
Diagnosis of Privacy and Performance Problems in the Context
of Mobile Applications

David Monschein
Karlsruhe Institute of Technology

Karlsruhe, Germany
ugdzy@student.kit.edu

Robert Heinrich
Karlsruhe Institute of Technology

Karlsruhe, Germany
robert.heinrich@kit.edu

Christoph Heger
NovaTec Consulting GmbH

Leinfelden-Echterdingen, Germany
christoph.heger@novatec-gmbh.de

ABSTRACT
Complex systems need to run flawless and protecting the users
privacy is mandatory to stay competitive. The consideration of
privacy aspects is even more important for mobile applications,
because a lot of sensitive data is transferred over a bunch of dif-
ferent networks. Especially after the espionage scandals in the last
years the users care about their privacy more than ever. There are
several approaches which enable the monitoring and analysis of
performance issues.

However, there is no approach which supports both privacy and
performance diagnostics. Therefore we propose an approach for
filling this gap, a monitoring and analysis strategy for applications
which is capable of identifying privacy and performance problems.
The monitoring is designed to collect performance metrics together
with privacy related information. The resulting monitoring data is
used to derive an architectural run-time model which takes part in
the performance analysis and in the detection of privacy threats.

During our evaluation we analyzed the accuracy and the over-
head to confirm that our approach can be used in production.

KEYWORDS
Mobile Application Monitoring, Application Privacy, Usage Profile
Extraction, Privacy Analysis, Performance Analysis

ACM Reference Format:
David Monschein, Robert Heinrich, and Christoph Heger. 2018. Diagnosis
of Privacy and Performance Problems in the Context of Mobile Applications.
In ICPE ’18: ACM/SPEC International Conference on Performance Engineering
Companion , April 9–13, 2018, Berlin, Germany. ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/3185768.3186283

1 INTRODUCTION
The performance of applications continues to be crucial for compa-
nies. Especially mobile applications with large target groups need
to be optimized in terms of performance. Users of mobile appli-
cations expect fast response times and there are a lot of different
mobile devices with different specifications, which makes it hard
to perform well on each of them.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPE ’18, April 9–13, 2018, Berlin, Germany
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5629-9/18/04. . . $15.00
https://doi.org/10.1145/3185768.3186283

Besides performance also other quality properties, such as pri-
vacy, are important for modern software systems. Privacy is a rough
term, in most definitions it is related to data privacy, which deals
with the ability to decide what data can be sent to third parties [16].
Today, when a lot of sensitive data is transferred and people care
about their privacy, the protection of data flows is essential.

An actual problem is the lack of toolings that support the mon-
itoring and analysis of privacy aspects. A big difference between
mobile applications and conventional software is that the geograph-
ical location of the user can change while an application is in use.
Changing the goegraphical location can result in a change of the
network connection and may trigger a privacy problem if the new
connection is insecure (e.g. weak encryption). For example a user
accesses an application for social communication and while he is
interacting with the mobile device he leaves his house and there-
fore the phone has no longer a connection to his own Wireless
Local Area Network (WLAN). The device automatically connects
to the mobile internet or to another WLAN and sensitive data of
the user is transferred over a network, whose trustworthiness is
not guaranteed. For instance, the encrpytion of the GSM protocol,
which is used by mobile network connections, is breakable [2, 18].

Within this paper we present amonitoring and analysis approach
with a particular focus on applications that are intended to run on
mobile devices. This approach is capable of identifying both pri-
vacy and performance problems of the monitored application. Our
monitoring is based on inspectIT [13] in combination with Kieker
[19] and the analysis strategy uses iObserve [7] together with the
Palladio Component Model (PCM) [15].

The main contributions of this paper are as follows:

• Wepropose amonitoring approach for observing both perfor-
mance and privacy. Our monitoring collects relevant privacy
information and uses it to detect privacy threats during the
analysis.
• We describe an analysis method that builds upon iObserve
and the PCM to get knowledge about the performance and
the privacy characteristics of the application under observa-
tion.
• The evaluation of the proof-of-concept implementation, based
on the community case study CoCoME [8], is summarized
and presented within this paper.

