
Continuous Integration of Performance Model
Manar Mazkatli

Institute for Program Structures and Data Organization
(IPD) - Karlsruhe Institute of Technology (KIT)

Karlsruhe, Germany
manar.mazkatli@kit.edu

Anne Koziolek
Institute for Program Structures and Data Organization

(IPD) - Karlsruhe Institute of Technology (KIT)
Karlsruhe, Germany
koziolek@kit.edu

ABSTRACT
Applying model-based performance prediction requires that an
up-to-date Performance Model (PM) is available throughout the de-
velopment process. Creating such a model manually is an expensive
process that is unsuitable for agile software development aiming to
produce rapid releases in short cycles. Existing approaches auto-
mate the extraction of a PM based on reverse engineering and/or
measurements techniques. However, these approaches require to
monitor and analyse the whole application. Thus, they are too costly
to be applied frequently, up to after each code change. Moreover,
keeping potential manual changes of the PM is another challenge
as long the PM is regenerated from scratch every time.

To address these problems, this paper envisions an approach
for efficient continuous integration of a parametrised performance
model in an agile development process. Our work will combine
static code analysis with adaptive, automatic, dynamic analysis
covering updated parts of code to update the PM with parameters,
like resource demands and branching probabilities. The benefit
of our approach will be to automatically keep the PM up-to-date
throughout the development process which enables the proactive
identification of upcoming performance problems and provides a
foundation for evaluating design alternatives at low costs.

CCS CONCEPTS
• Software and its engineering → Model-driven software engi-
neering; Software performance;

KEYWORDS
model-based performance engineering, continuous/incremental
performance management, incremental reverse engineering, para-
metric performance model

ACM Reference Format:
Manar Mazkatli and Anne Koziolek. 2018. Continuous Integration of Per-
formance Model. In ICPE ’18: ACM/SPEC International Conference on Per-
formance Engineering Companion , April 9–13, 2018, Berlin, Germany. ACM,
New York, NY, USA, 6 pages. https://doi.org/10.1145/3185768.3186285

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPE ’18, April 9–13, 2018, Berlin, Germany
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5629-9/18/04. . . $15.00
https://doi.org/10.1145/3185768.3186285

1 INTRODUCTION
Performance is an essential quality attribute of most software sys-
tems. Many software systems fail or cannot be used as they are
initially implemented due to performance problems. Avoiding these
problems requires careful attention to performance goals through-
out the development. Software Performance Engineering (SPE) aims
to achieve that through predicting whether the proposed software
will meet the performance goal or not. It is a common approach
to model a system capturing the system behaviour in addition to
performance-relevant aspects. Then it solves it by analytical solvers
or simulation engines to predict the performance metrics (response
times, utilisation and throughput) and support the proactive reac-
tions and design decision making.

However, building such this model takes a great effort and re-
quires keeping it consistent with the source code along the develop-
ment life cycle [20]. Modern agile software development processes
have the goal to start with the implementation as early as possi-
ble and thus may skip the design step. For such methodologies,
the agile developer use either (1) measurement-based performance
evaluation to ensure the performance or (2) extraction of PM and
workload model [3]. The first approach provides the actual state of
the performance but does not support design decisions. The second
approach enables the Model-based Performance Prediction (MbPP)
techniques but existing works have two shortcomings:

(A) They do not support the incremental development in the
mean of updating the extracted PM. If they were used iter-
atively, the extraction of the full model would have to be
repeated after each iteration (or in larger intervals). Each
extraction would have a high monitoring overhead, which
would be infeasible in the case of huge Enterprise Applica-
tions EAs. Moreover, the modifications of the extracted PM
would not be saved to the next iteration.

(B) Most available techniques do not extract the information
how Performance Model Parameters (PMPs) (like Resource
Demands RDs, loop execution number, the probability of
selecting a branch) depend on impacting factors such as
input data (so-called parametric dependencies [1]).

