
Towards Scalability Guidelines for
Semantic Data Container Management

Gunnar Brataas
SINTEF Digital

Trondheim, Norway
gunnar.brataas@sintef.no

Bernd Neumayr
Johannes Kepler University Linz

Linz, Austria
neumayr@dke.uni-linz.ac.at

Christoph G. Schuetz
Johannes Kepler University Linz

Linz, Austria
schuetz@dke.uni-linz.ac.at

Audun Vennesland
SINTEF Digital

Trondheim, Norway
audun.vennesland@sintef.no

ABSTRACT
Semantic container management is a promising approach to orga-
nize data. However, the scalability of this approach is challenging.
By scalability in this paper, we mean the expressivity and size of
the semantic data containers we can handle, given a suitable quality
threshold. In this paper, we derive scalability characteristics of the
semantic container approach in a structured way. We also describe
actual experiments where we vary the number of available CPU
cores and quality thresholds. We conclude this work-in-progress
paper by describing how more measurements could be performed
so that the missing guidelines could be provided.

ACM Reference Format:
Gunnar Brataas, Bernd Neumayr, Christoph G. Schuetz, and Audun Ven-
nesland. 2018. Towards Scalability Guidelines for Semantic Data Container
Management. In ICPE ’18: ACM/SPEC International Conference on Perfor-
mance Engineering Companion , April 9–13, 2018, Berlin, Germany. ACM,
New York, NY, USA, 4 pages. https://doi.org/10.1145/3185768.3186302

1 INTRODUCTION
Semantic technologies help to create and manage conceptual mod-
els – also referred to as ontologies – and to apply conceptual models
in large-scale and decentralized information systems to foster a
common understanding of data and metadata. Semantic data con-
tainer management is an ontology-based approach to organize data
sets and to automate the discovery of data sets that fulfill a partic-
ular information need [8]. The semantic data container approach
is currently being developed in the course of a collaborative re-
search project, termed BEST (http://project-best.eu), in the area of
air traffic management (ATM). A semantic container consists of
data items and metadata that provide a high-level description of
the membership condition to be fulfilled by a data item in order
to be part of the semantic container. The membership condition
typically describes geospatial and temporal scope of the data items,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICPE ’18, April 9–13, 2018, Berlin, Germany
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5629-9/18/04.
https://doi.org/10.1145/3185768.3186302

as well as other semantics, relevant for the ATM domain. For exam-
ple, a semantic container’s membership condition may state that
the container comprises all Notices to Airmen for the route from
Vienna to Frankfurt on 13 January 2018 that are relevant for heavy
wake aircraft. The membership condition is expressed in terms
of ontologies. A semantic reasoner then automatically organizes
membership conditions in a hierarchy, which serves as an index.
For example, the semantic container with Notices to Airmen for the
route from Vienna to Frankfurt is subsumed (generalized) by the
semantic container with Notices to Airmen for the entire European
airspace. The reasoner also matches information needs expressed
as membership conditions to membership conditions of available
semantic containers. The computational complexity of semantic
reasoning may lead to poor scalability of the semantic container
approach.

We refer to scalability as a system’s ability to increase the ca-
pacity by consuming more hardware and software resources [2].
Scalability analysis then investigates the scalability implications
of higher load (more traffic), more work (computationally harder
operations and/or more data), and stricter quality thresholds (e.g.
shorter response times). In this context, we refer to scalability im-
plications as the amount of additional hardware (CPUs, memory,
network capacity) and software resources (software licences) that
are required to handle increasing amounts of load or work. For
example, if doubling the work requires a tenfold of underlying re-
sources to keep within service level agreements, the system does
not scale. Scalability problems are even worse if a system is not able
to handle an increase in load regardless the amount of additional
hardware or software resources. Such scalability problems should
be identified early in the development process in order to discover
the sources of the problems as well as possible solutions.

Before depending on a system architecture, it is therefore impor-
tant to know its scalability implications. The contribution of this
paper is an instantiation of a scalability framework [2] with respect
to semantic data container management. In particular, the work
dimension is elaborated in terms of ontology expressivity and vari-
ous parameters for ontology size. Based on this instantiation, we
provide initial measurements for producing scalability guidelines
for semantic container management.

The remainder of this paper is organized as follows. Section 2
outlines the state of the art. Section 3 characterizes scalability for
the semantic container approach. Section 4 describes experiments.

