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ABSTRACT
In the Big Data era, stream processing has become a common re-
quirement for many data-intensive applications. This has lead to
many advances in the development and adaption of large scale
streaming systems. Spark and Flink have become a popular choice
for many developers as they combine both batch and streaming
capabilities in a single system. However, introducing the Spark
Structured Streaming in version 2.0 opened up completely new
features for SparkSQL, which are alternatively only available in
Apache Calcite.

This work focuses on the new Spark Structured Streaming and
analyses it by diving into its internal functionalities. With the help
of a micro-benchmark consisting of streaming queries, we perform
initial experiments evaluating the technology. Our results show
that Spark Structured Streaming is able to run multiple queries
successfully in parallel on data with changing velocity and volume
sizes.

CCS CONCEPTS
• Computer systems organization → Distributed architec-
tures; • Information systems → Data management systems; •
Computing methodologies → Symbolic and algebraic manipu-
lation;
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1 INTRODUCTION
Big Data is growing in both volume and velocity. The combination
of both creates data streams. As is often the case, different disci-
plines use different definitions but a shared characteristic among
these definitions includes: the real-time or near real-time nature
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of data arrival [13]. The data arrives in a continuous stream op-
posed to certain intervals and is unbounded in nature, hence the
stream potentially never ends [1, 5, 20]. With the rise of the Inter-
net of Things more data streams will be created, which will push
the boundaries even further. Due to potentially millions of sensors
constantly sending data in mere fractions of a second the torrent
of data could reach between 102 and 105 messages per second. As
noted by Shukla et al. [28], Twitter by comparison receives around
6000 tweets per second. Since analysis takes place in-memory, it is
not feasible to store the data on disks or other external data storage
devices [35].

Micro-batching is a hybrid concept , with the main idea being
”[...] to treat the stream as a sequence of small batch chunks of data. On
small intervals, the incoming stream is packed to a chunk of data and
is delivered to the batch system to be processed.”[26]. Spark Streaming
[31] utilises this approach by limiting the batch size to keep latency
at an acceptable level [35]. Other hybrid concepts follow similar
approaches of combining batch processing with streaming, e.g. the
Lambda Architecture [22] and the Kappa Architecture [16]. On the
contrary, Flink [10] offers native streaming support, which is also
used to implement batch operations. An important drawback of
both Spark Streaming and Flink approaches is that you have to
implement and compile your streaming application code, before
being able to execute it. This restricts the technology usability and
development efficiency. However, recently in Spark version 2.0,
Spark Structured Streaming [14, 36], which enhances the SparkSQL
[2] engine with streaming capabilities was introduced. The goal
of Structured Streaming is to make it easier to create streaming
applications, by extending SparkSQL, so that the user no longer
has to worry about the details of implementing streaming and can
focus on the results, while offering strong fault-tolerance and con-
sistency. Similar approach follow the Flink Streaming [30], which
uses Apache Calcite [6] as an underlying engine that provides the
SQL streaming capabilities.

This work focuses on evaluating the new features of Spark Struc-
tured Streaming by using queries inspired by the BigBench V2 [11]
benchmark and implemented in a streaming context. Our exper-
iments showed multiple pros and cons of the current Structured
Streaming technology.:

• The more queries that are run in parallel, the longer these
need to be completed.

• An increase in file sizes also results in longer completion
times, although this relationship was not always consistent
in every file bracket.

• Tentative evidence points towards heap memory being the
bottleneck, while CPU utilization decreased at larger file
sizes.
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Figure 1: Structured Streaming Models [14]

The remaining paper is structured as follows: Section 2 describes
the main features of Spark Structured Streaming. Section 3 looks
at related benchmarks and studies followed by Section 4, which
presents the micro-benchmarks used in the evaluation. Section 5
analyses the experimental results and the final Section 6 concludes
the paper.

2 SPARK STRUCTURED STREAMING
Structured Streaming is a stream processing engine, which was built
on top of the Spark SQL engine with fault-tolerance and scalability
in mind [9]. It was first added in Apache Spark 2.0 to build and
simplify the development of continuous and real-time Big Data
applications, by combining batch and streaming computation [14].
It uses the already existing Dataset and DataFrame APIs and is
intended to complement Spark Streaming in the long-term [36].
One of the main benefits is that users no longer have to concern
themselves with the details of streaming as this is handled by the
new streaming architecture.”The key idea in Structured Streaming
is to treat a live data stream as a table that is being continuously
appended. [...] Every data item that is arriving on the stream is like a
row being appended to the Input Table.” [14]. The left part of Figure
1 depicts this process in a graphic manner. Depending on a trigger
interval set by the user, the input table is updated with new rows
on which queries are run. The output of these queries is saved in
a results table. This is illustrated in the right part of Figure 1. It
shows that every second the input table is updated with new data
and afterwards a query is run, the results of which are then saved
in the result table. Following this, the user has several options for
saving the content of the result table to an external storage.

