QUDOS Workshop

ICPE’18 Companion, April 9-13, 2018, Berlin, Germany

Trace Checking of Streaming Applications through DICE-TraCT

Marcello M. Bersani
Politecnico di Milano
Milan, Italy
marcellomaria.bersani@polimi.it

ABSTRACT

This paper introduces DICE-TraCT, the tool—part of the DICE
toolchain—that allows developers of Data Intensive Applications to
analyze traces of executions of such applications and detect devia-
tions from the expected behavior. The tool works in tandem with
the companion formal verification tool D-VerT, to check that the
parameters used for the sizing of applications and that guarantee
the desired safety and timing properties are indeed correct.

CCS CONCEPTS

« Software and its engineering — Software verification and
validation;

KEYWORDS
Trace-checking; Data Intensive Applications; Storm Topologies

ACM Reference Format:

Marcello M. Bersani, Francesco Marconi, and Matteo Rossi. 2018. Trace
Checking of Streaming Applications through DICE-TraCT. In ICPE ’18:
ACM/SPEC International Conference on Performance Engineering Companion
, April 9-13, 2018, Berlin, Germany. ACM, New York, NY, USA, 2 pages.
https://doi.org/10.1145/3185768.3186287

1 INTRODUCTION

Trace checking is an approach for the analysis of system executions
that are recorded as sequences of timestamped events. The purpose
of the analysis is to establish whether the system logs satisfy a
property, usually specified in a logical language. Trace checking
is especially useful when the aggregated data, available from the
monitoring system of the application, are not enough to derive cer-
tain metric values that have to be calculated with respect to some
specific criteria. In some cases, in fact, the criteria are application-
dependent as they are related to some non-functional property of
the application. Trace checking can be employed to achieve an
application-dependent log analysis and to extract specific informa-
tion from the executions of a running application.

In this paper we introduce the DICE Trace Checking Tool (DICE-
TraCT), which is part of the DICE toolchain. The tool allows de-
velopers of Data Intensive Applications (DIAs) to analyze traces
of executions of such applications and detect deviations from the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICPE 18, April 9-13, 2018, Berlin, Germany

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5629-9/18/04. .. $15.00
https://doi.org/10.1145/3185768.3186287

Francesco Marconi
Politecnico di Milano
Milan, Italy
francesco.marconi@polimi.it

159

Matteo Rossi

Politecnico di Milano
Milan, Italy
matteo.rossi@polimi.it

expected behavior. The paper first provides an overview of the tool
in Section 2, then shows usage of the tool on a use case (Section 3).

2 TOOL OVERVIEW

According to the DICE [2] vision, trace checking is performed after
verification to allow for continuous model refinement. The verifica-
tion task in DICE [1] has the goal of certifying the correctness of
the applications in terms of properties that are specific for the tar-
get technology implementing the application. The result obtained
through the log analysis is used to confirm or refute the outcome of
the verification task, which is run at design time. The value of the
parameters in the design-time model is compared with the value at
runtime; if the two are “compatible” then the results of verification
are valid, otherwise the model must be refined.

Usage scenario. DICE-TraCT has been developed to perform log
analysis of Storm applications. The log traces collected from the
monitoring platform are analyzed to certify the adherence to the
behavioral model that is assumed at design time. If the runtime
behavior does not conform with the application design, then the
design must be refined and later verified to obtain a new certifi-
cation of correctness. Trace-checking can be applied to provide
information to D-VerT [3], the tool that enables the formal verifi-
cation of Storm topologies. Verification of Storm topologies takes
place on UML models enriched with information that represents
the application behavior over time. Trace checking extracts from
real executions the parameter values of the model used by D-VerT
that are not available from the monitoring service of the frame-
work, as they are inherently specific of the modeling adopted for
the verification—for example, the ratio between the number of mes-
sages that are received by a bolt and the number of messages that
it emits in output.

Tool Architecture. DICE-TraCT collects analysis requests from
the DICE-IDE that are issued by the users and, based on the in-
formation retrieved through the queries sent to the monitoring
platform, executes one or more instances of trace checking. The
DICE-IDE allows the user to select a property to verify for the
selected application, currently shown in the IDE, and run the trace
checking. The input format for DICE-TraCT is a JSON file which
contains the name of the topology to verify, the set of nodes that
the user wants to analyze and the property to verify. The current
version of the tool does not support user-defined properties, but
only those related to parameter of the verification model. Figure 1
shows the architecture of DICE-TraCT.

Trace Checking Engine (TCE) performs the trace analysis. The
output is a Boolean outcome which is the result of the evaluation of
the formula over the specified log. The positive outcome is obtained
if the log satisfies the property.

https://doi.org/10.1145/3185768.3186287
https://doi.org/10.1145/3185768.3186287

QUDOS Workshop
DICE-TraCT
5 [
-mon (O .
Platform /‘l'kaﬂ(hz(kn\‘ ‘ Log Merger ‘
M TCT ™)

onitoring
Query API

Figure 1: DICE-TraCT architecure.

Storm computations are realized through workers that concur-
rently run various executors over distinct machines of a cluster
of physical nodes. Worker logs might contain more than one se-
quence of events, each one associated with an executor spawned
in that worker. A topology node, either spout or bolt, might then
be deployed over different workers and the information related
to a single node, either spout or bolt, may be spread over many
log files. However, TCE can analyze one log file at a time. Hence,
DICE-TraCT elaborates the logs and it aggregates all the events
related to a node (or a subset of nodes) into a new log trace. Log
Merger (LM) receives in input a set of worker logs of a deployed
topology under monitoring and a description of the topology listing
all its computational nodes. The outcome it produces is a set of logs
where each log records all, and only, the events related to a certain
node in the topology.

