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ABSTRACT
We show how traditional unit testing frameworks can be extended
to support the simultaneous testing of behaviour and performance,
by embedding performance models in mock objects. Because such
models are virtual, and therefore execute in virtual time, perfor-
mance tests can often be performed substantially quicker than
when real resources are involved. Performance models also facil-
itate testing before some or all of a unit’s intended collaborators
have been implemented. A key technical challenge is to overcome
the impedance mismatch which arises when code that is executing
in real time has to communicate with performance models that ex-
ecute in virtual time. Solutions to this problem naturally facilitate
virtual time scaling of both real code and performance models. We
also explore potential applications of such time scaling in software
performance testing and optimisation.

CCS CONCEPTS
• Software and its engineering→ Software performance; Soft-
ware design techniques; Software testing and debugging; Ag-
ile software development;

KEYWORDS
Performance, Test-Driven Development

ACM Reference Format:
Tony Field, Robert Chatley, and David Wei. 2018. Software Performance
Testing in Virtual Time: Extended Abstract. In Proceedings of ACM/SPEC
International Conference on Performance Engineering (ICPE’18 Companion),
Jennifer B. Sartor, Theo D’Hondt, and Wolfgang De Meuter (Eds.). ACM,
New York, NY, USA, Article 4, 2 pages. https://doi.org/10.475/123_4

1 INTRODUCTION
Modern software development is now predominantly based around
agile development methods [7] which encourage the continuous
testing and adaptation of software throughout its evolution. Crucial
to the philosophy is fast test-driven feedback, so that errors in
design or functionality can be detected quickly and fixed early
whenever problems arise.
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This test-driven development (TDD) has revolutionised software
engineering practices and made it easier to ensure that delivered
software is functionally correct and meets the needs of its intended
users.

However, a key attribute of a software system that is seldom ad-
dressed by conventional TDD is performance. Performance testing
is typically undertaken late on in the development process, once
the software can be integrated and tested as a whole, and often only
after the software has been deployed. Furthermore, such testing is
usually performed manually, i.e. without using any generic perfor-
mance testing framework or tooling. A recent study [9] showed that
less than 0.4% of over 90,000 open-source GitHub projects used any
such framework, let alone one aligned with continuous delivery.

Identifying and resolving performance problems at such a late
stage can be expensive, as it may involve redesigning parts of the
system, rewriting code or allocating more computing resources to
certain components to match requirements [8]. Performance tests
are also often slow, or inconvenient, to run, as many components
typically have to be tested together. This is at odds with the fast
feedback loops associated with test-driven development.

This talk describes our recent work that aims to facilitate contin-
uous performance testing by extending the well-established idea of
using mock objects [6]. In unit testing frameworks mock objects are
used to replace the collaborators of an object under test with alterna-
tive implementations that serve only to support the test. The mock
objects can be configured to behave in particular ways to simulate
different scenarios, and can also be used to verify that the expected
messages are exchanged between the various collaborators in a
given test scenario.

The idea here is to allow mock objects also to encapsulate perfor-
mance models, whose job is to estimate the time taken for method
calls to the mocked object to yield a response, or rather to estimate
the response time of a call to a real component in the same scenario.
For example, if we are developing a component that interacts with
some service then we would like to estimate the response time
of our new component, given appropriate assumptions about the
performance characteristics of that service.

Crucially, because the approach is model-based, our performance
tests execute in virtual time, so that performance estimates can be
produced without having to wait for the passage of real (wall-clock)
time. This leads to fast turnaround times, which is one of the key
requirements of effective unit testing.

Performance models have been used extensively to model soft-
ware systems and services and there are countless examples in the
literature, some more recent examples being for NoSQL big data ar-
chitectures [3], key-value data stores such as Apache Cassandra [5]
and distributed data processing frameworks such as Spark [10].
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In most performance modelling exercises the modeller is typi-
cally concerned with the model structure, its solution, validation
and application to a specific question related to the system under
study. Much less of a concern is how to put such models in the
hands of everyday practitioners, be they software developers, De-
vOps practitioners, capacity planners, or similar. Our objective is to
bridge the gap between these often disparate communities through
tooling and to provide a practical realisation of the vision in [11]
of early-cycle model-based performance prediction.

Although the idea of mocking performance, in addition to be-
haviour, is simple in principle, we have to be able to cope with
a rich variety of test scenarios, some of which may lead to com-
plex interactions between objects and models. For example, the
unit under test may create threads and these may have to compete
for shared (virtual) resources in mocked objects, e.g. virtual locks,
queues, services etc. within a complex performance model, such
as a queueing network. Our mock objects are able to model this
contention.

Furthermore the idea requires real code, executing in real time,
to interact with mock objects that contain embedded performance
models operating in virtual time. This leads to an impedance mis-
match between real and virtual time and considerable care is re-
quired to ensure that both real andmocked objects progress through
time in a mutually consistent way.

The talk will describe how the impedance mismatch problem
has been solved in our performance mocking framework by imple-
menting threads built by a test object as co-routines – essentially a
form of execution-driven simulation. This ensures that the threads
under test cannot leap ahead of the collaborating mock object(s) in
virtual time, and vice versa.

A generalisation of this is the concept of virtual time execution
which seeks to align the execution of real and mocked objects by
virtualising time within the operating system’s, or VM’s, scheduler,
avoiding the need for co-routines. Once time has been virtualised it
possible to perform virtual time scaling on real objects, similar to the
time scaling that can straightforwardly be done with performance
models in mocked objects. This essentially mimics the effect of
speeding up or slowing down fragments of real code [2, 4].

In the context of performance-test-driven development virtual
time scaling presents some intriguing opportunities for exploring
performance problems that might be encountered either during unit
testing or as part of some later integration exercise. For example,
we can imagine a system test comprising arbitrary collections of
real and mocked objects executing, and communicating, entirely in
virtual time, much as a test object and its collaborators do in our
unit testing framework. If the application as a whole violates some
performance constraint then where is the best place to look in order
to fix the problem? Virtual time scaling provides the opportunity
to explore the effect that optimising some or all of the components

will have on the overall performance, but without having to change
any of the code. In principle, this can be done dynamically, e.g.
by applying time scaling factors for long enough within a single
execution for any performance impacts to be quantified.

It is important to remark that the focus of this work is not the
models themselves, but rather how established unit testing frame-
works can be augmented to incorporate such models through a
single interface. The accuracy of any prediction is down to the
quality of the model (garbage in, garbage out). If developers are to
use off-the-shelf models then considerable care is needed to ensure
that such models are fit for this purpose. Possibly a more likely sce-
nario is one where developers build their own models from existing
production system logs. In this case, some form of automation of
the task, e.g. along the lines of [1], would appear to be essential,
as developers typically have little or no expertise in performance
modelling.
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