2 STATE OF THE ART
There are several approaches for monitoring mobile applications.
One of them is AppInsight [14], which is limited to the monitor-
ing of performance aspects. Another familiar monitoring approach

QUDOS Workshop ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

167

https://doi.org/10.1145/3185768.3186283
https://doi.org/10.1145/3185768.3186283

ICPE ’18, April 9–13, 2018, Berlin, Germany David Monschein, Robert Heinrich, and Christoph Heger

Performance Analysis
Results

Privacy Analysis
Results

Palladio Component
Model

Mobile Device Monitoring Server
iObserve

(RAC)

<<output>>

<<passed>>
Monitoring data

Figure 1: Visualization of the approach structure

is the SPASS-meter [3] monitoring framework. It provides an ex-
tension for monitoring Android applications and the goal of the
SPASS-meter framework is to collect performance metrics. A mon-
itoring approach which addresses the detection of privacy prob-
lems is TaintDroid [4]. TaintDroid is a modification of the Android
operating system and is able to observe the usage of sensitive in-
formation. Accordingly, it is mandatory that the application to be
monitored runs on a device which uses TaintDroid. This reveals the
main handicap of TaintDroid: it is not possible to monitor existing
applications in production because the user of the application needs
to have the TaintDroid operating system installed. Our monitoring
concept tries to combine the benefits of the mentioned approaches.

The contribution of this paper includes the analysis of privacy
aspects, therefore we also introduce existing approaches in this
dimension. An approach for modeling data flows and dealing with
data flow analysis was presented by Stephan Seifermann. This ap-
proach suggests the realization of data flow analysis by seeing them
as “first class entities" [17]. To realize this, it is suggested to extend
the Palladio Component Model [17]. A well known approach for de-
signing security critical software systems is UMLsec [11]. UMLsec
makes it possible to express information about the security in the
Unified Modelling Language (UML). For behaviour and structure
descriptions UMLsec provides mathematical funded semantics [11].
Therefore, UMLsec models can be examined using model checkers.
The big drawback of UMLsec is the requirement of a detailed design,
which is in most cases not available at early development stages
[17].

3 MONITORING AND ANALYSIS APPROACH
In this section we introduce the design of our monitoring and
analysis approach.

3.1 Structure
Figure 1 outlines the important steps from collecting monitoring
data to the generation of analysis results. First of all, it is necessary

to collect performance and privacy information while the applica-
tion under observation is running. This is done by adding code to
the application. The purpose of this code is to collect monitoring
data. The main goals which were targeted in the conception of the
monitoring are as follows:

(i) Minimization of the effort needed for the integration into a
mobile application

(ii) Compatibility to existing approaches (Kieker [19], inspectIT
[13])

(iii) Minimization of overhead

The main artefact of the monitoring is theMonitoring Agent, this
is the code which runs directly on the device and performs mea-
surements. To weave this code into an existing application, there
exist different strategies. In our proof-of-concept implementation
we used bytecode modification to support the fully automated in-
strumentation of Android applications. Because we can not store
monitoring data on the mobile device it is necessary to have a
server component which receives measurements from the mobile
agent and persists them. The server provides a simple RESTful [5]
interface. In our case, the server component transforms the moni-
toring data into Kieker records [19]. This step is mandatory, because
iObserve only supports the Kieker format at the moment. After
transforming the monitoring data to Kieker records and writing
them to a monitoring log, the resulting file can be passed to iOb-
serve. Additionally iObserve requires an initial Palladio Component
Model instance and a run-time architecture correspondence model
(RAC) [10] as input. The RAC is used to associate monitoring data,
which relates to implementation artefacts, with architectural run-
time model elements [10]. The main idea of iObserve is to monitor
the changes of the system environment and predict necessary ad-
justments. iObserve iterates over all monitoring records and applies
different transformations to the initial architectural run-time model
depending on the type and the content of the records. The updated
model takes part in the analysis of performance and privacy [7].

