7.1 Mean Occupancy of One Hanger Sufficient

for Load Specification
The parameters that drive the onset of deadlock are the number of
coat hangers N , the arrival rate λ, and the mean service time 1/µ.
Observe that

αk =
kµ

λ + kµ
=

k

ρ + k
(13)

Figure 4: First passage time into deadlock when all hangers
are empty.

where ρ = λ/µ is the mean occupancy of one hanger. Without
loss of generality, we can set µ = 1, since the values of αk and βk
depend only on the ratio ρ = λ/µ. We consider systems with the
traffic intensity 1 ≤ ρ ≤ 25 and the number of hangers N taking
values between 5 and 25.

7.2 First Passage Times into Deadlock
We know from our results in Section 6.2 that deadlock occurs with
probability one and that its onset is only a matter of time. The
expected first passage time into deadlock indicates how long that
time might be under various load conditions. It depends on the cur-
rent number of occupied hangers. Figure 4 shows the first passage
time into deadlock when all hangers are empty as a function of the
number of hangers with µ = 1 and λ = ρvarying from 1 to 25. We
have not been able to compute the values the first passage times
starting with all hangers empty for (ρ,N )=(1,20) and (1,25) because
(I − Q) is ill conditioned there, as expected. The physical interpre-
tation is that at this low traffic intensity, having 20 or 25 hangers
might make the expected first passage times very long. Here, the
expected first passage time from empty to deadlock would exceed
1012 transitions. Something similar is expected when all hangers
are occupied initially, as shown in Figure 5. Figure 4 and Figure 5
show that the first passage time into deadlock is short for small
numbers of hangers when the arrival rate is large compared with
the time spent in the museum, and very large for larger numbers of
hangers when the arrival rate is small, i.e. when the traffic intensity
is small. Increasing the number of hangers in the checkroom at rela-
tively high traffic volumes increases the expected time to deadlock,
but does not eliminate the possibility of it occurring. Qualitatively,
these results are consistent with intuition. Our numerical results
show that the expected time to deadlock drops dramatically as the
traffic intensity in the system increases. Interestingly, increasing
the number of available hangers increases the expected time to
deadlock much more when the traffic intensity is light than when
it is heavy. The first passage time is never infinite, though it might
be large. One practical implication of this is that deadlock might
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Figure 5: First passage time into deadlock when all hangers
are occupied.

Figure 6: The second largest eigenvalue of P.

not occur in sunny-day light-load test scenarios, though it could be
provoked to occur under heavy test loads.

7.3 Expected Time to Deadlock and Second
Largest Eigenvalue of P

The smaller the second largest eigenvalue of P, the faster deadlock
will occur. Figure 6 shows that P has a smaller second largest eigen-
value when the number of hangers is small and the arrival rate λ is
large, and vice versa. Figure 7 shows the qualitative relationship
between the second largest eigenvalue and the first passage time.
The relationship is not strictly monotone because both quantities
depend on λ and the number of hangers.

8 REVIEW OF PREVIOUS WORK
Our review of previous work falls into the following areas: queueing
models of discrete object pools such as memory slots, deadlock, and
Markov chain analysis and related topics.

Figure 7: First passage time vs. second largest eigenvalue.

8.1 Constrained Memory Models of Discrete
Object Pools

Themuseum checkroom is ametaphor for a system inwhich threads
or processes acquire and release discrete objects that form a pool.
Examples of this include memory partitions and Java database
connections. The models we review here all describe systems in
which processes queue for access to a memory partition, and re-
lease it without queueing before exiting the system. Avi-Itzhak and
Heyman [1] and Latouche [14] modeled the queue for memory
partitions. Neuts [16] used the caudal characteristic curve to study
the parameter sets that make such systems more stable. Bondi [5]
used Neuts' and Latouche's matrix geometric methods to study
an admission policy that depends on the state of the CPU queue
as well as on the number of jobs in the central subsystem [15].
None of these papers consider the case in which a job retains the
discrete object when leaving the central subsystem and then queues
to reenter the central subsystem to release it, as is the case with the
present problem.

8.2 Deadlock
Deadlock and its prevention are discussed in many standard op-
erating systems text books [9][11][19]. Bondi and Jin discuss the
avoidance of deadlock in replicated database for tracking the loca-
tion of cellular telephones [8]. Bondi discusses the present problem
in the context of scalability in [6].