This paper envisions to reconcile MbPP and agile development
by providing more automation. We envision an approach for in-
crementally extracting the PM and the parametric dependencies.
Our approach uses the Continuous Integration (CI) and Continuous
Deployment (CD) of the source code and extends them with the
Continuous Integration of a Performance Model (CIPM). CIPM is
based on the work of Langhammer et al. [15, 16, 14], which incre-
mentally reverse-engineers the behavioural architectural models in
terms of the Palladio Component Model (PCM) [19, 18] and keeps
it consistent with source code based on Vitruvius platform [11, 4]

QUDOS Workshop ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

153

https://doi.org/10.1145/3185768.3186285
https://doi.org/10.1145/3185768.3186285

ICPE ’18, April 9–13, 2018, Berlin, Germany M. Mazkatli et al.

using user-defined change-driven consistency preservation rules.
Langhammer introduced one scenario for enriching the co-evolved
model with performance parameters to show that the co-evolved
models can be used in principle for theMbPP [14]. However, he does
that in a separate step independent of the consistent incremental de-
velopment process of Vitruvius using a measurement-based batch
process that suffer also from the aforementioned shortcomings (A)
and (B).

CIPM aims to extend Langhammer’s work by the incremental
automatic change-driven enrichments of the PM with PMPs consid-
ering the parametric dependencies. For this goal, we add a change-
driven adaptive monitoring that monitors only the changed parts of
code to minimize the overhead. Then, we keep the measurements
consistent with both the PM and the code and use them to estimate
the PMPs and update PM. Besides, we define a self-validation pro-
cess of the estimated PMPs. The resulting PM will enable MbPP
that supports design decision making for what-if scenarios like the
scalability and sizing questions (examples are found in [13]).

For the experimental evaluation, CIPM will use Kieker mon-
itoring tool [7] that supports adaptive monitoring and defining
customizable probes.

The next section gives an overview of the foundations. An
overview of the envisioned CIPM process is described in section 3.
The section 4 describes how our approach keeps the consistency
between the PM, measurements and source code. The section 5
describes the CIPM activities in details. The planned evaluation
is described in section 6. The related works will be discussed in
section 7. The conclusion will follow in section 8.

2 FOUNDATIONS
This section gives a brief overview of the main foundation that our
work is based on.

2.1 DevOps
DevOps [3] is an agile enterprise software development (iterative
and incremental development). DevOps aims to integrate tightly
development (Dev) and operations (Ops) teams to continuously
adapt EAs to business environment changes, like configuration
management, metrics and monitoring schemes, virtualization etc.

2.2 Palladio
Palladio [18] is a software architecture simulation approach that
analyses the software at the model level for performance bottle-
necks, scalability issues, reliability threats, and allows a subsequent
optimisation.

PCM [19] can be used for model-based performance predictions.
For this goal, the SEFFs [1] are used to specify the behaviour of com-
ponent services. A SEFF describes the behaviour of a component
service in an abstract level using different control flow elements,
such as internal actions: a combination of internal computations
that do not include calls to required services, external call actions:
calls to a required service, loops and branch actions. Both SEFF loops
and branch actions include at least one external call, otherwise they
will be ignored and combined into an internal action in order to
increase the level of abstraction.

2.3 Co-evolution approach
The approach of co-evolution of component-based software archi-
tecture and source code [15, 14] is based on the Vitruvius view-
based approach [11, 4]. It helps software developers and architects
evolving their software system by keeping the architecture and
the code consistent during the evolution. This approach applies
change-driven consistency preservation process based on user-
defined change-driven consistency preservation rules between the
architectural model and source code. The consistency preservation
rules describe the overlap and the model-based transformations
that will be used to reinstantiate the consistency. The reactions
language of Vitruvius can be used to describe the consistency
rules. This language consists of two constructs, reactions and rou-
tines. A reaction specifies, in reaction to which kind of change some
consistency repair logic, defined in a routine, has to be executed. A
routine specifies which information has to be extracted and how
consistency is repaired. This approach gives a view of the software
behaviour through creating the SEFFs.