QUDOS Workshop ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

168

Diagnosis of Privacy and Performance Problems in the Context of Mobile Applications ICPE ’18, April 9–13, 2018, Berlin, Germany

The idea of our approach is to extend iObserve so that it is able
to process privacy related monitoring data. A major benefit of this
approach is the fact, that existing parts of iObserve and the Palladio
Component Model stay untouched and can still be used to get a
clue about the performance of the monitored application. To be
able to store privacy aspects it is necessary to extend the Palladio
Component Model.

3.2 Monitoring
Just like Kieker and inspectIT, we also gather method call traces to
detect performance issues. This part is not an innovation as it uses
existing parts of inspectIT and Kieker. Additionally, the monitoring
keeps track of privacy relevant actions. In the following, we describe
the most important privacy characteristics which are addressed by
our monitoring approach.

The privacy threat detection is based on the analysis of net-
work connections. Therefore it is necessary to observe all network
requests performed by the monitored application. Important prop-
erties of a network request are the protocols used on the application
layer (e.g. HTTP, HTTPS) and the ones that are used to transmit
the data (e.g. LTE, GSM). Using this information it is possible to
derive details about the encryption and the confidentiality of the
connection. Furthermore, if the device uses a Wi-Fi connection, the
encryption type and the ID of the access point are recorded. Espe-
cially unsecured Wi-Fi networks are prone to traffic sniffing attacks.
Additionally we capture the end point of the network request and
a checksum of the transferred data.

Section 3.5 explains how we use the monitoring data within the
analysis.

3.3 Palladio Component Model Extension
As already mentioned before, iObserve adjusts an initial Palladio
Component Model (PCM) with the information stored in Kieker
monitoring logs. The current version of the PCM is focused on mak-
ing performance predictions and there is no way to store privacy
related data, like the connection protocol, in an instance of the PCM.
Therefore it is necessary to extend the Palladio Component Model.
We focused on extending the Resource Environment Model of
the PCM [15], because we want to analyze network data flows
in terms of privacy. The resource environment model consists of
Resource Containers. They can be linked with so-called Link-
ing Resources, which represent a network connection between
two containers. For example, a mobile phone and a server are Re-
source Containers and if the mobile phone has a connection to
the server they are connected with a Linking Resource. A Linking
Resource can specify a Communication Link Resource Spec-
ification which contains information about the connection. We
propose to introduce new sub-types that are able to store informa-
tion about the privacy aspects of the connection (for example the
protocol which is used to communicate).

3.4 iObserve Integration
iObserve is an approach to “cloud-based system adaptation and
evolution through run-time observation and continuous quality
analysis" [7]. In the current version iObserve supports the process-
ing of the following monitoring record types:

• Flow records (Method call traces)
• Deployment records (Indicate the deployment of a compo-
nent)

The flow records are used to derive a PCM usage model which de-
scribes the behaviour of the users. This is the job of the transforma-
tions TEntryCall , TEntryCallSequence and TEntryEventSequence
[7]. These transformations extract an usage profile from the col-
lected method call traces. Therefore, it is necessary that we also
collect flow records on the mobile device, so iObserve is able to
create an accurate usage model. The deployment records indicate,
as the name suggests, the deployment of a servlet, server or applica-
tion component and are used to update the Resource Environment
Model and the System Model [15] of the PCM instance.

In order to pass privacy related data to iObserve, it is necessary
to add new monitoring records and transformations to iObserve.
The transformations are responsible for processing the introduced
monitoring records and use the included privacy information to
adjust an instance of the extended PCM. The resulting PCM instance
contains everything that is necessary to perform performance and
privacy analysis tasks.