Work-in-Progress & Vision Paper ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

17

https://doi.org/10.1145/3185768.3186302
http://project-best.eu
https://doi.org/10.1145/3185768.3186302


Users

ServicesWork

Load Operations with Quality 
Metrics & Thresholds

Configuration
Parameters

Resources Properties

Figure 1: Scalability concepts [1]

Section 5 concludes the paper with a summary and an outlook on
future work required to derive the required scalability guidelines.

2 STATE OF THE ART
This section gives a short introduction to the state of the art in
scalability of semantic technologies. The Web Ontology Language
(OWL 2) is a standard ontology language for the (semantic) web,
and OWL 2 DL the most expressive decidable subset of the full
language [5]. Further considerations on reasoning performance of
OWL 2 ontologies led to the definition of a set of sublanguages – the
OWL 2 profiles [6] – with reduced expressivity but also lower time
complexity of common reasoning tasks when compared to OWL 2
DL. For example, the OWL 2 EL profile [6], which is sufficient in
many practical situations, where the ELK reasoner [7] serves as an
efficient implementation. Reasoning performance in practice also
depends on the characteristics of the ontology.

Ensuring the scalability of reasoning tasks has been identified as
a major challenge for implementing real-world applications using
semantic technologies due to an “inherent trade-off between the
expressivity of a logical representation language and scalability
of reasoning” [4, p. 524]. Parallelization of reasoning tasks is a
common strategy to ensure scalability. In this paper, we investigate
reasoning capacity for semantic container management with the
ELK off-the-shelf reasoner depending on the number of available
processors on a single machine.

3 SCALABILITY REQUIREMENTS
In this section, we describe the main scalability concepts and how
they are specified for semantic containers. We build on the scalabil-
ity framework in [2] illustrated in Fig. 1. Ideally, all these concepts
should have been explicitly present in Fig. 1, but in some cases, this
is only implicitly the case, e.g. for system, described in the next sub
section, which refers to services and resources in the figure.

3.1 System
When analyzing scalability, we must define which services are
inside and outside of our system boundary. These boundaries also
define how response times are measured. In this paper, we focus
on reasoning about metadata which serves for adding/updating
and querying containers. We do not investigate the population of
the containers with actual data since the population of semantic

containers highly depends on the specific application scenario. For
example, a semantic container for Notices to Airmen may be filled
with actual data using prioritization and filtering rules [3] specific
to a particular airline which might be much more complex than
the rules employed by another airline or the rules for another
type of data such as weather forecasts. Other kinds of data, e.g.,
meteorological data or flight plans, require entirely different rules to
be used for populating semantic containers. Scalability analysis of
populating semantic containers has to be refined for each individual
application scenario. Reasoning about the metadata of containers,
on the other hand, is less dependent on the specific application
scenario, which is the focus of this paper.

3.2 Critical Operations
An operation defines a unique and relatively similar way of interact-
ing with a service; an operation corresponds to a request class in the
context of queuing networks. Common synonyms for operations
are transactions, functions and queries.

Of the metadata operations obeying the system boundaries de-
scribed in Section 3.1, the following three operations are essential,
i.e., must be present in order to productively employ a semantic con-
tainer management system: Make a subsumption (generalization)
hierarchy, extend the subsumption hierarchy, and find individual
data containers, which we elaborate in the following.

3.2.1 Initialize: Make Subsumption Hierarchy. The subsumption
(generalization) hierarchy of semantic containers serves as an index
for the retrieval of semantic containers. A more general semantic
container subsumes a more specific semantic container. For exam-
ple, a semantic container with Notices to Airmen (NOTAMs) for
the European airspace subsumes a semantic container with only
the NOTAMs for the route from Vienna to Frankfurt.

The subsumption hierarchy derives from faceted membership
conditions; a membership condition refers to one value for each
facet such as geographic area and temporal scope. For example, a
semantic container with NOTAMs relevant for heavy-wake aircraft
on the route from Vienna to Frankfurt on the 13 January 2018
has three facets: geography, temporal, and aircraft. For each of
these facets, the semantic container refers to one concept from the
corresponding ontology: a concept RouteVIE-FRA from a geography
ontology, a concept 13-01-2018 from a temporal ontology, and a
concept HeavyWakeAircraft from an aircraft ontology.