2.4 Kieker
Kieker [7] is an extensible open-source application performance
management tool. It allows to capture and analysis execution traces
from distributed software systems. It allows predefinition and cus-
tomizing of probes as well as the dynamic and adaptive monitoring.
Jung et al. [9] introduce an Instrumentation Aspect Language (IAL)
to specify where monitoring probes are injected in the code based
on available structural information codified in PCM. Moreover, it
specifies which attributes have to be monitored using Instrumenta-
tion Record Language (IRL), which describes the data structures to
represent the monitored information. Heinrich et al. [6] propose a
measurements metamodel based on IRL, which stores and manages
the measurements traces.

3 CIPM PROCESS
The CIPM is an extension of the iterative, incremental process of
the agile as well as DevOps development process. Currently, both
agile and DevOps teams rely on automated build, test automation,
CI and CD. CIPM aims to increase this level of automation in the
development process by providing fast feedback about the perfor-
mance and enabling MbPP after each iteration. Executing MbPP
using the Palladio simulator requires having repository, system,
resource environment, allocation and usage models. Most of these
models can be extracted using static analysis of source code and test
cases or through the dynamic analysis of the monitoring data. Keep-
ing the extracted PM up-to-date along the iterative development
process will avoid the overhead resulting from the unnecessary
monitoring or analysis. To achieve that CIPM extends the consistent
co-evaluation approach as described in section 4.

This extension automates four activities (described in section 5):
First, the static analysis of the changed parts of the source code in
order to update the static PM, the monitoring probes and the usage
model structure. Second, the monitoring of the affected parts of the
code to extract the needed monitoring traces. Third, the dynamic
analysis of the resulting monitoring traces to estimate PMPs and
feed them to the PM. Finally, the self-validation of the extracted
PMPs. These activities will enable applying MbPP at anytime to

QUDOS Workshop ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

154

Continuous Integration of Performance Model ICPE ’18, April 9–13, 2018, Berlin, Germany

avoid the performance problems and answer the questions of what-
if scenarios and sizing investigations.

4 PRESERVING THE CONSISTENCY
CIPM extends the co-evaluation approach to configure the monitor-
ing process and keep also the PCM models consistent with the last
up-to-date measurements based on Vitruvius platform. This re-
quires (1) extending the VSUM-repository with an Instrumentation
MetaModel (IMM) that describes and manage the instrumentation
points as well as the weaving information based on Aspect-Oriented
Programming (AOP) [10], (2) Measurements MetaModel MMM that
describes the data structures of the different monitored data, and
(3) defining the mapping as well as the consistency rules between
the MMM, IMM PCM metamodel and source code metamodel.

Regarding (1,2), our approach will extend the measurement me-
tamodel described by Heinrich et al. [6] to describe and manage the
needed fine-grained probes (IMM) and implement new trace events
for them (MMM). Regarding (3), the needed consistency rules can
be defined using Vitruvius reactions and mapping languages. For
example, a reaction routine may specify how to react to changes in
the internal action of a service. This routine retrieves the internal
action ID, archives the old monitoring records related to this ID
and insert/activate the measurement points needed to observe this
internal action again.

Figure 1 describes the defined reaction routines to keep the mod-
els consistent. First, in reaction to code changes, the first reaction
routine will execute a change-driven static analysis (see subsec-
tion 5.1) and trigger CD automatically. This will trigger the sec-
ond reaction routine, which starts the monitoring. The monitoring
traces will update the Measurements Model MM. The changes in
MM will trigger the third reaction routine, which deactivates the
related probes, re-estimate the related PMPs and update the PM, as
soon as the sufficient number of traces are collected. This number
will be determined later according to experiments. The fourth de-
fined routine will be triggered in the reaction of enriching the PM
with the calculated performance parameters. This routine will start
the simulation to validate the extracted performance parameters
and sequentially delete or activate the related probes.

Besides, the developer can manipulate the resulting PCMmodels
at anytime. His changes will be saved during the iterative develop-
ment process and also be reflected in the corresponding models.

