
Towards the Performance Analysis of Apache Tez Applications
José Ignacio Requeno, Iñigo Gascón, José Merseguer

Dpto. de Informática e Ingeniería de Sistemas
Universidad de Zaragoza, Spain

{nrequeno,685215,jmerse}@unizar.es

ABSTRACT
Apache Tez is an application framework for large data processing
using interactive queries.When a Tez developer faces the fulfillment
of performance requirements s/he needs to configure and optimize
the Tez application to specific execution contexts. However, these
are not easy tasks, though the Apache Tez configuration will im-
pact in the performance of the application significantly. Therefore,
we propose some steps, towards the modeling and simulation of
Apache Tez applications, that can help in the performance assess-
ment of Tez designs. For the modeling, we propose a UML profile
for Apache Tez. For the simulation, we propose to transform the
stereotypes of the profile into stochastic Petri nets, which can be
eventually used for computing performance metrics.

CCS CONCEPTS
• Software and its engineering → Petri nets; Software perfor-
mance; Unified Modeling Language (UML);

KEYWORDS
Apache Tez; UML; Petri nets; Software Performance
ACM Reference Format:
José Ignacio Requeno, Iñigo Gascón, José Merseguer. 2018. Towards the
Performance Analysis of Apache Tez Applications. In ICPE ’18: ACM/SPEC
International Conference on Performance Engineering Companion, April 9–13,
2018, Berlin, Germany. ACM, New York, NY, USA, 6 pages. https://doi.org/
10.1145/3185768.3186284

1 INTRODUCTION
Apache Tez [2] is a processing engine built atop Apache Hadoop
YARN ecosystem, that supports interactive queries. Apache Tez
simplifies the coding of data-centric workflows and significantly
improves the performance of batch-processing large datasets with
respect to MapReduce (i.e., Tez avoids the writing of temporary data
into disk). Then, it is a new alternative to the original processing
engine of Apache Hadoop [13, 16]. For this reason, Apache Tez is
progressively replacing Apache Hadoop MapReduce as the main
processing core for applications based on Apache Hive, Apache Pig
or machine learning.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE ’18, April 9–13, 2018, Berlin, Germany
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5629-9/18/04. . . $15.00
https://doi.org/10.1145/3185768.3186284

For leveraging the performance of the framework, Apache Tez
developers customize their applications by several parameters, e.g.,
parallelism or scheduling. Certainly, this is not an easy task, so
we argue that they need aids to prevent incorrect configurations
leading to losings, monetary or coding. In our view, these aids
should come early during application design and in the form of
predicting the behavior of the Tez application for future demands
(e.g., the impact of the stress situations) in performance parameters,
such as response time, throughput or utilization of the devices.

Aligned with our work in the DICE project [1, 5], this paper
presents the first steps towards the modeling and simulation of
Apache Tez applications with high performance behavior. The DICE
project is developing a complete DevOps quality-driven framework
for designing, assessing and deploying data-intensive applications.
In particular, the UML1 [19] was the choice for design.

In this work, we have applied a methodology already used in
DICE for integrating Apache Storm [14] in the framework. First,
we deeply studied Apache Tez and developed several applications.
Later on, we enhanced the applications performance by improving
the designs and by leveraging the Tez parameters. As a result, we
acquired knowledge to propose a novel UML profile for Apache Tez,
oriented to performance modeling, that we present here. Finally,
we have defined transformations for the Tez profile into stochastic
Petri nets [10]. We consider that the resulting models are perfectly
usable for an early performance assessment of the Tez applications.

Although the methodology is the same as in [14], differences
between these two works are significant. First, Storm is a real-time
processing framework, while Tez is an in-memory batch process-
ing framework. Therefore, the parametrisation concepts offered
by these frameworks are different, what also makes the profiles
different. Consequently, the transformation patterns proposed for
Storm could not be reused here for Tez.