Deriving the subsumption hierarchy of semantic containers is
a two-step process. First, the reasoner derives concept hierarchies
for the ontologies used for the facets of the semantic container
description. For example, the reasoner determines that SuperHeavy-
WakeAircraft is more specific than HeavyWakeAircraft and that
A380 is more specific than SuperHeavyWakeAircraft. For each facet
ontology, the concept hierarchy may come from a separate reasoner,
or be asserted. By "asserted" we mean predefined for that ontology
rather than inferred through logical properties. Then, having the
subsumption hierarchy for each facet ontology, the reasoner deter-
mines the subsumption hierarchy of semantic containers, which
have a reference to one concept for each facet. For example, a seman-
tic container has a value HeavyWakeAircraft for the aircraft facet
and January_2018 for the date facet. Another semantic container

Work-in-Progress & Vision Paper ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

18



has facet values Aircraft and 2018. The latter container subsumes
the former.

3.2.2 Add Semantic Container: Extend Subsumption Hierarchy.
The subsumption hierarchy of semantic containers needs to be
updated to accommodate new semantic containers. The employed
reasoning algorithm works only for a certain complexity of the
semantic container descriptions: The more expressive the ontology,
the more complex the expressed semantic container descriptions,
the more complex the reasoning algorithm. For simple ontologies,
we can do incremental reasoning, whereas for more complex on-
tologies we may have to make the subsumption hierarchy from
scratch. In this paper, we employ the ELK reasoner to study scalabil-
ity of the semantic container approach. The ELK reasoner is capable
of incremental reasoning. Adding or removing an axiom does not
necessitate a full recalculation of the subsumption hierarchy.

3.2.3 Find Semantic Containers. Different semantic containers
fulfill different information needs. Technically, an information need
is represented by a membership condition in the same ontology
language as the subsumption hierarchy of semantic containers – in
our case an OWL EL class expression. The task of finding semantic
containers that satisfy a given information need is referred to as
semantic container discovery.

3.3 Work
Work characterizes the amount of data to be processed, stored
or communicated when invoking one operation. Ultimately, work
characterizes the amount of hardware resources consumed when
invoking one operation. The set of operations is of course an im-
portant part of the characterization of work. In addition, when
considering scalability, we are also interested in how the work for
one operation varies. This variation is connected to sizes of relevant
objects, e.g., the number of documents and their average size; such
parameters are referred to as work parameters. For scalability, the
highest values of the work parameters are most relevant. Whereas
load typically goes up and down during the day, week and month
in complex patterns, work parameters are simpler as they typically
only increase in value. For operations which encompass ontolog-
ical reasoning, the most relevant work parameters are ontology
expressivity and ontology size.

3.3.1 Ontology Expressivity. Ontology expressivity concerns the
complexity of the axioms in the ontology and thus the complexity of
automatic reasoning. A more expressive ontology language allows
to describe more precisely the contents of a semantic container as
well as information needs. This often comes with high computa-
tional costs. Ontology language profiles restrict the expressivity of
ontologies in order to allow for more efficient reasoning. The OWL
EL ontology language profile disallows, for example, the use of the
OR operator in class expressions. In this paper, we consider the use
of OWL EL. In our experiments, we further restrict the expressivity
to class hierarchies (subclassOf axioms) and to class definitions
with intersectionOf class expressions.

3.3.2 Ontology Size. In the context of semantic container man-
agement, the work parameter of ontology size can be further broken
down into the following work parameters:

• Number of containers. The actual size of the container is not
relevant, since we are working with meta-data.

• Number of facets: A facet is a property of all the data items in
the container, for example location and time. The complexity
of the container hierarchy is determined by the complexity
of the facet hierarchy.

• Number of classes per facet: For a spatial facet, the number
of locations (represented by bounding boxes) will determine
the number of classes.

• Depth and complexity of facet hierarchy: The classes of each
facet will form a hierarchy – a tree or a (semi-) lattice –
possibly at different levels, where the number of levels is the
depth of the hierarchy.

3.4 Load
Load is how often an operation is invoked. The term load refers
to the frequency of invocation of an operation. In this paper, we
focus on work and leave the analysis of the influence on load to
future work. Load is most important in the case of finding semantic
containers since that operation is more frequently invoked in day-
to-day work than making the subsumption hierarchy.