5 CIPM ACTIVITIES
CIPM can be divided into four activities that are applied in each
iteration of the consistent DevOps/ agile development process. The
following subsections describe them in detail:

5.1 Static extraction of performance model
The goal of the static analysis is to update the PCM repository
model (which contains the models of components with their SEFFs)
and the usage model as well as the probes needed in the following
CIPM step.

As mentioned before, updating the repository model is mainly
based on Langhammer et al. [14], which extracts the components
with their behaviours in terms of SEFFs. We extract the usagemodel

from the test cases incrementally similar to another work of Lang-
hammer et al. [16] and update it based on monitoring information
as explained in subsection 5.3.

The reaction routines generate the appropriatemonitoring probes
as a reaction to the changes that may have an impact on perfor-
mance, if it has not already generated by another similar change.
Changes with no impact on performance like updating a name of a
method will have no reaction.

The CIPM process is independent of the monitoring tool or
the adopted dynamic analysis. Therefore, it allows choosing the
granularity of the instrumentation based on the approach used in
the next step to estimate the PMPs. For example, RD estimation
approaches used by LibreDE [23] require coarse-grainedmonitoring
data, like end-user transaction response times and total resource
utilization. In this case, service-level probes will be generated based
on AOP and stored in the Instrumentation Model IM similar to
the mechanism applied by IAL. Moreover, the static analysis will
define the record structures based on IRL. Our work, however, aims
to also estimate individual RDs of internal actions as well as the
parametric dependencies, like the dependency between input data
and control flow or data passed to other components and RDs.
In our case, service-level instrumentation is required to capture
input parameters and to update the usage model, but it is not fine-
grained enough to estimate the RDs of the SEFF parts. Therefore, we
insert instrumentation points compatible with the SEFF abstraction
level based on AOP, if they have been changed from the previous
iteration and the instrument points are not already inserted by
another change. For examples, the probes can be (a) around the
code of an internal action that has been changed, (b) before as well
as after an external call to capture input and return data, (c) inside
a loop that has been changed to capture the executions number,
or (d) inside a branch that has been changed to capture selected
branches in addition to the passed parameter.

5.2 Monitoring the changed parts of source
code

The monitoring step provides the data required to estimate the
PMPs and update the usage model. The monitoring stage will be
triggered by CD regardless where the code is deployed (testing,
production, canary test environment [8] etc.). This step is not related
to specific monitoring tool.

Our approach reduces the downside of the used fine-grained
monitoring through monitoring only the source code changes in
each iteration on one hand and deactivate the probes after collecting
the desired amount of traces on the other hand (see subsection 5.3).

In addition to monitoring the defined probes the resource infor-
mation, such as the CPU utilization and the memory footprint will
be also monitored.

5.3 Dynamic analysis and model
parametrization

This step aims to extract the performance parameters as well as
to update the usage model. For the first goal, we define a reaction
routine that reacts to change in the MM. This routine checks, first,
whether the count of the gathered traces is enough. If not, no
action will be performed, otherwise, the routine will deactivate the

QUDOS Workshop ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

155

ICPE ’18, April 9–13, 2018, Berlin, Germany M. Mazkatli et al.

code

PCM

Instrumentation model

Measurements model

2

Start monitoring

4: for each RD

delete probesActivate probes

accepted error rateNo yes

1

PCM extraction

probes generation

CD

3

Deactivated probes

Estimate RDs

Enough traces

 reaction language Routine Trigger the routine Control flow VSUM modelLegend:

Commit *

Figure 1: CIPM activities

defined probes and start the dynamic analysis. The dynamic analysis
extends the approach of Brosig et al. [2] to estimate the RDs in the
case of adaptive monitoring. This approach approximates RDs with
measured response times in the case of low resource utilization,
typically 20%. Otherwise, they estimate the RD of internal action
i (a part of SEFF, see subsection 2.2) for resource r (Di,r) based
on service demand law [17] shown in equation (1). Here, Ui,r the
average utilization of resource r due to executing internal action i
andCi is the total number of times that internal action i is executed
during the observation period of fixed length T :

Di,r =
Ui,r
Ci/T

=
Ui,r ·T

Ci
(1)

Brosig et al. measure theCi and estimateUr,i by using the weighted
response time ratios of the total resource utilization, which is not
applicable in our adaptive case where not all internal actions are
monitored. Therefore, we extend their approach to estimate Ui,r
and as a result Di,r based on the available measurements and the
old RDs estimations.