Works in the literature for the modeling and performance as-
sessment in big data platforms are discussed in [12]. For instance,
a generic profile for modeling big data applications is defined for
the Palladio Component Model [7]. Technology-specific profiles
(e.g., Apache Spark [8] or Storm [14]) are also available; but none
of them include extensions for Apache Tez. Generalized stochastic
Petri nets (GSPNs [4]), the formalism for performance analysis that
we adopt here, have been successfully used for the performance as-
sessment of Apache Hadoop MapReduce [3], Storm [14] and Spark
[6] applications. Nevertheless, GSPNs have not been used for the
performance assessment of Apache Tez applications yet.

The rest of the paper is organized as follows. Section 2 recalls
the main concepts of Apache Tez related to performance. Section 3
presents the UML profile for Apache Tez. Section 4 presents designs
for Apache Tez applications. Section 5 details the transformation
1Unified Modeling Language

QUDOS Workshop ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

147

https://doi.org/10.1145/3185768.3186284
https://doi.org/10.1145/3185768.3186284
https://doi.org/10.1145/3185768.3186284

that we propose to get an analyzable performance model out of
a Tez design. Finally, Section 6 draws a conclusion and presents
future work.

2 TEZ CONCEPTS FOR PERFORMANCE

Concept Meaning
1. Vertex Node for processing and transforming data
2. Parallelism No. of tasks executed by each Vertex
3. MinSrcFraction Fraction of source tasks that must be

completed before scheduling the first task
for the current vertex

4. MaxSrcFraction Fraction of source tasks that must be
completed before scheduling all the
remaining tasks on the current vertex

5. VirtualCores No. of virtual cores assigned to each task of
a Vertex

6. Memory Memory size assigned to each task of a
Vertex

7. Edge Connection between a producer and
consumer Vertex in the DAG

8. Edge
Scheduling

Condition for stating the execution of the
target Vertex

9. Data Source Lifetime of the data generated by the
previous vertices in the Edge

10. Data
Movement
Type (dmt)

Policy of data movement in a Edge

11. Application
Master

Coordinator of the DAG execution

Table 1: Tez concepts that impact in performance

Apache Tez [2], developed within the Apache Hadoop ecosys-
tem, was born as an evolution of MapReduce to solve or mitigate its
main limitations. Based on YARN, Apache Tez offers a complete dis-
tributed computation framework for processing very large volumes
of information.

Programming in Tez is easier andmore expressive than inHadoop
MapReduce: a Tez application is organized as a direct acyclic graph
(DAG) according to the application data-flow. The application starts
with amap operation followed by a sequence of one ormore reduces,
instead of dividing the logic of a program in a strict alternation
of map and reduce phases. Apache Tez provides a rich API that
allows modeling precisely, and with few code, the movement of
data inside the program. More important, Tez usually gets a better
performance than Hadoop MapReduce for equivalent applications
[13, 16]. Tez achieves this speedup by keeping in memory the in-
termediate results of a MapReduce phase instead of storing them
temporarily in hard disk.

Based on the DAG, a Tez application executes a succession of
Vertices, which process the data, connected with Edges, which
transfer data between vertices according to some characteristics
and movement policies. Then, both the information and the com-
putations are distributed among all the computational resources
of the cluster. Once the DAG is specified, the Tez framework is re-
sponsible for the automatic distribution and coordination of all the

workflow; which makes it transparent to the end user. In addition,
Tez dynamically optimize some configuration parameters of the
application according to the CPU and network load of the cluster.

Vertices are responsible for running the logic of the application.
A vertex is internally divided in multiple parallel subtasks inside
the Tez framework. Each task executes the same method defined in
the Tez Vertex but applying it over a smaller chunk of the dataset.
By default, the resource manager allocates a maximal number of
virtual cores and memory for each Vertex.

An edge connects two vertices in Tez. It acts as an intermedi-
ate message buffer with extended functionalities. The configurable
properties of an Edge are: a) the scheduling, b) the data source
or persistence, and c) the type of data movement from one node
to another. The scheduling indicates when the execution of the
internal tasks of the target vertex should start. For instance, se-
quential means that the execution of the target vertex starts after
the completion of every task of the source vertex, while concurrent
means that the target vertex starts once it receives the first data
emitted by the source vertex.