3.5 Analysis
The PCM, which arises from the execution of iObserve, can be ana-
lyzed in various ways. In our case we focused on the examination
of network connections. Therefore we build a directed graph where
clients and servers are represented by vertices and the edges indi-
cate a data flow between two vertices. This is done by extracting
the necessary data out of the Resource Environment Model [15]
of the PCM instance. The edges also hold additional information
about the connection, for example the connection type and the used
protocol. Using this graph, we can use several analysis approaches.
Our prototypical implementation iterates over all network connec-
tions (edges) and recognizes the usage of deprecated or insecure
protocols and connection types (e.g. GSM protocol mentioned ear-
lier or unsecured Wi-Fi connection). All network connections that
are classified as insecure need to be protected with additional mea-
sures (e.g. end-to-end encryption). This analysis helps to identify
vulnerable data flows. We are also able to elaborate on the network
flow. For instance, A sends data to B and B forwards the data to C.
Imagine the connection between B and C is insecure. As a result,
all data that has been transferred from A to B is also at risk, even
if the connection is provably secure. Using the network graph in
combination with algorithms for analyzing flows within graphs
makes it possible to determine dangerous routes in the network. In
the mentioned scenario this strategy is able to notice that the traffic
between A and B is exposed if the data flow between B and C is
compromised. The more nodes are monitored, the more accuracte
is the resulting graph. In the ideal case, the monitoring runs on
all computers that are involved in the network communication of
the application (servers and clients). A bit more complex version
of this approach assigns integer values to the edges (e.g. 0 - 10),
where 0 means that the connection is exposed and 10 represents a
well-secured connection. The first step is to investigate on the used
protocols and on the additional knowledge about the connection.
Depending on the security characteristics, we apply a suitable value
to the belonging edge. Afterwards we perform a flow analysis and

QUDOS Workshop ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

169

ICPE ’18, April 9–13, 2018, Berlin, Germany David Monschein, Robert Heinrich, and Christoph Heger

decrease the values of all edges that are reachable from a vulnerable
connection. This results in a graph where the edges (which rep-
resent network connections) are classfied with different “security
levels”. We can also use different strategies and include additional
information of the PCM to adjust the analysis so it fits a certain
use-case.

The performance analysis is straightforward and relies on exist-
ing features of iObserve and the Palladio Component Model. After
executing the iObserve analysis, all analysis tasks provided by the
Palladio Component Model can be used to inspect the performance
of the application. For example, the PCM supports the discovery of
performance bottlenecks and scalability issues [15].

3.6 Proof-of-Concept
Based on Android [6], which is currently one of the most used
operating systems worldwide, we built a proof-of-concept imple-
mentation. We used bytecode instrumentation, based on inspectIT
[13], to automatically add code to the application to be monitored. A
fine-grained description of the Android monitoring implementation
is included in our previous work [12].

Additionally we implemented the extension for iObserve and the
Palladio Component Model to be able to deal with privacy related
monitoring data. Finally, we created an exemplary privacy-analysis
which takes an instance of the extended Palladio Component Model
as input, detects possible privacy threats and prints the results.

4 EVALUATION
We evaluated our approach using the proof-of-concept implemen-
tation mentioned in Section 3.6. In this section we summarize the
results of the evaluation.

4.1 Goals
The evaluation investigates two quality dimensions of our approach:

• The first goal is to determine the accuracy of the components.
This includes especially the validation of the correctness for
the monitoring and analysis results.
• The second goal concerns the overhead of the mobile moni-
toring approach. To be applicable in production it is manda-
tory that the mobile monitoring has no significant impact on
the performance of the application. Therefore we examine
the performance and the network overhead that is caused
by the monitoring.

4.2 Experiment Environment
To realize the evaluation described in the previous section we fo-
cused on the monitoring and analysis of the mobile shop client
for CoCoME. The mobile shop is basically an extension which is
connected to the conventional CoCoME [9] over an adapter. The
evaluation environment consists of an Android device and a moni-
toring server. We used both a physical and a virtual Android device
to collect monitoring data. To generate monitoring data, we need
to interact with the application and it is important that the inter-
action is reproducible, otherwise we can not compare different
monitoring logs. Therefore, we specified a set of use-cases which

can be reproduced. These use-cases are executed automatically us-
ing monkeyrunner1. Monkeyrunner provides an API for simulating
user-actions on an Android device. The considered use-cases are:
• UC1 - User selects a store and searches through the offered
products.
• UC2 - The user of the application uses his credentials to sign
in.
• UC3 - The customer selects the products he wants to buy
and pays by adding his credit card.