Structured Streaming combats certain inherent weaknesses in
streaming systems such as inconsistency when processing records
that can lead to nonsensical results, fault tolerance both inside and
outside the engine, and out-of-order data. Structured Streaming
offers a guarantee: ”at any time, the output of the application is
equivalent to executing a batch job on a prefix of the data.” [36]. It
also supports event time aggregation to enable the processing of
out of order data, which is very similar to grouped aggregations.

Spark collects a large assortment of metrics once the application
is running, of which only a small subset is relevant to the benchmark
that we ran. Table 1 below lists the names and a definition of each
relevant metric with an explanation taken directly from the official
Apache Spark Scala source files in Github [8].

Figure 2: Trigger Process

During the benchmark implementation process, we identified a
problem with the processingRate-total file. Due to an error in the
MetricsReporter scala file, which is used to create the CSV files,
the files inputRate-total and processingRate-total were reporting
the same values. After opening a ticket and submitting a fix to the
issue, this bug was fixed in the latest release (Bug [SPARK-22052]).

Figure 2 illustrates how the metrics relate to each other and to
which point in the streaming process they correspond. The figure
assumes processing time is set to 100 seconds to showcase the
difference between processing time and trigger execution.

Changes in trigger processing time have different effects on the
calculation of the metrics. ProcessingTimeSec is defined as current-
TriggerEndTimestamp - currentTriggerStart - Timestamp, effectively
the duration of the Trigger Execution. Setting trigger processing
time to a specific value thereby does not affect this metric as the
Trigger Execution time is not affected by the user, merely the amount
of waiting time is altered by setting trigger processing time. How-
ever, InputTimeSec is affected by a change in trigger processing
time as it is defined as currentTriggerStartTimestamp - lastTrigger-
StartTimestamp, thereby a decrease or increase in waiting time will
alter this metric. Assuming no specific trigger processing time is
set, meaning as soon as one trigger execution is completed the next
one will start, the difference between ProcessingRate and InputRate
will be marginal, but not zero.

3 RELATEDWORK
Spark [29] and Spark Streaming [31] have been adapted by the
industry as key technologies in developing big data applications.
Therefore, multiple studies investigated how Spark performs un-
der different workloads and benchmarks [25], including micro-
benchmarks such as HiBench [15] , SparkBench [19] and Yahoo
Streaming Benchmark [7]. Other important aspects like efficient
memory management [3, 4, 17, 18] and competitiveness with other
frameworks like MapReduce and Flink [21, 27, 33] were also inves-
tigated.

Recently, a new approach for performance clarity, called Mono-
tasks, was presented by Ousterhout et al. [23, 24]. It points out the
importance of understanding and visualizing the bottlenecks in to-
days’ complex systems and was demonstrated through a Spark pro-
totype. In the same spirit, an improvement of the Spark Streaming
concept, called Drizzle [34], was also demonstrated to compensate
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Table 1: Metrics

Name Definition Description

Latency triggerExecution - The amount of time taken to
perform various operations in milliseconds.

Describes the amount of time needed to perform the SQL
query operations during one trigger interval.

InputRate-total numRecords/inputTimeSec Describes how many rows were loaded per second between
the start of the last trigger and the start of the current trigger.

ProcessingRate-total numRecords/processingTimeSec Describes how many rows were processed per second during
the start of the current trigger and the end of the current
trigger.

InputTimeSec currentTriggerStartTimestamp - lastTrigger-
StartTimestamp

The period of time between the start of the current trigger
and the start of the last trigger.

ProcessingTimeSec currentTriggerEndTimestamp - currentTrigger-
StartTimestamp

The period of time between the beginning and the end of a
trigger period.

NumInputRows NumRecords The number of rows in a batch.

for the overhead of micro-batching and bring it closer to native
streaming.