Next, the data source specifies the lifetime/reliability of the data
generated by the source vertex: the output is still available when the
producer exists (persisted), with explicit guarantee that the data is
stored in a file and won’t be lost (persisted-reliable); or the output is
only available while the producer is running (ephemeral). The type
of scheduling imposes restrictions to the selection of persistence
(e.g., ephemeral is only compatible with concurrent scheduling).

Finally, the data movement describes, with finer details, how
the data is sent from the producer to the consumer. The edge routes
the data produced by task i to the task i of the consumer (one-to-one
policy), copies the output of task i to all the tasks in the consumer
(broadcast), or scatters the data in shards and the consumer i gathers
the i-th portion from every source (scatter-gather).

In the end, the Application Master is in charge of initializing,
launching and coordinating the execution of the Tez DAG. It is
linked to a single Tez DAG and it is responsible of monitoring and
controlling the total amount of running tasks during the life cycle
of the application. The application master deploys the tasks to the
computational resources of the cluster according to a scheduling al-
gorithm. Schedulers are customizable by the programmer, although
some priority schedulers are preconfigured. Complex schedulers
may take into account the available computational resources and
the software requirements (memory and CPU consumption) for
defining an optimal distribution of the tasks.

For instance, the fractionality indicates when the tasks of the
current vertex are scheduled with respect to the execution state of
the previous vertices in the graph. The property MinSrcFraction
specifies, in case of a Edge with a scatter-gather connection, the
fraction of source tasks that must be completed before schedul-
ing the first task of the current vertex. Otherwise, the property
MaxSrcFraction specifies the fraction of source tasks that must be
completed before scheduling all the remaining tasks on the current
vertex. The number of tasks ready for scheduling on the current
vertex scales linearly between min-fraction and max-fraction.

In summary, a Tez framework is highly configurable by vari-
ous parameters that will influence the final performance of the
application.

QUDOS Workshop ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

148

3 A UML PROFILE FOR TEZ
The objective is to define a domain specific modeling language
(DSML) for Apache Tez. The DSML, oriented to the modeling and
performance analysis, will allow to specify the concepts summa-
rized by the previous section. Since the DICE project uses UML,
then we propose a UML profile, that according to Selic and La-
garde [9, 15] is a way offered by this standard language for creating
a DSML. Concretely, a UML profile is a set of stereotypes, and cor-
responding tags, that extend the semantics of the UML diagrams
when are applied to the elements of the model. The Tez profile
has been implemented for the Papyrus Modeling environment in
Eclipse and it can be downloaded from [17].

The Tez profile inherits from the standard MARTE profile [11]
since it offers a framework for quantitative analysis, the GQAM
sub-profile. The latter is specialized for performance analysis, and
it offers the NFPs and VSL sub-profiles. The NFP sub-profile aims to
describe the non-functional properties of a system, performance in
our case. The VSL sub-profile provides a concrete textual language
for specifying the values of metrics, constraints, properties, and
parameters related to performance, in our particular case. VSL
expressions are used in Tez-profiled models with two main goals: (i)
to specify the values of the NFP in the model (i.e., input parameters
such as the expected execution time of a task) and (ii) to specify the
metric/s that will be computed for the current model (i.e., output
results such as the application response time).

Apart from the inherited MARTE stereotypes, the Tez profile
provides stereotypes and tags for representing the Tez concepts
identified in Table 2. The stereotype TezVertex represents a Ver-
tex. This stereotype inherits from MARTE::GQAM::GaStep and is
applied to UML opaque actions. In addition to the inherited tags,
the stereotype owns five specific tags:

• parallelism, which corresponds to the number of concurrent
tasks per operation. Each task has an associated execution
time denoted by the tag hostDemand, inherited from GaStep.