4.3 Accuracy Evaluation
To measure the accuracy of our approach we generate monitoring
data with the experiment environment described in the previous sec-
tion. Furthermore, we also monitored the experiment environment
with established tools. The main idea is to automatically simulate
several use-cases and afterwards we compare the results of our ap-
proach to the ones produced by other toolings. After verifying that
the monitoring is accurate, we use the collected monitoring data
to test the iObserve and the Palladio Component Model analysis
against different inputs.

First of all, we checked whether the observed network requests
are equal to the network requests which tcpdump [1] recognized.
Tcpdump is a utility for observing network requests. Furthermore,
we gathered method call traces using Android Monitor (AM) 2 and
compared them with the traces in our monitoring logs. The results
showed that our monitoring approach is as accurate as similar tools
in terms of network monitoring and method trace collection. Table
1 and Table 2 summarize the measurement results which arise
from the simulation of the use-cases mentioned in 4.2. We have to
notice that we ignored network requests and method calls issued by
the underlying operating system, because it is impossible to gather
them by monitoring the application only.

Use-Case Action #Traced Method Calls
Our monitoring AM

UC-1 Browse store 31 31
UC-2 User Authentication 20 20
UC-3 Process sale 52 52

Table 1: Collected method call traces while simulating dif-
ferent use-cases

Use-Case Action #Network requests
Our monitoring tcpdump

UC-1 Browse store 4 4
UC-2 User Authentication 2 2
UC-3 Process sale 7 7

Table 2: Recognized network requests while simulating dif-
ferent use-cases

Next, we used the generated monitoring logs to review the analy-
sis tasks. First we inspected the accuracy of the iObserve extension
by passing different monitoring logs. Afterwards we showed that
the privacy analysis works appropriate. We modeled all conceiv-
able privacy threats (deprecated protocols, insecure encryption,
1https://developer.android.com/studio/test/monkeyrunner/index.html
2https://developer.android.com/studio/profile/android-monitor.html

QUDOS Workshop ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

170

https://developer.android.com/studio/test/monkeyrunner/index.html
https://developer.android.com/studio/profile/android-monitor.html

Diagnosis of Privacy and Performance Problems in the Context of Mobile Applications ICPE ’18, April 9–13, 2018, Berlin, Germany

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

250

500

750

1,000

1,250

1,500

1,750

2,000

2,250

2,500

Method execution count

M
ill
is
ec
on

ds

Non-instrumented method Instrumented method

Figure 2: Average method execution times of the instrumented and the non-instrumented method

untrusted endpoints and the ones outlined in Section 3.5) to test
the analysis against instances of these models. The intention is to
ensure that all considered privacy problems are detected.

4.4 Performance Overhead Evaluation
First, we introduce the procedure to measure the performance over-
head caused by the monitoring. Therefore we instrumented a single
method. The test-application executes the method a predefined
number of times and afterwards logs the time the execution needed.
Next, we performed the measurement one-hundred times for both
the instrumented method and the non-instrumented one and com-
pared the results. Figure 2 visualizes the observed timings.

It shows the average amount of time that is needed to execute the
measurement. The count of method executions within the measure-
ment is plotted on the x-axis and the time needed for the execution
is applied to the y-axis. At first sight, the overhead seems to be
very high for a increasing number of method executions. In the
following, we elaborate on the results shown in the line graph and
explain why our approach nevertheless performs very well. First
of all, the method, which is used to test the overhead, only per-
forms two simple operations and therefore only needs less than
100µs for one execution. Therefore, the overhead caused by the
instrumentation is even more predominant. If we use a method
that runs for 1ms or longer, the gap between the lines would be
much smaller, because the instrumentation causes a fixed overhead
for every monitored method which is executed (overhead scales
linearly with the number of instrumented methods).

