
A Cloud Benchmark Suite Combining
Micro and Applications Benchmarks

Joel Scheuner
Chalmers | University of Gothenburg

Software Engineering Division
Gothenburg, Sweden
scheuner@chalmers.se

Philipp Leitner
Chalmers | University of Gothenburg

Software Engineering Division
Gothenburg, Sweden

philipp.leitner@chalmers.se

ABSTRACT
Micro and application performance benchmarks are commonly used
to guide cloud service selection. However, they are often considered
in isolation in a hardly reproducible setup with a flawed execution
strategy. This paper presents a new execution methodology that
combines micro and application benchmarks into a benchmark
suite called RMIT Combined, integrates this suite into an auto-
mated cloud benchmarking environment, and implements a repeat-
able execution strategy. Additionally, a newly crafted Web serving
benchmark called WPBench with three different load scenarios is
contributed. A case study in the Amazon EC2 cloud demonstrates
that choosing a cost-efficient instance type can deliver up to 40%
better performance with 40% lower costs at the same time for the
Web serving benchmark WPBench. Contrary to prior research, our
findings reveal that network performance does not vary relevantly
anymore. Our results also show that choosing a modern type of
virtualization can improve disk utilization up to 10% for I/O-heavy
workloads.
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1 INTRODUCTION
In the cloud computing service model Infrastruce-as-a-Service
(IaaS) [2], computing resources, such as CPU processing time, disk
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space, or networking capabilities, can be acquired and released
as self-service via an Application Programming Interface (API)
prevalently in the form of Virtual Machines (VMs). Such VMs are
typically available in different configurations or sizes also known
as instance types, machine types, or flavors. This diversity ranges
from tiny-sized VM with less than 1 (shared) CPU core and 1GB
RAM (e.g., f1-micro1) to super-sized VMs with 128 CPU cores and
1952 GB RAM (e.g., x1.32xlarge2).

Given the large service diversity, selecting an appropriate VM
configuration for an application is a non-trivial challenge. While
functional properties can be compared by studying provider infor-
mation or using tools such as Cloudorado3, non-functional proper-
ties, such as performance, need to be measured tediously. The field
of research called cloud benchmarking is devoted to objectivelymea-
suring and comparing the differences in performance between the
various cloud services. A large body of literature [9, 13, 17, 19, 20, 22]
reports performance measurements for different workloads at the
very resource-specific (e.g., CPU integer operations) and artificial
micro-level or at the domain-specific (e.g., Web serving) and real-
world application-level.

Existing literature largely focuses on either application bench-
marks or micro benchmarks in isolation. Researchers propose new
cloud-specific application benchmarks [10, 21] and evaluate their
performance [4, 8, 15] in cloud environments. Such application
benchmarks tend to require an elaborate setup, run over a long time,
and deliver polysemous results with multiple metrics. Therefore,
researchers often choose micro benchmarks, which are typically
easy to install, quick to run, and clear to interpret as single metrics.
However, there is a lack of combining micro and application bench-
marks to obtain insights into the relevancy of micro benchmarks
to assess application performance.

The goal of this paper is to present a new cloud benchmarking
methodology that combines micro and application benchmarks
into a benchmark suite that automates execution in cloud environ-
ments and implements a repeatable execution strategy. This paper
makes the following three contributions: 1) It provides an auto-
mated benchmark that combines single-instance and multi-instance
micro and application benchmarks. 2) It extends the Web-based
cloud benchmark manager Cloud WorkBench (CWB) [24, 25] with
a modular benchmark plugin and execution coordinator system.
3) It presents a newly crafted Web serving application benchmark
with three different load scenarios.

1https://cloud.google.com/compute/docs/machine-types
2https://aws.amazon.com/ec2/instance-types/x1/
3https://www.cloudorado.com/cloud_providers_comparison.jsp
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2 RELATEDWORK
Micro benchmarking aims at measuring cloud service performance
for individual resources such as CPU, I/O, memory, and network.
Initial studies [31] were extended in scope and led to some of the
most important contributions in this field [13, 19]. Assessing and
comparing the performance of cloud services has also become a busi-
ness and companies such as CloudHarmony4 or Cloud Spectator5
offer comparison services and publish their own price-performance
analysis reports [28].