• minSrcFraction (MaxSrcFraction), which matches with the
fractionability properties presented in Table 1, and, finally

• the number of virtualCores and memory assigned per Vertex.
The stereotype TezEdge also inherits from MARTE::GQAM::-

GaStep, but it is applied to UML control flows. The tag dataMove-
ment, based on the DataMovementType enumerable, defines the
three different kind of policies supported by Tez (i.e.,DataMovement-
Type={one-to-one, scatter-gather, broadcast}). Current versions of
Apache Tez only support sequential scheduling and, consequently,
persisted or persisted-reliable data sources. For that reason, these
properties are deactivated in the TezEdge stereotype. We will in-
troduce them in the profile when the next Tez releases implement
these features.

The stereotype TezScenario represents the application master
that coordinates the Apache Tez application. The tags amVirtual-
Cores and amMemory are respectively the amount of computational
cores and memory resources assigned by the application master
to each vertex of the current application in the case that a Vertex
does not specify them by itself. A maximum of maxTaskparallelism
tasks can simultaneously run in parallel. The tags taskMemory and
taskVirtualCores correspond to the resources assigned to the appli-
cation master for controlling the Tez application. The stereotype

TezScenario inherits from MARTE::GQAM::GaScenario. It gathers
the rest of the contextual information of the application; for in-
stance, the specification of the response time or throughput metrics
to be computed by the performance model. The TezScenario stereo-
type is applied to a system scenario, e.g., a UML activity diagram.

Finally, the GaExecHost stereotype from MARTE is used for
showing the resources in the Tez cluster where the operations
are run. The tags resMult and memSize match with the number of
available CPUs and RAM in the device or cluster. This stereotype is
used in the UML deployment diagram to define the computational
devices.

4 A TEZ MODEL
This section summarizes steps to create a Tez-profiled UML model
that describes the main configuration of a Tez application. Specifi-
cally, we focus on an activity diagram complemented with a deploy-
ment diagram. The goal is to annotate the UML models adequately,
so that they can be later transformed to performance models in
order to compute performance metrics. The transformation to a
performance model is based on patterns, presented in Section 5.

Figure 1 introduces the UML activity diagram of a toy example
application in Tez; a word counter. We consider the UML activ-
ity diagram as the DAG of the Tez application. Then, it shows a
workflow with a sequence of vertices for processing data. Vertices
are connected by edges that specify a data movement policy. The
arcs do not represent causal relationships between actions, such as
in standard UML, but communication channels. In particular, the
workflow consists of:

• Two initial vertices, Tokenizer1 and Tokenizer2, that read two
data sources (e.g., files) word by word, separately,

• two intermediate vertices, Summation1 and Summation2, that
count the words propagated by the previous vertex, and

• a final vertex, Grouping, that composes the results of both
paths and writes the final count in a single output sink.

The Tez application manages two data sources and, therefore,
the activity diagram have two initial nodes (one per data source).
Initial nodes correspond to the initialization of a data source (i.e.,
loading of a input file). Then, every path executes a set of operations,
and eventually the pipelines merge, as it happens in the Grouping,
which means the combination of several datasets into a single one.
Finally, the Tez application finishes in a final node. Multiple final
nodes are also allowed, maximum one per pipeline.

The UML activity diagram is stereotyped as a TezScenario, which
captures the assigned virtual resources and parallelism of the Tez ap-
plication, as explained in Section 3. The activity nodes are grouped
by a UML partition (e.g., Partition1 in Figure 1).

Figure 2 depicts the deployment diagram, which complements
the previous activity diagram to represent the resources where
the application executes. Each partition in the activity diagram
is mapped to a computational resource, which is stereotyped as
GaExecHost to define its own resource multiplicity, i.e., number of
cores and memory.

Finally, the VSL from MARTE enables the specification of the
performance metrics that must be computed for the Tez-profiled
UML diagrams. The metrics can be the throughput and response
time of the Tez application, and the utilization of the resources.