Figure 3 inspects the monitoring overhead per monitored opera-
tion execution in detail. The Figure shows that the Trace registry is
responsible for more than 50 percent of the overhead. This is due to
the fact that we use a modified version of the Kieker tracing system

0 20 40 60 80 100

Overhead in µs

Other Trace registry Callback

Figure 3: Monitoring overhead per execution of amonitored
operation in µs

[20], which is not optimized for the usage on mobile platforms. The
effort for sending the data asynchronously back to the monitoring
server amounts to an average of 22µs. With only 22µs, the callback
is really fast, regarding the fact that it is necessary to pool monitor-
ing records and send them back to the monitoring server, because
we can not store the data on the device itself. The remaining part
of the overhead is caused by simple operations which are not part
of the Kieker trace registry or the callback. All in all, a overhead of
80µs per execution of a monitored operation is not much and only
has an impact on the performance if we monitor methods that are
executed very often (>10000 times) or are intended to run very fast
(<1ms).

To limit the monitoring overhead, it is necessary to ensure that
low-level methods are not instrumented. Our instrumentation sup-
ports the selection of classes and methods to be monitored. There-
fore, it is necessary to restrict the instrumentation to methods,
where the overhead of around 80µs per execution has no signifi-
cant impact on the performance. Furthermore, in the most cases
it does not make sense to monitor methods that are executed very

QUDOS Workshop ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

171

ICPE ’18, April 9–13, 2018, Berlin, Germany David Monschein, Robert Heinrich, and Christoph Heger

frequently. These methods are often triggered by higher-level oper-
ations and it makes much more sense to monitor the higher-level
methods and model them with Service-Effect-Specifications in the
Palladio Component Model [15]. This guarantees that we do not
lose any information, the overhead is reduced and the method call
traces are clearer.

4.5 Network Overhead Evaluation
Second, we determined the network traffic caused by the moni-
toring. The traffic arises from the connection between the agent
and the monitoring server. We used the test environment intro-
duced in Section 4.2 and observed the network traffic caused by
the monitoring. The packet analyzer tcpdump [1] was used to cap-
ture all network requests. We only outline the main results of the
network overhead evaluation here, details about the procedure and
the measurements are described in our previous work [12].

We showed that the most mobile internet connection types need
less than ten seconds to send one thousand monitoring records.
Only the GSM and the EDGE protocol needed plenty of time and
we have to keep in mind that a GSM or EDGE connection is very
unlikely in most urban areas like cities. Other connection types,
like Wi-Fi connections, needed significantly less than one second
to transmit one thousand records. Furthermore the network strat-
egy of the monitoring is exchangeable, therefore it is possible to
implement a strategy which collects the monitoring data until the
connection is fast enough to transfer them. This reduces the impact
on the network performance of the device.

5 CONCLUSION
Our presented approach provides a transparent and extensible way
for monitoring applications and searching the monitoring data for
privacy and performance problems. Kieker and inspectIT are used
for monitoring purposes and iObserve in combination with the
Palladio Component Model is responsible for the analysis parts.
The monitoring approach has been implemented for Android, but
the conception is platform independent and it is possible to imple-
ment it for other operating systems. The analysis uses iObserve
to enrich a Palladio Component Model instance with the collected
monitoring data and afterwards the resulting PCM instance can be
analyzed. The monitoring and the analysis can be extended without
an outstanding effort. This provides a solid base for future develop-
ments. The popularity of mobile applications is still growing and
the technology is developing rapidly. The proposed approach takes
care of this evolution with flexibility and extensibility.

The evaluation showed that our approach is accurate and per-
forms well. We analyzed the functionality and measured the over-
head caused by the monitoring to make sure that our approach
is applicable in production. Smart networking strategies and the
reduction of monitored operations make it possible to limit the
monitoring overhead, so it fits nearly every use-case.