Another work by Zhang et al. [37] presented a distributed stream-
ing query engine running on a cluster and compared its perfor-
mance to other streaming engines, with Structured Streaming be-
ing one of them. The work found out that many streaming opera-
tions are unsupported in the current implementation of Structured
Streaming and therefore it is not possible to fully compare it with
other stream engines. However, when looking at those operations
that did work, the Structured Streaming performance was worse
than when using Spark Streaming. As there are no extensive evalu-
ations of the Spark Structured Streaming performance and bench-
marks targeting exactly these types of engines, we address this in
the remaining part of our study.

4 STRUCTURED STREAMING
MICRO-BENCHMARK

Before performing the evaluation it is important to identify the
benchmark and methodology that will be used in the analysis.
Since there are no benchmarks targeting streaming SQL engines as
mentioned in the related work, we reuse and extend the BigBench
V2 [11] benchmark as a basis for our micro-benchmark. BigBench
(TPCx-BB) [12] is an end-to-end benchmark used to test Big Data
systems, partly based on the TPC-DS benchmark. BigBench V2
[11] is the updated version of BigBench and addresses some of the
drawbacks in BigBench. It no longer uses complex queries from
TPC-DS and simplifies the schema. In addition, semi-structured
data is no longer handled as a structured table with a fixed schema,
instead semi-structured data is treated as a pair of key-values. The
new BigBench V2 data model retains the variety of structured,
semi-structured and unstructured data, however, the structured
data component now only includes six tables and product reviews
are generated in a synthetic manner. The benchmark consists of 30
queries covering different business workload requirements.

Our experiments consist of two phases. In the first phase, data
was generated using the BigBench V2 data generator and then man-
ually split into files stored on disk to simulate a stream of data. In

the second phase the queries were triggered to execute on the simu-
lated stream data and produced a set of statistical results reporting
performance and resource characteristics. The following subsec-
tions describe the query workloads, how they are implemented and
finally the data preparation and execution phases.

4.1 Workloads
Out of the 30 queries that were part of the original BigBench, four
were selected for testing, because they were suitable for real-time
analytics and relevant from a business and technical point of view.
The fifth query (Qmilk ) is very simple and checks how many prod-
ucts of a certain type are sold in a particular time frame. The stream-
ing workload consists of these five queries executed periodically on
a stream of data. All queries are defined in plain text as followed:

• Q5 : Find the 10 most browsed products in the last 100 sec-
onds.

• Q6 : Find the 5 most browsed products that were not pur-
chased across all users (or only specific user) in the last 100
seconds.

• Q16 : Find the top ten pages visited by all users (or specific
user) in the last 10 minutes.

• Q22 : Show the number of unique visitors in the last hour.

• Qmilk : Show the sold products (of a certain product or
category).

4.2 Setup
The experiments were performed on a workstation machine with
8GB main memory, Intel Core i5 CPU 760 @3.47GHz x4 and 1TB
hard disk. On top, Ubuntu LTS 16.04 was installed running Java ver-
sion 1.8.0.131, Scala version 2.11.2 and Apache Spark 2.3. Spark was
used in standalone mode with the default configuration parameters
for all experiments.
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4.3 Data Preparation
For the data generation, we used the data generator in BigBench
V2 [11] with scale factor 1 and in particular the web logs consisting
of web clicks in JSON format (around 20GB) and the web sales
structured data( around 10MB). Web log file sizes ranging from
50MB to 2000MB were created to test the system performance
at different file sizes. For every file size, 10 files were created to
simulate a stream of 10 data files. As the web sales file was only
10MB large, that size was retained, but the file was multiplied 10
times to ensure 10 files could be streamed successfully. In total, 31
different combinations of parallel query executions were tested, the
web sales file size for the Qmilk query was kept equal the entire
time at 10MB. The web log sizes for all other queries (Q5 and Q16)
were increased stepwise, starting from 50MB up to 2000MB.

4.4 Implementation
To this end four existing queries were initially chosen (Q05, Q06,
Q16 and Q22) and a new one was created (Qmilk) to test the Struc-
tured Streaming environment. Due to technical limitations present
in Structured Streaming at the time of writing, it was not possible
to run queries Q06 and Q22 because of their specific nature. Query
Q06 is the most complex query and performs join operations on
two streaming datasets, which is not (yet) supported by Structured
Streaming, as pointed out by Zhang et al. [37]. Performing a join
between one streaming dataset and one static dataset is possible,
but the SQL statement includes multiple aggregations (initiating
the count function), which is an operation not yet supported on
streaming datasets. Query Q22 uses a distinct operation, which is
also not supported on streaming datasets. Furthermore, it utilizes
sorting operations (Order By) that are only supported after an ag-
gregation. Lastly, the Limit keyword is not supported at all in a
streaming context. Hence, it was only possible to implement and
test queries Q05, Q16 and Qmilk. The Scala code is available on
Github [32] together with all the test data and query starting code.
Listing 1 shows the Scala Structured Streaming implementation
of the three queries. The respective code examples are for Spark
running in local mode, in order to run on a cluster several changes
are necessary.