Our new approach is based on the fact that the called internal
actions are either Monitored Internal Actions (MIAs) or Not Moni-
tored Internal Actions (NMIAs), which have been already observed
in a previous iteration and have, consequentially, an estimation of
their RDs. To estimate RDs ofMIAs, we estimate the resource utiliza-
tion due to executing MIAs (Ur,MIAs), estimate the utilizationUi j ,r
due to executing each i j ∈ MIAs based on the weighted response
time ratios ofUr,MIAs and estimate Di j ,r based on the service de-
mand law. Then we apply further analysis to extract the stochastic
formulation of the RD considering the potential dependency on the
input parameters.

In an observation period T we can determine which services
are called and which parameters are passed based on the applied
coarse-grained instrumentation. Based on that, we can also estimate
which internal actions ik ∈ NMIAs are processed in this interval
(0 ≤ k ≤ m : the number of NMIAs). Furthermore, we can measure
the Cik , query Dik for each ik and resolve it based on the captured
input parameters. Sequentially, we can estimate the utilizationUik ,r
needed to execute ik based on the equation (1). Hence, we can

estimate Ur,NMIAs the utilization due to executing the NMIAs as
summation of the estimated Ur,ik . See the equation (2).

Ur,NMIAs =

m∑
k=0

Uik ,r =
m∑
k=0

Dik ,r ·Cik
T

(2)

Accordingly, we estimate the utilization due to executing the
MIAs (Ur,MIAs) using themeasuredUr and the estimatedUr,NMIAs
as shown in equation (3):

Ur,MIAs = Ur −Ur,NMIAs (3)

Hence, we can estimate the utilization Ui j ,r due to executing
each i j ∈ MIAs using the weighted response time ratios as shown in
equation (4), where Ril is the response time of il ∈ MIAs (1 ≤ l ≤ n:
the number ofMIAs) and Cil is the number of executing il in T .

Ui j ,r = Ur,MIAs .
Ri j ·Ci j
n∑
l=1

Ril ·Cil

(4)

UsingUi j ,r we can estimate Di j ,r based on the service demand law
presented in equation (1).

Next, we use regression analysis to detect whether there is a
relationship between the captured input parameters and the values
of (Di j ,r) that are estimated in each observation period.

If it is found, we store the RD as a stochastic formulation based
on the input parameter values, if not, the average value of Di j ,r
will be considered as RD estimation.

To differ between the CPU demands and disk demands we sug-
gest detecting the disk-based services in the static analysis stage,
through using specific notation or based on the used libraries. After
the RD estimation, the reaction routine will enrich the Palladio
model with the estimated values.

Besides, further regression analysis is used to detect the depen-
dencies between input parameters on one hand and each of branch
probabilities and loop iteration numbers on another hand. Based on
the found results, CIPM will update SEFF with either input-based
estimation or probability space for loop execution number as well
as branch selection.

QUDOS Workshop ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

156

Continuous Integration of Performance Model ICPE ’18, April 9–13, 2018, Berlin, Germany

For updating the usage model (the second goal of the dynamic
analysis), we expand an approach by Jung et al. [9]. This approach
is based on Kieker and uses the fact that Kieker is able to gather the
call traces and the workloads by monitoring frequency of calls to
the system. The statistical analysis of these information can extract
the suitable probability distributions for workload specification.
Similar to the first part of the analysis, the routine will update the
palladio usage model.

5.4 Model-based performance prediction
In this step, the MbPP will be started as a reaction to updating the
PM with RDs. The goal of this step is the self-validation of the ex-
tracted performance model notation. The validation will compare
between response time distribution of measurements and simu-
lation results for the extracted model. If the prediction error of
an operation is acceptable, the related fine-grained measurement
points are deleted, otherwise, the fine-grained probes will be acti-
vated and the desired number of traces will be increased, in order
to collect more monitoring traces and do further analysis. However,
the desired number of traces must not exceed a given limit, which
will be determined by experiments.