6 ACKNOWLEDGMENTS
This work has been supported by the German Federal Ministry of
Education and Research (grant no. 01IS17106A, Trust 4.0, and grant
no. 01IS15004, diagnoseIT), the DFG (German Research Foundation)

under the Priority Programme SPP1593, and the Research Group of
the Standard Performance Evaluation Corporation (SPEC).

REFERENCES
[1] 2017. tcpdump for Android. (2017). http://www.androidtcpdump.com/ http:

//www.androidtcpdump.com/, accessed 27.03.17.
[2] Elad Barkan, Eli Biham, and Nathan Keller. 2008. Instant Ciphertext-Only Crypt-

analysis of GSM Encrypted Communication. Journal of Cryptology 21, 3 (2008),
392–429. https://doi.org/10.1007/s00145-007-9001-y

[3] Holger Eichelberger et al. 2014. Flexible resource monitoring of Java programs.
Journal of Systems and Software 93 (2014), 163 – 186. http://www.sciencedirect.
com/science/article/pii/S0164121214000533

[4] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung,
Patrick McDaniel, and Anmol N. Sheth. 2010. TaintDroid: An Information-flow
Tracking System for Realtime PrivacyMonitoring on Smartphones. In Proceedings
of the 9th USENIX Conference on Operating Systems Design and Implementation
(OSDI’10). USENIX Association, Berkeley, CA, USA, 393–407. http://dl.acm.org/
citation.cfm?id=1924943.1924971

[5] Otávio Freitas Ferreira Filho and Maria Alice Grigas Varella Ferreira. 2009. Se-
mantic Web Services: A RESTful Approach. In IADIS International Conference
WWWInternet 2009. IADIS, 169–180.

[6] Google Inc. 2017. Android. (2017). https://www.android.com/intl/en_en/,
accessed 11.04.17.

[7] Robert Heinrich. 2016. Architectural Run-time Models for Performance and
Privacy Analysis in Dynamic Cloud Applications. SIGMETRICS Perform. Eval.
Rev. 43, 4 (2016), 13–22. https://doi.org/10.1145/2897356.2897359

[8] Robert Heinrich, Stefan Gärtner, Tom-Michael Hesse, Thomas Ruhroth, Ralf
Reussner, Kurt Schneider, Barbara Paech, and Jan Jürjens. 2015. A Platform
for Empirical Research on Information System Evolution. In 27th International
Conference on Software Engineering and Knowledge Engineering. 415–420.

[9] Robert Heinrich, Kiana Rostami, and Ralf Reussner. 2016. The CoCoME Platform
for Collaborative Empirical Research on Information System Evolution. Technical
Report 2016,2; Karlsruhe Reports in Informatics. Karlsruhe Institute of Technol-
ogy. http://digbib.ubka.uni-karlsruhe.de/volltexte/1000052688

[10] Robert Heinrich, Eric Schmieders, Reiner Jung, Kiana Rostami, Andreas Metzger,
Wilhelm Hasselbring, Ralf H. Reussner, and Klaus Pohl. 2014. Integrating Run-
time Observations and Design Component Models for Cloud System Analysis.
In Proceedings of the 9th Workshop on Models@run.time co-located with 17th
International Conference on Model Driven Engineering Languages and Systems
(MODELS 2014), Valencia, Spain, September 30, 2014. 41–46. http://ceur-ws.org/
Vol-1270/mrt14_submission_8.pdf

[11] Jan Jürjens. 2002. UMLsec: Extending UML for Secure Systems Development.
Springer Berlin Heidelberg, Berlin, Heidelberg, 412–425. https://doi.org/10.
1007/3-540-45800-X_32

[12] David Monschein. 2017. Mobile Application Monitoring - Privacy and Performance
Diagnosis. B. Sc. Thesis. Karlsruhe Institute of Technology.

[13] NovaTec Consulting GmbH. 2017. inspectIT: Manage your Java Application’s
Performance. (2017). http://www.inspectit.rocks/, accessed 11.04.17.