Listing 1: Query 5, Query 16 and Qmilk
var web_logs_05 = web_logsDF

. groupBy ( " w l _ i t e m _ i d " ) . count ( )

. orderBy ( " count " )

. s e l e c t ( " w l _ i t e m _ i d " , " count " )

. where ( " w l _ i t e m _ i d ␣ I S ␣ NOT␣ NULL " )

var web_logs_16 = web_logsDF
. groupBy ( " wl_webpage_name " ) . count ( )
. orderBy ( " count " )
. s e l e c t ( " wl_webpage_name " , " count " )
. where ( " wl_webpage_name ␣ I S ␣ NOT␣ NULL " )

var w e b _ s a l e s _ m i l k = web_sa lesDF
. groupBy ( " ws_produc t_ id " ) . count ( )
. orderBy ( " ws_produc t_ id " )

. s e l e c t ( " ws_produc t_ id " , " count " )

. where ( " ws_product_ID ␣ I S ␣ NOT␣ NULL " )

Listing 2 shows how the query execution is triggered for query
Q05, which is performed in phase two of the benchmark. Further-
more, the format option determines which output sink is to be used.
As of writing there are four available options: file sink, foreach sink,
console sink and memory sink. The file sink option stores the output
to a directory, by setting the text within format to either parquet,
json, csv or similar file types. The foreach sink runs arbitrary com-
putation on the records. The console and memory sink options are
primarily used for debugging purposes or when file sink is not an
option. For our benchmark the console option, shown in Listing
2, was chosen to facilitate error detection and because the queries
were preventing the use of the file sink option. As of writing it is
not possible to write output to file if the queries use aggregation,
which is the case here.

By setting the optional queryName in the configuration, the
query gets an internal name that is used for reporting purposes
and in naming the statistical files. The trigger configuration option
is not required to run a streaming query. It determines at which
interval Spark adds new rows to the input table. If the line is omitted
Spark will update the input table as soon as possible, depending
on the system performance, file complexity and the file size used
for the streaming dataset. An additional option is to run the trigger
only one time trigger(Trigger.Once()) after which the query will stop.
If the user sets the processing time to be faster than the system
can manage a warning message, with the actual processing time
will be displayed, after the query is executed. The outputMode
configuration option on Listing 2 (depicted also in the right part
of Figure 1) determines what mode will be selected when writing
the output to external storage. As of writing there are three mode
options: complete mode, append mode and the newest, update mode.
When complete mode is selected the entire updated result table will
be written to the external storage. When choosing append mode,
Spark only writes the new rows that were added to the result table
since the last trigger to the external storage. The final option, update
mode tells Spark to only write those rows to external storage that
were updated in the result table since the last trigger, the emphasis
here being old rows that were updated, and not new ones being
added. The different modes are also subject to certain limitations.

Listing 2: Spark WriteStream
var query05 = web_logs_05 . w r i t e S t r e a m

. fo rmat ( " c o n s o l e " )

. queryName ( " 05 " )

. t r i g g e r ( T r i g g e r
. P r o c e s s i n g T i m e ( " 150 ␣ s econds " ) )

. outputMode ( OutputMode . Complete ( ) )

. s t a r t ( )

Append mode does not work in our situation as queries are being
run using aggregations based not on event-time, but on other at-
tributes such as the number of web pages or product and item IDs.
Furthermore, update mode is also not possible when using these
queries as they include sorting operations which are not permitted.
Hence, complete mode is the only available option, but at the same
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Figure 3: Latency Distribution

time this prevents file sink from being used as the output sink due
to technical restrictions. Finally .start() tells Spark to initiate the
streaming query.

4.5 Limitations
This subsection outlines some Structured Streaming limitations and
problems that we encountered during our experiments.