One of the earliest efforts geared towards representative work-
loads for the cloud comprises the Cloudstone benchmark [27],
which proposes a new interaction-heavy Web 2.0 workload. Cloud-
Suite [10] contributes an entire collection of scale-out workloads,
which were incrementally6 (v3.0 as of Jan, 2018) improved [21] and
the SPEC CloudTM IaaS 2016 [5] is specifically aimed to measure IaaS
cloud performance. The YCSB suite [6] maintains a large collection
of scale-out workloads for database systems. Several conceptual
contributions [3, 11] suggest ideas and guidelines on how to design
and implement application benchmarks for cloud environments.

Abedi and Brecht [1] reveal considerable flaws in the method-
ology used by many performance studies conducted in cloud en-
vironments. Simulations with performance traces from previous
benchmarking experiments [22] have shown that inappropriate
ordering of benchmark executions "could lead to erroneous conclu-
sions" [1]. The Single Trial approach, where every benchmark is
executed only once, neglects intra-instance variability. TheMultiple
Consecutive Trials (MCT) approach, where every benchmark is re-
peated N times before proceeding with the next benchmark, fails to
take environmental changes into account. The Multiple Interleaved
Trials (MIT) approach, where in a first round every benchmark is
executed once followed by N repetitions of this first round, ignores
periodic patterns that could cause performance deviations for par-
ticular repetitions. Therefore, the authors recommend the use of
the Randomized Multiple Interleaved Trials (RMIT) approach for fair
comparison of competing alternatives. The RMIT approach is a
variation of the MIT approach where the benchmark order within
the individual rounds is randomized instead of kept constant.

Cloud WorkBench (CWB) [24, 25] is a Web-based cloud bench-
mark manager, which schedules and executes benchmarks without
manual interaction. It fosters the definition of configurable and
reusable CWB benchmarks that are entirely defined by means of
code by leveraging Infrastructure-as-Code (IaC). Therefore, CWB
benchmarks are portable across cloud providers and their regions
with minimal effort. Other tools focus on scale-out workloads
(CloudBench [26]), templated code generation [16], declarative
DSL [7], and community benchmark collection7.

4https://cloudharmony.com/
5http://cloudspectator.com/
6http://cloudsuite.ch/
7https://github.com/GoogleCloudPlatform/PerfKitBenchmarker

3 BENCHMARKING METHODOLOGY
Based on Cloud Benchmarking guidelines [3, 11, 14, 30], relevant
benchmarks that cover different cloud resources and application
domains were selected, designed, and integrated into the CWB [25]
execution environment. The execution of these benchmarks is then
automated following the RMIT methodology to conduct repeatable
experiments.

3.1 Architecture
Figure 1 illustrates the high-level architecture of this cloud bench-
markingmethodology and lists the selected benchmarks. The Bench-
mark Manager coordinates the entire lifecyle of all benchmark ex-
ecutions. Its Scheduler component triggers new executions and
its Cloud Manager component abstracts the cloud Provider API,
Cloud VM provisioning, and communication with the Cloud VM.
Cloud VMs are acquired via the Provider API. Within the cloud VM,
the Chef Client controls the VM provisioning and the CWB Client
steers the execution of the entire benchmark suite. The Chef Client
fetches the provisioning configuration for the Cloud VM from the
Provisioning Service and applies it to install and configure all Micro
and App benchmarks. The CWB Client directs the execution order
and handles communication with the Benchmark Manager such as
submitting result metrics via a REST API. Multi-VM benchmarks,
such as iperf and WPBench, submit their tasks to the Load Gen-
erator, which generates the specified task workload from another
dedicated cloud VM.