3.5 Quality Metrics and Thresholds
A quality metric defines how we measure a certain quality and
is a key part of an SLA (Service Level Agreement). At an overall
level, response times and throughput are traditional scalability qual-
ity metrics. Quality thresholds (QTs) describe the border between
acceptable and non-acceptable quality for each operation.

Quality thresholds in our domain are measured in 90th percentile
response times, since in this way outliers will not affect the capacity.
Quality thresholds will be measured in seconds and hours. We
can tolerate a longer time for making the subsumption hierarchy
than extending the subsumption hierarchy. Finding data containers
should be done even faster.

3.6 Resources and Capacity
We have active as well as passive resources. Active resources are
hardware for processing (CPUs), storage (primary memory (RAM),
flash memories, disks) and communication (network). Passive re-
sources represent semaphores, buffers and pools, typically associ-
ated with storage. When considering scalability, passive resources
are crucial, and not surprisingly, storage often represent scalability
limitations. The cost of software licenses may also be important.

The highest workload fulfilling quality thresholds is the capacity
of a system. In our case, we want to vary one work parameter. To
get one single number of capacity, we must fix the remaining work
parameters as well as quality metrics and quality thresholds. Then,
the highest work parameter for the average operation which fulfills
the quality thresholds, becomes the capacity.

4 EXPERIMENTS
We conducted experiments for the operation “make subsumption
hierarchy”. We were interested in how the capacity varied with
the number of cores (varied from 1 to 16 cores) and a given quality
threshold.We employed 90th percentile response time as our quality
metric and varied the quality threshold between 0.5 sec, 5 sec and 20

Work-in-Progress & Vision Paper ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

19



seconds. Capacity is the number of semantic containers for which
the subsumption hierarchy can be derived within the time given
by the quality threshold.

4.1 Setup
As our hardware configuration, we used a Sun Fire X4600 (amachine
from year 2008) with 8 CPUs (16 cores) of type AMD Dual-Core
Operton 885 2.6 GHz and with 58 GB of RAM.

As our software configuration, we use Linux (CentOS Release 6.9),
Java (JRE 8 Update 151), ELK reasoner (Version 0.4.3) and a custom-
made Java program which is invoked with a maximum heap size of
50 GB. The Java program includes the ELK reasoner as a library.

A shell script turns on and off cores (to vary the number of cores
from 1 to 16) and invokes the Java program with different quality
thresholds (0.5, 5, and 20 seconds).

To find the capacity for a given number of cores and a given
quality threshold, a custom-made Java program performs binary
search. In the binary search, for a number of semantic containers
(the tested capacity), the "make subsumption hierarchy" operation
was executed up to ten times allowing one run exceeding the time
limit (0.5 sec, 5 sec, or 20 sec). To save experimentation time, the
binary search was stopped when an additional round of ten runs
would affect the resulting capacity by less than 10 percent.

For each run, the Java program generates an OWL EL ontology
according to given work parameters and performs subsumption rea-
soning for this ontology. In this experiment, we varied the number
of semantic containers during the binary search. We fixed the other
parameters as follows: 3 facets with a hierarchy depth (number of
levels) of 5, and 3 children per parent; giving a tree of 364 classes
per facet, i.e., 1 + 3 + 32 + 33 + 34 + 35.

4.2 Results
Our results are shown in Fig 2. The x-axis is the number of cores
while the y-axis is the highest number of containers where the
quality thresholds are still obeyed. We measure this for 0.5 sec, 5
sec and 20 sec.

Based on these measurements, with a 40 times increase in the
quality threshold, the capacity increases from 9000 to 50000 con-
tainers, i.e. approximately a six-time increase. This is not surprising
since we get a more congested system. When it comes to the num-
ber of cores it is not easy to draw any conclusions based on these
measurements, except that until approximately 7 cores the capacity
increases.

5 CONCLUSIONS AND FURTHERWORK
In this paper, we have described how structured scalability analysis
can be applied to semantic technologies and we have also described
conducted experiments. To actually provide useful guidelines more
experimental results are required.

The precision of the current experiments could be improved by
replicating the measurements. Confidence intervals could then also
be established.