The performed MbPP results will support the decision making
to plan the next step of the iterative development.

6 PLANNED EVALUATION
The planned evaluation aims to cover two points. The first one is
the evaluation of defined MIM, MMM as well as the consistency
rules between the source code, PCM, IM and MM. The evaluation
goal is to ensure that the automatic monitoring and the enrichment
of PM are executed correctly. To achieve this goal, we will develop
incrementally different case studies and use CIPM process to extract
and update the related PMs. The evaluation performs different
scenarios to add/ change the code and then asses that the correct
code parts are monitored, the correct amount of traces are collected,
the monitoring is stopped automatically and PMPs are updated.
Based on these experimental evaluations, we will determine also
when the monitoring can stop.

The second point is the evaluation of the proposed PMPs estima-
tion. The evaluation will compare the results (the needed overhead
as well as the accuracy of the estimated PMPs) with the other
available approaches. To do that, we define a set of metrics that
measure (1) the monitoring overhead based on the total number
of measurements needed to extract PM after each iterationand (2)
the accuracy of the PM based on calculating the error between the
simulation metrics and the measurements [1]. These metrics will
compare our approach with the approaches extracting the PM from
scratch. We expect that the initial commit of our approach can lead
to some overhead on one hand. However, we planned to overcome
it by deleting the fine-grained probes after collecting enough num-
ber of traces. On another hand, we expect that our approach will
avoid later a huge part of unnecessary measurements, by filtering
the source code changes, monitoring only the affected parts and
self-validation of the up-to-date PM.

For experements-based evaluation, we aim to use and extend
CASPA platform [5] with CIPM to do the needed experimental

evaluations and comparisons with a higher degree of validity, re-
peatability, reproducibility, and comparability. We aim also to apply
our approach to an EA under development to measure the monitor-
ing overhead regarding to each commit. Otherwise, we can use the
historical versions of EA to build and update the PM iteratively and
show the expected benefit of our adaptive monitoring. In the first
step of the evaluation, we adopt the mRubis1 case study, which has
been used by Langhammer to evaluate the co-evaluation approach
[14]. The goal is to annotate the extracted PM with PMPs that we
extract incrementally based on the dynamic process described in
subsection 5.3. For the monitoring we use Kieker tool with new cus-
tom probes, like internal actions probes. In the second step, we will
implement the defined reactions to automate the instrumentation,
enrichment and self-validation of PM.

7 RELATEDWORKS
A number of approaches propose means for constructing the ar-
chitectural model based on the static analysis, dynamic analysis or
both of them. For example, Walter et al. [24] propose a Performance
Model Extractor (PMX) tool and provided it as a web service [25].
Their approach extracts an architectural performance model as
well as performance annotation based on analysing the monitor-
ing traces. Similarly, Krogmann et al. [13, 12] extract parametrised
PCM considering the parametric dependency based on the static
and dynamic analysis. Langhammer [14] introduces two reverse
engineering tools that extract the static behaviour of the underlying
source code. The above-mentioned approaches do not support the
iterative extraction of PMs as well as the consistency preservation
between PMs and source code. If they were used in an iterative
development, they would re-extract the whole model by monitoring
and analysing the whole system after each iteration. In addition
to the monitoring overhead, the re-generation of PM ignores the
changes that may be formerly applied to PM, like the parametrisa-
tion. Spinner et al. [21] propose an agent-based approach to updated
architectural performance models. In contrast to our work, they
focus on model updates at runtime.

Other model extraction approaches drive the resource demands
either based on coarse grained monitoring data [22, 23] or fine-
grained data [2, 26]. The later approaches give a higher accuracy by
the estimation but have a downside effect because of the overhead of
instrumentation and the monitoring. Our approach aims to reduce
the overhead by the adaptive instrumentation and monitoring.