QUDOS Workshop ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

149

Tez Concept Stereotype Applied to Tag Type
Vertex ≪TezVertex≫ Action/Activity

Parallelism Node parallelism NFP_Integer
Min/MaxSrcFraction min/maxSrcFraction NFP_Real
VirtualCores/memory vCores/memory NFP_Integer

hostDemand NFP_Duration

Edge ≪TezEdge≫ Control Flow
DataMovementType dataMovement DataMovementType1

Application Master ≪TezScenario≫ Activity Diagram maxTaskparallelism NFP_Integer
amVirtualCores/amMemory NFP_Integer
taskVirtualCores/taskMemory NFP_Integer

1DataMovementType={one-to-one, scatter-gather, broadcast}
Table 2: Tez Profile

Final

«TezVertex»
Tokenizer1

{parallelism=$n2,vCores=$v2,memory=$m2,
hostDemand=
(expr=$vertex2T,unit=ms, statQ=mean, source=est)}

{parallelism=$n1,
vCores=$v1,
memory=$m1,
hostDemand=
(expr=$vertex1T,
unit=ms,
statQ=mean,
source=est)}

{dataMovementType=
scatter-gather}

«TezEdge»«TezEdge»

{dataMovementType=
one-to-one}

«TezEdge»«TezEdge»

Partition1

«TezVertex»
Summation1

«TezVertex»
Summation2

«TezVertex»
Grouping

{parallelism=$n4,
vCores=$v4, memory=$m4,minSrcFraction=$min1,
maxSrcFraction=$max1,
hostDemand=(expr=$vertex4T, unit=ms, statQ=mean, source=est)}

{parallelism=$n5,
vCores=$v5,
memory=$m5,
hostDemand=
(expr=$vertex5T,
unit=ms,
statQ=mean,
source=est)}

{parallelism=$n3,
vCores=$v3,
memory=$m3,
hostDemand=
(expr=$vertex3T,
unit=ms,
statQ=mean,
source=est)}

{dataMovementType=
broadcast}

«TezEdge»

«TezEdge»«TezEdge»

«TezEdge»

{maxTaskparallelism=$maxTask,
taskVirtualCores=$taskvCore,
amVirtualCores=$amvCore,
taskMemory=$taskMemory,
amMemory=$amMemory}

{dataMovementType=
broadcast}

«TezVertex»
Tokenizer2

«TezScenario»

Figure 1: Tez activity diagram for a Word Counter example application

Figure 2 illustrates the VSL annotation for computing the utilization
of the device. The throughput and response time should be specified
in the UML activity diagram, through the TezScenario stereotype,
so to guarantee future integration of the Tez profile in the DICE
Simulation tool [18].

5 FROM A TEZ DESIGN TO A PERFORMANCE
MODEL

UML models, while useful for different purposes, can not be used
on their own for computing performance metrics. Hence, we need
a proper performance model, Generalized Stochastic Petri Net
(GSPN) [10] in our case.

We propose a preliminary set of original transformation patterns,
that will be applied to the UML-profiled Tez models. Figures 3 and
4 present these patterns. They take as input a part of the Tez design,

first column in the Figures, and produces a GSPN subnet, second
column. For an easier understanding of the transformation, we
depicted in the Figures: a) text in bold to match input and output
elements; b) interfaces with other patterns as dotted grey elements,
then they actually do not belong to the pattern.

Pattern P1 presents the transformation of the TezScenario stereo-
type. Place pini is initialized with a single token to start executing
the scenario. Place pmaxtask restricts the maximum number of
tasks running in parallel in the application, i.e., maxTaskparal-
lelism. Place pmaxtask is combined with Pattern P7 for controlling
the access to physical resources. The attribute taskVirtualCores
(taskMemory) is used in Pattern P3 in case that the Vertex omits
the specification of vCores (memory). Finally, the rest of the config-
uration for the application master (amVirtualCores/amMemory) is
not transformed to a Petri net in this version of the transformation.