Figure 1: Architecture Overview

3.2 Cloud WorkBench Extensions
CWB was extended to modularly define benchmark plugins and
combine them into a collection of benchmarks called benchmark
suite. These extensions are then leveraged to package micro and
application benchmarks into a combined CWB benchmark and im-
plement a remote load generator to support multi-instance bench-
marks.
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Benchmark plugins can now be defined more concisely and indi-
vidual functionality can be unit-tested using Rspec8, and smoke-
tested locally using the cwb command line utility. Such a benchmark
plugin typically executes a benchmark command, extracts some
metrics of interests from the result, and submits these metrics to
the CWB server. Benchmark suites were introduced to CWB to
control the execution order of a collection of CWB benchmark plu-
gins. In addition, cross-cutting concerns can be handled in such
benchmark suites such as logging execution progress, notifying
the CWB server, handling execution errors, or reporting metadata.
The rmit-combined9 benchmark developed in this paper bundles
all micro and application benchmarks as benchmark plugins and
provides a custom benchmark suite that implements the RMIT exe-
cution methodology. For auditability, the benchmark suite reports
metadata for every execution about the instance (e.g., CPU model
name), the system (e.g., gcc compiler version), the benchmarks (e.g.,
version number), and the execution order (i.e., randomized RMIT
schedule).

A decoupled load generator can run arbitrary workload against
a cloud VM using CWB tasks that follow the guidelines for CWB
benchmark plugins. This allows to define load generating bench-
mark plugins for multi-machine benchmarks (e.g., iperf and WP-
Bench) and run their workloads (i.e., TCP network test and JMeter
test plan) against a cloud VM. The load generator is also available
as self-deploying open source software10.

3.3 Benchmarks
This section summarizes the selectedmicro benchmarks and presents
the newly crafted Web serving application benchmark calledWP-
Bench.

3.3.1 Micro Benchmarks. The selection of micro benchmarks
aims for broad-resource coverage and specific-resource testing
while trying to minimize redundancy and execution time. To ob-
tain an extensive instance profile, the selected micro benchmarks
cover resources in the domains computation, I/O, network, and
memory. Within each category, micro benchmarks were selected to
specifically test different aspects. For example, the I/O domain is di-
vided into low-level disk I/O and higher-level file I/O. Each of these
subdomains can be further divided based on operation type (e.g.,
sequential/random and read/write) or operation size (e.g., 4k/8k
block size). Given the large space of micro benchmarks, benchmark
selection tries to avoid very similar benchmarks that are expected to
deliver redundant information and also attempts to tune execution
time under the premise that still meaningful results are delivered.
Consequently, exceedingly long-running benchmarks without suit-
able tuning options had to be discarded. An additional practical
criterion was to favor benchmarks from the same benchmarking
tool where suitable to avoid unnecessary installation overhead.
Table 1 lists the micro benchmark tools and their version num-
bers used in this paper. For detailed reproduction description and
benchmark configuration rationales, we refer to Scheuner [23].

8http://rspec.info/
9https://github.com/sealuzh/cwb-benchmarks/blob/master/rmit-combined/
10https://github.com/joe4dev/load-generator

Table 1: Micro Benchmark Tools

Benchmark Tool Version Source

FIO Tester 2.1.10 11

iperf 2.0.5 (pthreads) 12

StressNg 0.07.27 13

Sysbench 0.4.12 14

3.3.2 Application Benchmarks. The Molecular Dynamics Simu-
lation (MDSim) benchmark serves as a representative for scientific
computing applications when benchmarking cloud instances [29].
An MDSim performs step-wise evolution of moving particles in a
three-dimensional space according to the physical laws considering
particle positions and velocities.

The Wordpress benchmark called WPBench was designed and
implemented to serve as a representative for Web serving applica-
tions. WPBench runs different JMeter15 load scenarios against a
Wordpress16 server and measures typical metrics such as response
time and throughput. Wordpress was chosen because it is the most
popular CMS software (60% market share) used by 29.3% of the
top 10 million websites (as of January 2018) according to the Web
technology surveys from W3Techs17. It has also been used for
benchmarking cloud VMs [4].

Figure 2 illustrates the interaction design of WPBench. On the
asynchronous Start server call, the Wordpress server starts the Web
server, the corresponding database, and a performance monitoring
agent. The Submit JMeter task message contains the JMeter test
plan for all three load scenarios. These scenarios create detailed log
files which are analyzed to summarize each test scenario. While the
log files remain on the load generator for more detailed analysis,
the metric summary is submitted to the CWB server. Afterwards,
the Wordpress server notifies of test completion and CWB WP-
Bench stops the server to prevent interference with subsequent
benchmarks.