8 CONCLUSION
Applying MbPP in the agile and DevOps process promises support-
ing proactive performance management based on what-if analysis.

In this paper, we presented a roadmap to continuous integra-
tion of the architectural performance model in the agile/ DevOps
development process. We propose a lightweight process based on
incremental updates of the PM instead of regenerating it after each
change. This process is incremental not only in terms of the gener-
ation of the structure of the model, but also in the extraction of the
PMPs and parametric dependencies based on adaptive monitoring.
As a next step, we will evaluate our aspect using historical versions

1see: https://www.hpi.uni-potsdam.de/giese/public/mdelab/mdelab-projects/
case-studies/mrubis/

QUDOS Workshop ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

157

https://www.hpi.uni-potsdam.de/giese/public/mdelab/mdelab-projects/case-studies/mrubis/
https://www.hpi.uni-potsdam.de/giese/public/mdelab/mdelab-projects/case-studies/mrubis/

ICPE ’18, April 9–13, 2018, Berlin, Germany M. Mazkatli et al.

of an enterprise application. We aim to validate the correctness of
the extracted PM through the comparison between the PM simula-
tion results and the real monitoring results. Moreover, we aim to
compare our approach with those based on full generation of the
PM after each change using metrics measuring the accuracy and
the monitoring overhead.

9 ACKNOWLEDGEMENTS
Thanks go to Jürgen Walter for comments on a preliminary version
of the paper. Manar Mazkatli is supported by the German Academic
Exchange Service (DAAD).

REFERENCES
[1] Steffen Becker, Heiko Koziolek, and Ralf Reussner. “The

Palladio component model for model-driven performance
prediction”. In: Journal of Systems and Software 82 (2009),
pp. 3–22.

[2] Fabian Brosig, Samuel Kounev, and Klaus Krogmann. “Au-
tomated Extraction of Palladio Component Models from
Running Enterprise Java Applications”. In: Proceedings of
the 1st International Workshop on Run-time mOdels for Self-
managing Systems and Applications (ROSSA 2009). In con-
junction with the Fourth International Conference on Perfor-
mance Evaluation Methodologies and Tools (VALUETOOLS
2009). 2009.

[3] Andreas Brunnert et al. Performance-oriented DevOps: A Re-
search Agenda. Tech. rep. SPEC-RG-2015-01. SPEC Research
Group - DevOps Performance Working Group, Standard
Performance Evaluation Corporation (SPEC), Aug. 2015.

[4] Erik Burger. “Flexible Views for View-based Model-driven
Development”. PhD thesis. Karlsruhe, Germany: Karlsruhe
Institute of Technology, July 2014.

[5] T. F. Düllmann et al. “CASPA: A Platform for Comparability
of Architecture-Based Software Performance Engineering
Approaches”. In: International Conference on Software Archi-
tecture Workshops. IEEE, 2017.

[6] Robert Heinrich et al. “Integrated Observation and Modeling
Techniques to Support Adaptation and Evolution of Software
Systems”. In: DFG Priority Program SPP1593, 4th Workshop.
Nov. 2014.

[7] André van Hoorn, Jan Waller, and Wilhelm Hasselbring.
“Kieker: A Framework for Application Performance Moni-
toring and Dynamic Software Analysis”. In: Proceedings of
the 3rd ACM/SPEC International Conference on Performance
Engineering. ACM, 2012.

[8] Jez Humble and David Farley. Continuous Delivery. Reliable
Software Releases through Build, Test, and Deployment Au-
tomation. Pearson Education, 2010.

[9] Reiner Jung, Robert Heinrich, and Eric Schmieders. “Model-
driven instrumentation with Kieker and Palladio to forecast
dynamic applications”. In: Symposium on Software Perfor-
mance. Vol. 1083. CEUR, 2013, pp. 99–108.

[10] Gregor Kiczales et al. “Aspect-oriented programming”. In:
ECOOP 97—Object-oriented programming (1997).