QUDOS Workshop ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

150

«device»
«GaExecHost»
Core

«artifact»
«TezVertex»
Tokenizer1

«artifact»
«TezVertex»
Summation1

«artifact»
«TezVertex»
Summation2

«artifact»
«TezVertex»
Grouping

«artifact»
«TezVertex»
Tokenizer2

{resMult=$c1,
memSize=$mem1,
utilization=
(expr=$UNode1,
statQ=mean,
source=calc)}

Figure 2: Tez deployment diagram

Pattern P2 presents the transformation of an initial node in UML.
Multiple initial nodes are supported: each one creates an indepen-
dent path emerging from pini . The subnet consists of a set of places
and immediate transitions that act as intermediate elements for
gluing patterns P1 and P3.

Pattern P3 presents the transformation of a Tez Vertex. The sub-
net consists of two places and a timed transition. Place pA1 controls
the pool of virtual cores running the method defined in vertex A.
Anther place should be created for controlling the virtual memory
allocated for the vertex, but we have abbreviated the pattern for
simplicity. Place pA2 represents the execution phase. The access to
this place, see pattern P7, is controlled by pR to ensure the existence
of physical resources.

The maximum number of concurrent tasks is specified by paral-
lelism. The number of allocated virtual cores and memory impacts
on the number of concurrent tasks running in pA2. Each task takes
$time units for processing an input on average. tA follows an infi-
nite server semantics and different distributions can be modeled.
Finally, the result is sent to the next Vertex through Pattern P4. The
properties minSrcFraction and maxSrcFraction are used in the case
of a scatter-gather connection with the following vertex.

Patterns P4–P5 show the concatenation of two vertices. Patterns
P8–P10, refine the previous patterns depending on the dataMove-
mentType of the TezEdge stereotype. In these patterns, the weights
in the arcs of the Petri net represent the number of tasks executed
by each vertex.

The messages exchanged by Vertex A and Vertex B are implicit
in the structure of the Petri net. For instance, Pattern P8 shows the
broadcast configuration. All the messages created by every task of
Vertex A are copied and propagated to every task of Vertex B.

A one-to-one data movement policy imposes that both vertices
share the same parallelism (Pattern P10). The messages generated
by the i-th task in Vertex A must go to the i-th task in Vertex B.
Consequently, Pattern P10 must create n paths for distinguishing
each one of the i-th task, with n equal to the parallelism of both
vertices. Places PB1_i ensure that task i in Vertex B is processing a
single message from task i in Vertex A at a time.

Pattern P9 corresponds to a scatter-gather movement policy. It
is structurally similar to Pattern P10 but it removes the restrictions

P6 A

t
END

a1

t
A2

t
A3

W(a1)=$nA

P5 C W(a1)=$nA
W(a2)=$nB
W(a3)=$nC

p
C2

p
C1

a1 a3

a2

t
A

t
B

P4 A B

p
B2

p
B1

a1 a2

t
A

W(a1)=$nA

W(a2)=$nB

P1

A
c
ti
v
it
y

A

Partition(R)

«TezScenario»
maxTaskparallelism=$maxTask

amVirtualCores=$amvCore

amMemory=$amMemory

taskVirtualCores=$taskvCore

taskMemory=$taskMemory

p
INI t

INI

t
END

pMAXTASK

M(pMAXTASK)=$maxTask

P2 A

p
A2

p
A1

a1

t
ini

W(a1)=$nA

P7

A
c
ti
v
it
y

Partition(R)

A

«GaExecHost»

resMult=$size1

memSize=$size2

D
e
p

lo
ym

e
n
t

Node(R)

A

pMAXTASK

p
A2

t
A

pRM(pR)=$size1

P3

A1
M(p)=[$vA|$taskvCore]

p
A1

t
A2

r(t
A
)=1/$timep

A2

«TezVertex»
hostDemand=(expr=$time, unit=s,

source=est, statQ=mean),
parallelism=$nA

vCores=$vA
memory=$mA

minSrcFraction=$minA
maxSrcFraction=$maxA

A

Petri net PatternUML Pattern

A

B

p
OUT_INI

p
SCH_A

p
OUT_A

p
SCH_B

p
OUT_A

p
SCH_B

p
OUT_A

p
SCH_END

Figure 3: Transformation patterns I

imposed by places PB1_i. Besides, Pattern P9 adds conditions in the
immediate transitions of the Petri net for controlling the scheduling
and pre-launching of tasks (min/maxSrcFraction properties).