8.3 Markov Chain Analysis
The analysis in the present paper is mainly derived from presenta-
tions on stochastic processes in [4] and [10]. Avritzer and Weyuker
use Markov chain models to plan performance and reliability tests
in operating regions in which failure is more likely, thus shortening
performance testing time [2]. Harchol-Balter describes a three-state
Markov chain model of movements between linked web pages, cul-
minating in a page with no links that corresponds to an absorbing
state [12]. Popov uses a Markov chain with a small number of states
to investigate the onset of deadlock when two processes request the
same pair of resources in opposite orders [17]. Viswanadham et al
discuss Markov chain and Petri net analyses applied to automated
manufacturing systems [21]. Van Doorn and Pollett analyze dis-
crete time reducible Markov chain models of progressive diseases
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in which there is a single absorbing or coffin state representing the
patient's death [20]. The corresponding state transition probability
matrix has zero entries everywhere except on the leading diagonal
and on the diagonal just below it, unlike ours, which is tridiago-
nal. Reinecke et al use a stochastic Petri net to model the Dining
Philosophers’ problem [18].

9 CONCLUSIONS AND DIRECTIONS FOR
FUTUREWORK

9.1 Conclusions
The stated goal of this research is to build a probabilistic model
that predicts the expected amount of time taken for a component
of system to migrate into deadlock under a given set of traffic and
service conditions. The approach is to build a finite state machine
that describes the sequences of events that can lead to deadlocked
states. These states are trap states, or, in the terminology of Markov
chains, absorbing states. The first passage time into deadlock can
be computed from the probabilities of transitioning from a state
to each of the adjacent ones. We have shown how to do this for
a simple system with one deadlock state in which the transitions
can be computed from customer arrival rates and resource holding
times, provided that the arrival process is Poisson and provided that
the resource holding times are exponentially distributed. Because
this system corresponds to a one-dimensional random walk with a
single absorbing barrier corresponding to the deadlocked state and
a single reflecting barrier corresponding to the resource pool being
fully unused, we know that the deadlock will occur with probability
one. Our discrete time Markov chain model enables us to identify
the circumstances under which the expected time for deadlock to
occur is long or short. In our illustrative problem, the matrix to
be inverted to compute the first passage times is ill conditioned in
operating regions with the longest first passage times, i.e., the ones
in which the expected time to enter deadlock is longest. Because
our results show that deadlock eventually occurs with probability
one, there is a clear case for designing the system component so
that deadlock cannot occur.

9.2 Directions for Future Work
The circumstances under which deadlock occur in the example we
have presented are fairly easy to describe. Futurework could include
methods of building generalized finite state machine descriptions
of other circumstances in which deadlock can occur. If the causes
of transitions and their probabilities can be identified, it will be
straightforward to develop a discrete time Markov chain model
that predicts the likelihood of deadlock and the most likely paths
by which it occurs. It may be worthwhile to find circumstances
under which the assumptions of Poisson arrivals and exponential
resource holding times underlying our Markov chain model can be
relaxed, e.g., by developing embedded Markov chain derivations
of the state transition probabilities. The theory of Markov chains,
with its classification of transient and absorbing states, supports the
generalization of our method to systems with multiple deadlocked
(absorbing) states and arbitrary initial states. When there is only
a single absorbing state, we are only concerned with first passage
times into that state. When there are multiple deadlocked states,
each of which is reached by a distinct set of paths, we must evaluate

and compare the first passage times for each of them. There is
the added complication that there may be more than one set of
equilibrium probabilities, because going into any absorbing state
brings the evolution of theMarkov chain to a halt. One could obviate
this problem by merging all of the deadlocked states into a single
one, but this would deprive us of the opportunity to determine
which one has the shortest expected first passage time or to evaluate
the consequences and risk associated with each. Moreover, the
solution of the equation π = πP might not be unique, because
there might be one for each absorbing state. We have not examined
the effect of queueing for the transducer on the waiting times of
coat claimants or new arrivals to the system. Delaying claimants
increases the expected time to return a hanger to the pool, and
shortens the expected first passage time into deadlock.
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