[11] Max E. Kramer, Erik Burger, and Michael Langhammer.
“View-centric engineering with synchronized heterogeneous

models”. In: Proceedings of the 1st Workshop on View-Based,
Aspect-Oriented and Orthographic Software Modelling. VAO
’13. Montpellier, France: ACM, 2013, 5:1–5:6.

[12] Klaus Krogmann. Reconstruction of Software Component Ar-
chitectures and Behaviour Models using Static and Dynamic
Analysis. Vol. 4. The Karlsruhe Series on Software Design
and Quality. KIT Scientific Publishing, 2012.

[13] Klaus Krogmann, Michael Kuperberg, and Ralf Reussner.
“Using Genetic Search for Reverse Engineering of Paramet-
ric Behaviour Models for Performance Prediction”. In: IEEE
Transactions on Software Engineering 36.6 (2010). Ed. by Mark
Harman and Afshin Mansouri, pp. 865–877.

[14] Michael Langhammer. “Automated Coevolution of Source
Code and Software Architecture Models”. PhD thesis. Karl-
sruhe, Germany: Karlsruhe Institute of Technology (KIT),
2017. 259 pp.

[15] Michael Langhammer and Klaus Krogmann. “A Co-evolution
Approach for Source Code and Component-based Archi-
tecture Models”. In: 17. Workshop Software-Reengineering
und-Evolution. Vol. 4. 2015.

[16] Michael Langhammer et al. “Automated Extraction of Rich
Software Models from Limited System Information”. In: 2016
13th Working IEEE/IFIP Conference on Software Architecture
(WICSA). Apr. 2016, pp. 99–108.

[17] Daniel A Menasce et al. Performance by design: computer
capacity planning by example. Prentice Hall Professional,
2004.

[18] Ralf H. Reussner et al. Modeling and Simulating Software
Architectures – The Palladio Approach. Cambridge, MA: MIT
Press, Oct. 2016. 408 pp.

[19] Ralf Reussner et al. The Palladio Component Model. Tech. rep.
Karlsruhe: KIT, Fakultät für Informatik, 2011.

[20] Connie U. Smith and Lloyd G. Williams. Performance So-
lutions: A Practical Guide to Creating Responsive, Scalable
Software. Addison Wesley Longman Publishing Co., Inc.,
2003.

[21] Simon Spinner, Jürgen Walter, and Samuel Kounev. “A Refer-
ence Architecture for Online Performance Model Extraction
in Virtualized Environments”. In: Companion Publication
for ACM/SPEC on International Conference on Performance
Engineering. ICPE ’16 Companion. ACM, 2016.

[22] Simon Spinner et al. “Evaluating approaches to resource
demand estimation”. In: Performance Evaluation (2015).

[23] Simon Spinner et al. “LibReDE: A Library for Resource De-
mand Estimation”. In: Proceedings of the 5th ACM/SPEC In-
ternational Conference on Performance Engineering. ICPE ’14.
ACM, 2014.

[24] Jürgen Walter et al. “An Expandable Extraction Framework
for Architectural Performance Models”. In: Proceedings of the
8th ACM/SPEC on International Conference on Performance
Engineering Companion. 2017.

[25] JürgenWalter et al. “ProvidingModel-Extraction-as-a-Service
for Architectural Performance Models”. In: Symposium on
Software Performance: SSP 2017. 2017.

[26] Felix Willnecker et al. “Comparing the accuracy of resource
demand measurement and estimation techniques”. In: Euro-
pean Workshop on Performance Engineering. Springer. 2015.

QUDOS Workshop ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

158

	Abstract
	1 Introduction
	2 Foundations
	2.1 DevOps
	2.2 Palladio
	2.3 Co-evolution approach
	2.4 Kieker

	3 CIPM Process
	4 Preserving the consistency
	5 CIPM activities
	5.1 Static extraction of performance model
	5.2 Monitoring the changed parts of source code
	5.3 Dynamic analysis and model parametrization
	5.4 Model-based performance prediction

	6 Planned Evaluation
	7 Related Works
	8 Conclusion
	9 Acknowledgements