[14] Lenin Ravindranath, Jitendra Padhye, Sharad Agarwal, Ratul Mahajan, Ian Ober-
miller, and Shahin Shayandeh. 2012. AppInsight: Mobile App Performance
Monitoring in the Wild. In Presented as part of the 10th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 12). USENIX, 107–120.

[15] Ralf H. Reussner, Steffen Becker, Jens Happe, Robert Heinrich, Anne
Koziolek, Heiko Koziolek, Max Kramer, and Klaus Krogmann. 2016.
Modeling and Simulating Software Architectures – The Palladio Ap-
proach. MIT Press, Cambridge, MA. http://mitpress.mit.edu/books/
modeling-and-simulating-software-architectures

[16] Margaret Rouse. 2013. Data privacy (information privacy). (2013). http://
searchcio.techtarget.com/definition/data-privacy-information-privacy, accessed
April 10, 2017.

[17] Stephan Seifermann. 2016. Architectural Data Flow Analysis. In Proceedings of
the 13th Working IEEE/IFIP Conference on Software Architecture (WICSA’16). IEEE,
270–271. https://doi.org/10.1109/WICSA.2016.49

[18] M. Toorani and A. Beheshti. 2008. Solutions to the GSM Security Weaknesses. In
2008 The Second International Conference on Next Generation Mobile Applications,
Services, and Technologies. 576–581. https://doi.org/10.1109/NGMAST.2008.88

[19] André van Hoorn et al. 2012. Kieker: A Framework for Application Performance
Monitoring and Dynamic Software Analysis. In 3rd ACM/SPEC International
Conference on Performance Engineering. ACM, 247–248. https://doi.org/10.1145/
2188286.2188326

[20] André van Hoorn, Matthias Rohr, Wilhelm Hasselbring, Jan Waller, Jens Ehlers,
Sören Frey, and Dennis Kieselhorst. 2009. Continuous Monitoring of Software
Services: Design and Application of the Kieker Framework. Research Report. Kiel
University. http://eprints.uni-kiel.de/14459/

QUDOS Workshop ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

172

http://www.androidtcpdump.com/
http://www.androidtcpdump.com/
http://www.androidtcpdump.com/
https://doi.org/10.1007/s00145-007-9001-y
http://www.sciencedirect.com/science/article/pii/S0164121214000533
http://www.sciencedirect.com/science/article/pii/S0164121214000533
http://dl.acm.org/citation.cfm?id=1924943.1924971
http://dl.acm.org/citation.cfm?id=1924943.1924971
https://www.android.com/intl/en_en/
https://doi.org/10.1145/2897356.2897359
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000052688
http://ceur-ws.org/Vol-1270/mrt14_submission_8.pdf
http://ceur-ws.org/Vol-1270/mrt14_submission_8.pdf
https://doi.org/10.1007/3-540-45800-X_32
https://doi.org/10.1007/3-540-45800-X_32
http://www.inspectit.rocks/
http://mitpress.mit.edu/books/modeling-and-simulating-software-architectures
http://mitpress.mit.edu/books/modeling-and-simulating-software-architectures
http://searchcio.techtarget.com/definition/data-privacy-information-privacy
http://searchcio.techtarget.com/definition/data-privacy-information-privacy
https://doi.org/10.1109/WICSA.2016.49
https://doi.org/10.1109/NGMAST.2008.88
https://doi.org/10.1145/2188286.2188326
https://doi.org/10.1145/2188286.2188326
http://eprints.uni-kiel.de/14459/

	Abstract
	1 Introduction
	2 State of the Art
	3 Monitoring and Analysis Approach
	3.1 Structure
	3.2 Monitoring
	3.3 Palladio Component Model Extension
	3.4 iObserve Integration
	3.5 Analysis
	3.6 Proof-of-Concept

	4 Evaluation
	4.1 Goals
	4.2 Experiment Environment
	4.3 Accuracy Evaluation
	4.4 Performance Overhead Evaluation
	4.5 Network Overhead Evaluation

	5 Conclusion
	6 Acknowledgments
	References