CWB WPBench Wordpress Server Load Generator CWB Server

Start Server

Submit JMeter Task

Wait for Completion

Run Scenario 1 (Read)

Run Scenario 2 (Search)

Run Scenario 3 (Write)

notenote Load Scenarios

Compute Metric Summary

Submit Metrics

Notify Completion

Stop Server

Figure 2: WPBench Execution

15http://jmeter.apache.org/
16https://wordpress.org/
17https://w3techs.com/technologies
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WPBench is able to automatically install and setupWordpress in-
cluding all of its dependencies to achieve portability across different
platforms and cloud providers as encouraged by CWB [25]. Further,
it generates a test data set that provides sample content such as
users and posts including images, comments, and tags. The three
different load scenarios of WPBench aim to simulate short read,
search, and write Web browsing sessions. To accurately capture
representative Web browser scenarios, a JMeter proxy recorded
these real Firefox browsing sessions. In iterative refinement, these
captured traces were generalized, organized, and enriched with
additional configurations into a JMeter test plan. This test plan is
configured to run in a step-wise growing load pattern as visual-
ized in Figure 3. Following the active benchmarking methodology

0

20

40

60

80

100

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00

Elapsed Time [min]

N
u

m
b

e
r 

o
f 
C

o
n

c
u

rr
e

n
t 
T

h
re

a
d

s

Figure 3: WPBench Load Pattern

proposed in [12], several resources of the cloud VM are monitored
at system-level during test plan execution. The monitored metrics
cover memory, disk I/O, network I/O, TCP connections, and three
different CPU utilization indicators. Three CPU utilization metrics
(i.e., combined, idle, steal) were used to attribute for CPU throttling
as discussed in [18] because cloud VM are often artificially throt-
tled by the VM hypervisor and thus do not get all CPU cycles. A
distributed master-slave testing mode was implemented to support
powerful instance types where one single load generator is unable
to generate sufficient workload.

4 CASE STUDY
Using the methodology from the previous section, a benchmarking
data set was collected for the Amazon EC2 cloud provider.

4.1 Setup
All configurations build upon the officially maintained Ubuntu 14.04
LTS images18 and have attached the general purpose storage type
gp2, which AWS recommends for most workloads19.

Table 2 lists the specifications for the EC2 instance types in this
study. It includes all 11 available (as of April 2017) non-bursting in-
stance types with memory size below 15 GB, except for c1.medium
which consistently failed during experimentation for an unknown
18https://cloud-images.ubuntu.com/locator/ec2/
19http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html
20 http://www.ec2instances.info/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/previous-generation/

Table 2: EC2 Instance Type Specifications20

Instance Type vCPU RAM Network Cost*

m1.small 1 1.7 Low 0.047
m1.medium 1 3.75 Moderate 0.095
m3.medium 1 3.75 Moderate 0.073
m1.large 2 7.5 Moderate 0.190
m3.large 2 7.5 Moderate 0.146
m4.large 2 8.0 Moderate 0.111
c3.large 2 3.75 Moderate 0.120
c4.large 2 3.75 Moderate 0.113
c3.xlarge 4 7.5 Moderate 0.239
c4.xlarge 4 7.5 High 0.226
c1.xlarge 8 7 High 0.592

*USD/h for Linux On-Demand in eu-west-1 (2017-05-19)

reason. This RAM threshold was chosen to keep experimentation
cost at a reasonable level because the I/O workload grows substan-
tially with increasing RAM size. The regions eu-west-1 (Ireland)
and us-east-1 (N. Virginia) were chosen to compare the results with
prior work [17]. Each configuration is scheduled to execute once
every 3 hours (i.e., 8 times per day) and runs 3 iterations. Every iter-
ation takes between 45 and 70 minutes depending on the instance
type. This corresponds to almost continuous execution on a rolling
basis (i.e., a new instance is acquired once the previous instance is
released) between 4 to 8 days for two low-tier, two medium-tier,
and one large-tier instance type. The number of executions are at
least 58 for m3.medium (eu) and m3.large (eu) and at least 33 for
m1.small (eu/us) and m3.medium (us). At least one execution was
run for the remaining instance types. In total, 62952 measurements
were collected over 244 executions between April and May 2017.