Tez operations are first logically grouped into partitions in the
activity diagram. Later on, they are deployed as artifacts in the

QUDOS Workshop ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

151

Petri net PatternUML Pattern

P8

t
A

a1

p
B2

p
B1

a2

W(a2)=
W(a1)=$nA

$nB

p
OUT_A2

p
SCH_B

«TezEdge»

dataMovementType=
broadcast

A B

P10 «TezEdge»

dataMovementType=
one-to-one

A B t
A

a
1

a
2

p
OUT_A

p
SCH_B

W(a1)=$nA

W(a2)=$nB

W(a2)W(a1)=

t
B_N

t
B_1

t
B_N

t
B_1

p
B1

p
B2_N

p
B2_1

p
B1_1

p
B1_N

P9 «TezEdge»

dataMovementType=
scatter-gather

A B t
A

W(a1)=$nA

W(a2)=$nB

p
OUT_A2=(# /)>$maxAa

1c
2

1
c p

OUT_A2 /)>$minAa
1=(# 3

4 2

1

)=a

W(a)=a1/LCD(a ,a2

/LCD(a1,a

)

W(a 2)

p
OUT_A2

a
1

c
1

a
3

a
4

p
OUT_A1

p
SCH_B

p
OUT_B1

a
2

c
2

t
B_N

t
B_1

t
B_N

t
B_1

p
B1

p
B2_N

p
B2_1

c
2

Figure 4: Transformation patterns II

deployment diagram and mapped to physical execution nodes. Pa-
ttern P7 maps the GaExecHost stereotype to a new place pR with
an initial marking representing the number of computational cores
of the node, resMult. The addition of such place restricts the logical
concurrency (number of tasks of the Tez application) to the num-
ber of available cores. A similar place to pR should be added for
representing the memory size of the node, memSize.

Finally, a GSPN model is obtained by applying the patterns and
combining the subnets through the interfaces. Pattern P1, together
with P6, get a closed Petri net which enables steady-state analysis.
The performance metrics of a Tez application are calculated as:

• Response time = 1 / average(tend), where average(tend) is the
mean throughput of the transition.

• Throughput = average(tend).
• Utilization= 1 - [average(pR)/$size1], where average(pR) is
the mean number of tokens in pR during the simulation.

6 CONCLUSION
Frameworks for developing applications in the Big Data context,
like Apache Tez, are very useful for managing extremely large
data volumes. However, such frameworks are complex enough
for developers to leverage all the potential they offer. Moreover,
they are young and very few experiences have been reported by
practitioners.

This work introduces a domain-specific modeling language for
Apache Tez, which guides the engineer to manage the key per-
formance concepts of the framework. We have implemented the
Tez profile for the Papyrus Modeling environment in the Eclipse
platform [17].

Besides, we have proposed transformation patterns to get a per-
formance model from the Tez models; specifically, stochastic Petri
nets. Following this proposal, engineers can asses the performance
impact of hosting their services in specific servers or clusters (e.g.,
parametrizing number of cores or CPU demands), by predicting
response times and throughputs of the application or the utilization
of the devices.

As immediate future work, we want to validate our approach
using a real case study. Also, we plan to automatize and integrate
the transformation patterns and performance calculators within
the DICE Simulation tool [18].

7 ACKNOWLEDGEMENTS
This work has received funding from: the EU H2020, grant agree-
ment No.644869 (DICE), the Spanish MINECO project CyCriSec
[TIN2014-58457-R], the UZCUD2017-TEC-09 project, and the Ara-
gon Government Ref. T27 - DISCO research group.

REFERENCES
[1] 2017. DICE H2020 Website. (2017). http://www.dice-h2020.eu/
[2] Apache. 2017. Apache Tez Website. (2017). http://tez.apache.org/
[3] Danilo Ardagna et al. 2016. Modeling Performance of Hadoop Applications: A

Journey from Queueing Networks to Stochastic Well Formed Nets. In Proceedings
of the 16th International Conference on Algorithms and Architectures for Parallel
Processing. Springer, Cham, 599–613.