In our measurements, we used quality thresholds in the order of
seconds. With a higher and more realistic quality threshold, in the
order of hours, the time to do these measurements would increase,
but then the value of these experiments could also be higher. We

0

10000

20000

30000

40000

50000

60000

0 5 10 15 20

Ca
pa
cit
y	
(N
r	o

f	C
on
ta
in
er
s)

Nr	of	Cores

20	sec

5	sec

0.5	sec

Figure 2: Capacity measured in number of containers with
0.5 sec, 5 sec and 20 sec quality thresholds

also plan to measure the scalability of the other two operations
"Add Semantic Container" and "Find Data Containers". Here realistic
response times are in the order of second, so this should not be too
time consuming. Also, the consequences of load should be studied.

More experiments are needed in order to identify definitive guide-
lines for the choice of specific semantic technologies to realize the
semantic container approach. How would, for example, different
semantic technologies with different ontology expressivity affect
the ontology sizes (described in Section 3.3.2) we are able to handle?

ACKNOWLEDGEMENT
This project has received funding from the SESAR Joint Undertaking
under grant agreement No 699298 under the European Union’s Hori-
zon 2020 research and innovation program. The views expressed in
this paper are those of the authors.

REFERENCES
[1] Gunnar Brataas and Tor Erlend Fægri. 2017. Agile Scalability Requirements. In

ICPE, ACM/SPEC International Conference on Performance Engineering. ACM.
[2] Gunnar Brataas, Nikolas Herbst, Simon Ivansek, and Jure Polutnik. 2017. Scalability

Analysis of Cloud Software Services. In 2017 IEEE International Conference on
Autonomic Computing (ICAC). IEEE, 285–292. https://doi.org/10.1109/ICAC.2017.34

[3] Felix Burgstaller, Dieter Steiner, Bernd Neumayr, Michael Schrefl, and Eduard
Gringinger. 2016. Using aModel-Driven, Knowledge-Based Approach to Copewith
Complexity in Filtering of Notices to Airmen. In Proceedings of the Australasian
Computer Science Week Multiconference (ACSW 2016). 46:1–46:10.

[4] Dieter Fensel, Frank van Harmelen, Bo Andersson, Paul Brennan, Hamish Cun-
ningham, Emanuele Della Valle, Florian Fischer, ZhishengHuang, Atanas Kiryakov,
Tony Kyung-il Lee, Lael Schooler, Volker Tresp, Stefan Wesner, Michael Witbrock,
and Ning Zhong. 2008. Towards LarKC: A Platform for Web-Scale Reasoning.
In Proceedings of the 2nd IEEE International Conference on Semantic Computing.
524–529.

[5] Pascal Hitzler, Peter Patel-Schneider, Sebastian Rudolph, Markus Krötzsch, and Bi-
jan Parsia. 2012. OWL 2Web Ontology Language Primer (Second Edition). W3C Rec-
ommendation. W3C. http://www.w3.org/TR/2012/REC-owl2-primer-20121211/.

[6] Ian Horrocks, Zhe Wu, Achille Fokoue, Boris Motik, and Bernardo Cuenca Grau.
2012. OWL 2 Web Ontology Language Profiles (Second Edition). W3C Recommen-
dation. W3C. http://www.w3.org/TR/2012/REC-owl2-profiles-20121211/.

[7] Yevgeny Kazakov, Markus Krötzsch, and František Simančík. 2014. The Incred-
ible ELK. J. Autom. Reason. 53, 1 (June 2014), 1–61. https://doi.org/10.1007/
s10817-013-9296-3

[8] Bernd Neumayr, Eduard Gringinger, Christoph Schuetz, Michael Schrefl, Scott
Wilson, and Audun Vennesland. 2017. Semantic Data Containers for Realizing
the Full Potential of System Wide Information Management. In Proceedings of the
IEEE/AIAA 36th Digital Avionics Systems Conference.

Work-in-Progress & Vision Paper ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

20

https://doi.org/10.1109/ICAC.2017.34
https://doi.org/10.1007/s10817-013-9296-3
https://doi.org/10.1007/s10817-013-9296-3

	Abstract
	1 Introduction
	2 State of the Art
	3 Scalability Requirements
	3.1 System
	3.2 Critical Operations
	3.3 Work
	3.4 Load
	3.5 Quality Metrics and Thresholds
	3.6 Resources and Capacity

	4 Experiments
	4.1 Setup
	4.2 Results

	5 Conclusions and Further Work
	References