DICE-TraCTor coordinates the activity of LM and TCE upon a
request from the DICE-IDE. First, it builds the inputs file to run LM,
runs suitable transformations on the new extracted logs, if they are
needed to run trace checking, and then defines the input file of the
property for TCE. Finally, it runs TCE and, when TCE terminates,
it notifies the outcome of the analysis.

DICE-TraCT can be accessed through a POST call with the follow-
ing input data: (i) parameters ip and port specify the IP address and
the port where the DICE-TraCT service is deployed and running;
(ii) the payload is a json descriptor which defines the trace-checking
analysis to be carried out.

DICE-TraCT is implemented by a Flask (http://flask.pocoo.org/)
module dicetractservice.py. The function dicetract(), which
is associated with the POST method /run, implements the DICE-
TraCT functionalities. Assuming that DICE-TraCT is deployed at
dicetracturl on port 5050 and that the monitoring platform is de-
ployed at dmonurl at port dmonport, an example of a method call can
be the following: POST http://dicetracturl:5050/run?ip=dmo
nurl&port=dmonport.

The payload associated with the POST call is a descriptor which
defines the parameters to run trace checking for a given topology.
The descriptor is a JSON file that is built through the DICE-IDE
by the user who monitors the topology. The information stored
into JSON fields are the following: a) a field that specifies the topol-
ogy name which is used by DICE-TraCT to query the monitoring
platform and obtain all the necessary log files to perform trace
checking. b) A list of descriptors that specify, for each node, a
non-functional property to check. The properties can be related
to parameters of the verification model like, for instance, the ratio
sigma between the number of messages in input and the number
of messages in output of a Storm node; or any user-defined prop-
erty which can be translated by DICE-TraCT into a trace checking
instance. ¢) A list of formulae descriptors that specify user-defined

160

ICPE’18 Companion, April 9-13, 2018, Berlin, Germany

| C rateSpout I-(—‘—. itzmDeserial. =Emwa‘,,m+<—l—_mmmha“"_H

= salrUpdater
. E ' R g
A
__«Stomaotts
sord Extractor

" "RETEH R
] minhashCou...

_ «Stam
| minhashRan.

_ «StomBolta
| totalMinhash.

_ «StormBoits
{ terms Counter

«StormBolts
clustersiMon.

1

.
__ «StormBa
| clustersLzbe.

Figure 2: Trend Topic Topology.

logical formulae to be used for trace-checking. DICE-TraCT ex-
ploits a direct connection to the monitoring platform of the DICE
framework which is used to retrieve and collect log traces of the
application currently analyzed. By means of suitable API methods,
DICE-TraCT can: (i) activate a log monitoring session on the cur-
rent application running in the deployed Storm topology by calling
“POST /dmon/v1/overlord/storm/logs”; (ii) visualize the list of the
available logs that can be obtained from Dmon by calling “GET
/dmon/v1/overlord/storm/logs”; (iii) collect the logs of the applica-
tion that were stored in the specified session and that are available
in the platform “GET /dmon/v1/overlord/storm/logs/log_name”.

3 USE CASE

The tool has been validated on a case study provided by an indus-
trial partner of the DICE project. The Trend Topic Detector topology
is part of a wider application for the collection, analysis and visual-
ization of web contents from news and social media. The topology
structure includes one spout and 15 bolts. Figure 2 shows the UML
Class Diagram defined through the DICE IDE for to run design-time
verification with D-VerT. We used TraCT to asses the accuracy of
the parameters in the model and validate the results of the verifica-
tion. Thanks to the tool usage, we were able to refine the model by
adjusting most of the values for the sigma parameter.

ACKNOWLEDGMENTS
Horizon 2020 project no. 644869 (DICE).

REFERENCES

[1] Marcello M. Bersani, Madalina Erascu, Francesco Marconi, and Matteo
Rossi. [n. d.]. D3.5 DICE Verification Tools Initial Version. ([n.
d.]). http://wp.doc.ic.ac.uk/dice-h2020/wp- content/uploads/sites/75/2016/02/D3.
5_DICE-verification- tools- Initial-version.pdf

Giuliano Casale, Danilo Ardagna, Matej Artac, Franck Barbier, Elisabetta Di Nitto,
Alexis Henry, Gabriel Iuhasz, Christophe Joubert, Jose Merseguer, Victor Ion
Munteanu, Juan Perez, Dana Petcu, Matteo Rossi, Chris Sheridan, Ilias Spais, and
Daniel Vladusi¢. 2015. DICE: Quality-Driven Development of Data-Intensive
Cloud Applications. In Proc. of MiSE. 78-83. www.diceh2020.eu.

Francesco Marconi, Marcello M. Bersani, and Matteo Rossi. 2017. Formal verifi-
cation of storm topologies through D-VerT. In Proceedings of the Symposium on
Applied Computing, SAC 2017, Marrakech, Morocco, April 3-7, 2017. 1168-1174.

A

&

http://flask.pocoo.org/
http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2016/02/D3.5_DICE-verification-tools-Initial-version.pdf
http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2016/02/D3.5_DICE-verification-tools-Initial-version.pdf
http://www.diceh2020.eu

	Abstract
	1 Introduction
	2 Tool Overview
	3 Use Case
	Acknowledgments
	References