[4] Giovanni Chiola et al. 1993. Generalized Stochastic Petri nets: A Definition at
the Net Level and its Implications. IEEE Transactions on Software Engineering 19,
2 (1993), 89–107.

[5] G. Casale et al. 2015. DICE: Quality-driven Development of Data-intensive Cloud
Applications. In Proceedings of the Seventh International Workshop on Modeling in
Software Engineering (MiSE ’15). IEEE Press, NJ, USA, 78–83.

[6] Eugenio Gianniti et al. 2017. Fluid Petri Nets for the Performance Evaluation of
MapReduce and Spark Applications. ACM SIGMETRICS Performance Evaluation
Review 44, 4 (2017), 23–36.

[7] Johannes Kroß et al. 2015. Modeling Big Data Systems by Extending the Palladio
Component Model. Softwaretechnik-Trends 35, 3 (2015).

[8] Johannes Kroß and Helmut Krcmar. 2016. Modeling and Simulating Apache
Spark Streaming Applications. Softwaretechnik-Trends 36, 4 (2016).

[9] François Lagarde et al. 2007. Improving UML profile design practices by leverag-
ing conceptual domain models. In Proceeedins of the 22nd IEEE/ACM International
Conference on Automated Software Engineering. ACM, Atlanta, 445–448.

[10] Marco Ajmone Marsan et al. 1994. Modelling with Generalized Stochastic Petri
nets (1st ed.). John Wiley & Sons, Inc., New York, NY, USA.

[11] OMG. 2011. UML Profile for MARTE: Modeling and Analysis of Real-time
Embedded Systems, Version 1.1. http://www.omg.org/spec/MARTE/1.1/. (2011).

[12] Rajiv Ranjan. 2014. Modeling and Simulation in Performance Optimization of
Big Data Processing Frameworks. IEEE Cloud Computing 1, 4 (2014), 14–19.

[13] Kritwara Rattanaopas. 2017. A performance comparison of Apache Tez and
MapReduce with data compression on Hadoop cluster. In Proceedings 14th Inter-
national Joint Conference on Computer Science and Software Engineering, IEEE
(Ed.). 1–5.

[14] José Ignacio Requeno et al. 2017. Performance Analysis of Apache Storm Appli-
cations using Stochastic Petri Nets. In Proceedings of the 5th IEEE International
Workshop on Formal Methods Integration, IEEE (Ed.). 1–8.

[15] Bran Selic. 2007. A Systematic Approach to Domain-Specific Language Design
Using UML. In Proceedings of the 10th IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing. IEEE Computer Society, 2–9.

[16] Rupinder Singh and Puneet Jai Kaur. 2016. Analyzing performance of Apache
Tez and MapReduce with Hadoop multinode cluster on Amazon cloud. Journal
of Big Data 3, 1 (2016), 19.

[17] The DICE Consortium. 2017. Apache Tez Profile. (2017). https://github.com/
dice-project/DICE-Profiles.

[18] The DICE Consortium. 2017. DICE Simulation Tool. (2017). https://github.com/
dice-project/DICE-Simulation/.

[19] UML2 2011. Unified Modeling Language: Infrastructure. (2011). Version 2.4.1,
OMG document: formal/2011-08-05.

QUDOS Workshop ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

152

http://www.dice-h2020.eu/
http://tez.apache.org/
http://www.omg.org/spec/MARTE/1.1/
https://github.com/dice-project/DICE-Profiles
https://github.com/dice-project/DICE-Profiles
https://github.com/dice-project/DICE-Simulation/
https://github.com/dice-project/DICE-Simulation/

	Abstract
	1 Introduction
	2 Tez Concepts for Performance
	3 A UML Profile for Tez
	4 A Tez Model
	5 From a Tez Design to a Performance Model
	6 Conclusion
	7 Acknowledgements
	References