File Creation Date: During testing, we discovered strange
behavior in Structured Streaming, when manually copying and
moving the data files to the assigned directories. It appeared that
when all the streaming files were copied to the streaming direc-
tory and had the same file creation or modification date, Spark
considered these to be the same file even if the files had different
names (web-logs1, web-logs2, etc.). After starting the program, the
results of the SQL queries did not update following the first file.
Instead the results array was either blank or statically displayed the
results obtained after the first file was processed. This issue could
not be replicated in all cases, but by making sure the file creation
or modification dates differed slightly or by cutting, not copying,
the files to the streaming directory, this issue was solved.

Bigger File Sizes: The largest file size used was 2000MB, this is
relatively small in the Big Data context and did not test Sparks true
capabilities. Future research should use larger files to investigate
potential bottlenecks and peak performance. Additionally, as only
ten files were streamed in each micro-benchmark the influence
of fluctuations in system performance and other external factors
cannot be discounted. To solve this issue longer streams with more
files should be tested to facilitate more robust testing conditions.

Spark Cluster Mode: Finally, as Spark was run in standalone
mode and not on a cluster the advantages of parallel computation
were not utilized. The use of BigBench as an end-to-end benchmark
on a cluster to reflect actual usage scenarios should be conducted
in the future research.

5 EXPLORATORY ANALYSIS
This section looks at the results obtained after performing a se-
ries (around 31 different combinations) of experiments using the 3
queries implemented with Spark Structured Streaming. Initially, we
observed that all runs took much longer than the following run as
depicted in Figure 3. The reason for this is that the system needed
to warm up before reaching a consistent level of processing speed.
Therefore, the first measured data point out of the total 10 data
points (streamed files) was omitted from our analysis.

Figure 4 depicts the average execution times excluding the first
run for all combinations of queries. We can identify three main
groups of queries: group 1 consists of single executions of Q5 and
Q16; group 2 consists of parallel pair executions of Q5, Q16 and
Qmilk and finally group 3 consists of triple parallel executions of
Q5, Q16 and Qmilk. In general, it can be said that the more queries
are run in parallel and the larger the file sizes used, the longer these
take, to be completed and the more resource intensive they are.

For example, Q5 median latency increased by more than 200%
between the 50MB and 2000MB file sizes and when testing resource
utilization across file sizes, the time to achieve completion more
than doubled between the smallest and the largest file sizes. When
comparing single query latency to triple query latency, it increased
two to three-fold. Additionally, the larger the file sizes the more
fragmented the query groupings became. Initially all queries could
be assigned to three distinct groups based on their latency distri-
bution and how many queries were running at the same time, yet
later on five or six groups were observed.

The resource utilization also showed interesting results as CPU
utilization was the highest at the 50MB level and decreased every
time the file size was increased. In contrast, the JAVA heap size
increased for larger file sizes. It looks like the memory size will
be the limiting factor when using larger files, but this needs to be
further proved with extensive tests in future research.

Another point is the gathering of Spark metrics. It needs to be
improved and made more user friendly as, it was often more efficient
to extract them via the log4j configuration compared to the various
sink options in Spark. Additionally, the sink option only exports
three streaming metrics, whereas the log4j method offers more
metrics for evaluation. The Structured Streaming trigger process
itself is not documented and thorough experimentation was needed
to understand the inner workings of the process as mentioned in
Section 2 ( Figure 2 ).

6 LESSONS LEARNED

Table 2: Structured Streaming Pros and Cons

Pros Cons

1 Simple programming
model and streaming API

Undocumented trigger pro-
cess

2 Several built-in metrics Query limitations due to
streaming API

3 Several extraction and
sink options for metrics

Complicated metric extrac-
tion process

4 Possible to run queries in
parallel

Based on our exploratory analyses and experiments we summa-
rize the finding of our study. Structured Streaming exhibits several
advantages over the Spark legacy streaming module, but is also
subject to certain weaknesses listed in Table 2. The simple program-
ming model and streaming API are countered by query limitations
that restrict queries to operations supported in the current version
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Figure 4: Optimal Trigger Processing Time

of the API. And even though several metrics are already built-in to
Structured Streaming, including various ways of extracting these
for analysis, this process is still fairly complicated. By streamlining
the metric extraction process it would facilitate faster analysis of the
data and make Structured Streaming more attractive to companies
searching for viable streaming solutions. Finally, the trigger process
is not documented in a detailed and intuitive manner. As Structured
Streaming is the newest addition to Apache Spark it still has room
for improvement. Future updates could remedy these issues by im-
proving documentation and extending the metric environment in
Apache Spark.
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