4.2 Results
Figure 4 illustrates the performance of the WPBench read scenario
in relation to the cost for each instance type. The instance types
on the Pareto front towards the bottom-left corner deliver the best
performance in terms of lowest response time per cost. The response
time for each instance types is obtained from the average over three
iterations on the same instance. A prestudy has shown that such
few samples are sufficient to achieve a typical confidence interval
of at least 95%.
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Figure 5 shows the single thread intra-cloud TCP network band-
width (i.e., between two VMs in the same data center) over the
period of 8 days for m3.large and m3.medium (hvm) and 4 days for
m1.small. During this period, the iperf benchmark was run roughly
every hour (individual repetitions depend on RMIT schedule and
instance speed) and on a new instance after three iterations. The
Relative Standard Deviation (RSD) is below 5% for all three scenar-
ios given its formal definition as RSD = 100 · σmm where σm is the
absolute standard deviation andm is the arithmetic mean of the
metricm.
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Figure 5: Network Bandwidth over Time

Figure 6 depicts the disk utilization during the execution of two
FIO disk I/O benchmarks. Disk utilization is a measure of I/O effi-
ciency where 100% utilization means that the disk is fully saturated
and 50% would imply that the disk is idling half of the time. Further,
the graph also annotates the type of Linux hardware virtualiza-
tion, either Para-Virtualization (PV) with guest OS extensions or
Hardware-assisted Virtual Machine (HVM) with host OS extensions
for privileged instructions. These results for each instance type are
again based on the average of three iterations on the same instance.
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Figure 6: Disk Utilization during I/O Benchmark

4.3 Discussion
The results reveal that choosing an optimal instance type for this
type of Web serving application (i.e., WPBench) can have a big
impact on the cost efficiency. For example, c4.large delivers 25%
- 40% better performance for a 5% - 40% cheaper price compared
to c3.large, m3.large, and m1.large. Further the two extreme exam-
ples of m1.small and c1.large demonstrate that the cheapest price
comes a performance penalty by orders of magnitude and achiev-
ing the best performance is comparatively expensive. To exemplify,
m1.small cost 35% less than its next pricier instance typem3.medium
but delivers 80% worse performance (+1200ms response time). Sim-
ilarly, c1.xlarge costs 2.6 times more compared to c1.xlarge but only
delivers about 2.1 times the performance (-35ms response time).

Most surprisingly, intra-cloud network performance achieved
almost perfect stability, which contrasts the 25% RSD observed
several years ago between March and April in 2012 [9]. Presum-
ably, AWS fundamentally changed their approach to intra-cloud
networking and might perform customer-based placement opti-
mizations using strategies such as placement groups. Generally,
this exemplifies the trend from delivering performance at best effort
towards specifically designed performance levels.

Visual interpretation reveals two clusters based on the virtualiza-
tion type of the underlying instance type. The bottom-left corner
contains the older generation instance types with PV virtualization
and the top-right corner contains new HVM virtualized instance
types. While the less than 1% difference for the sequential write
workload is almost neglectable, the random read workload seems
to benefit from HVM virtualization with 8% - 10% better utilization
rates.

5 CONCLUSION
This paper presents a cloud benchmarking methodology that com-
bines single-instance and multi-instance micro and application
benchmarks into a benchmark suite called RMIT Combined follow-
ing an execution methodology for repeatable benchmarking in the
cloud. As part of the benchmark suite, a Web serving benchmark
calledWPBench with three different load scenarios is contributed.
A case study within the Amazon EC2 cloud has been conducted
where more than 60000 measurements have been collected over
244 benchmark executions. The results reveal that choosing an
optimal instance type for serving Web content with WPBench can
have a big impact on the cost efficiency as more efficient instance
types deliver up to 40% better performance for up to 40% lower
costs at the same time. Contrary to previous research, our results
reveal that network performance between instances within the
same cloud does not vary relevantly anymore. Further, newer gen-
eration instance types with HVM virtualization can improve the
disk utilization for I/O-heavy workload up to 10%.

Future work will emphasize the relationship between micro
and application benchmarks by evaluating the usefulness of mi-
cro benchmarks to estimate application performance. To address
the threat to external validity, other cloud providers, larger in-
stance types, and additional application domains should be studied.
Another avenue for future research is an extension to scale-out
workloads with distributed application components.
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