LTB Workshop

ICPE’18 Companion, April 9-13, 2018, Berlin, Germany

A Workload-Dependent Performance Analysis of an In-Memory
Database in a Multi-Tenant Configuration

Dominik Paluch
Chair for Information Systems
Technical University of Munich
Garching, Germany
dominik.paluch@in.tum.de

ABSTRACT

Modern in-memory database systems begin to provide multi-tenancy
features. In contrast to the traditional operation of one large data-
base appliance per system, the utilization of the multi-tenancy

features allows for multiple database containers running on one

system. Consequently, the database tenants share the same system

resources, which has an influence on their performance. Under-
standing the performance of database tenants in different setups

with varying workloads is a challenging task. However, knowledge

of the performance behavior is crucial in order to benefit from

multi-tenancy. In this paper, we provide fine-grained performance

insights of the in-memory database SAP HANA in a multi-tenant

configuration. We perform multiple benchmark runs utilizing an

online analytical processing benchmark in order to retrieve informa-
tion about the performance behavior of the multi-tenant database

containers. Furthermore, we provide an analysis of the collected re-
sults and show a more efficient usage of threads in an environment

with less active tenants under specific workload conditions.

CCS CONCEPTS

« General and reference — Measurement; Performance; - In-
formation systems — Database performance evaluation;

KEYWORDS

In-memory Database; Performance Analysis; Multi-Tenancy; SAP
HANA

ACM Reference Format:

Dominik Paluch, Harald Kienegger, and Helmut Krcmar. 2018. A Workload-
Dependent Performance Analysis of an In-Memory Database in a Multi-
Tenant Configuration. In ICPE ’18: ACM/SPEC International Conference on
Performance Engineering Companion , April 9-13, 2018, Berlin, Germany.
ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3185768.3186290

1 INTRODUCTION

A rising number of enterprises migrate their enterprise applications
at least partially to the cloud. This allows them to reduce admin-
istration costs since they do not need to set up and operate these

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICPE 18, April 9-13, 2018, Berlin, Germany

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5629-9/18/04...$15.00
https://doi.org/10.1145/3185768.3186290

Harald Kienegger
Chair for Information Systems
Technical University of Munich
Garching, Germany
harald.kienegger@in.tum.de

131

Helmut Krcmar
Chair for Information Systems
Technical University of Munich

Garching, Germany

krecmar@in.tum.de

applications on their own. By utilizing cloud offerings, they can
even avoid having to operate an own data center. Databases are an
essential part of enterprise applications. Thus, the advantages of
cloud offerings lead to a rising interest in Database-as-a-Service
(DaaS) offerings. Recently, cloud providers started to include in-
memory databases to their on-demand offerings.

In order to use their resources efficiently, providers take advan-
tage of virtualization and multi-tenancy to decrease hardware-,
energy- and software licensing costs as well as reducing adminis-
tration efforts. Thus, multi-tenancy has the potential to increase
efficiency. To achieve this goal, cloud providers aim to operate a
high number of tenants on their hardware. Thus, performance de-
creases and costly violations of Service Level Agreements (SLAs)
might occur. When the software environment changes, providers
have to analyze the effects of these changes on the performance
and consider them in their landscape [1]. Gaining knowledge about
the performance behavior of database tenants in different setups
with varying workloads is a challenging task. However, knowledge
of the performance behavior is crucial in order to benefit from
multi-tenancy. Recent work focusses on performance behavior and
performance predictions of databases in a multi-tenant configura-
tion [2, 3, 5, 7, 9].

In this paper, we provide an in-depth analysis of the performance
behavior of the in-memory database SAP HANA in a multi-tenant
configuration through conducting a set of experiments. Since the
performance of an in-memory database is mainly dependent on its
workload [6], our work focusses on a fine-grained analysis of the
performance impact of varying analytical workload on the perfor-
mance of the database tenants. Being mainly independent on disk
access rates, in-memory databases have advantages when process-
ing analytical data in contrast to disk-based databases. Thus, these
databases are favored for online analytical processing (OLAP). For
this reason, we chose an OLAP benchmark for our experiments.
The main contribution of this paper is a performance insight into an
in-memory database in a multi-tenant configuration. We show that
the usage of threads has a significant influence on the performance.

The remainder of the paper is structured as follows. Section 2 pro-
vides an overview over the utilized methodology describing the
environment and the design of the conducted experiment. In Sec-
tion 3, we discuss the results of the experiment giving fine-grained
insights into the performance behavior of the database. Section 4
contains an overview of related work. Finally, we draw a conclusion
and discuss future work in Section 5.

https://doi.org/10.1145/3185768.3186290
https://doi.org/10.1145/3185768.3186290

LTB Workshop

Table 1: Parameters of the experiment

Parameter Description
X1 Executed TPC-H Query
X3 Number of active tenant databases
X3 Number of concurrent query executions

2 METHODOLOGY
2.1 Hardware and Software Setup

For our experiments, we used the TPC-H benchmark suite perform-
ing OLAP workload on a SAP HANA database [10]. This benchmark
is a decision-support benchmark claiming to utilize queries and
data with industry-wide relevance. We used the most recent HANA
version 2.0 SP 2 utilizing its multi-tenancy features. We have set
up five tenants using a TPC-H data set with a scale factor of 30
resulting in tenant sizes of 30 GB each. In our setup, we used SLES
12 SP2 as the operating system. Our hardware platform consisted of
an IBM Power E870 server providing 40 physical CPU cores in four
sockets with an eight-tread simultaneous multithreading (SMT-8)
engine providing eight virtual CPUs per core. The CPU had a clock
speed of 4.19 GHz. The server was equipped with 4.096 GB RAM.
Furthermore, the server provided the firmware-based virtualiza-
tion PowerVM. For our experiments, we used a virtual machine or
logical partition (LPAR) with 256 GB RAM and 2 CPU cores with
SMT-8. To exclude any network-related performance impact, we
utilized a second LPAR on the same server for our benchmark dri-
ver. The benchmark driver utilized shell scripts in order to perform
the benchmarks. To measure CPU utilization we used the tool top
running on the database LPAR with a sampling rate of 1 second.

2.2 Experimental Design

In our experiment, we chose a set of parameters listed in Table 1
in order to get fine-grained information about the performance be-
havior of the database. Since the performance is mainly dependent
on its workload, we chose not to conduct the TPC-H benchmark
as intended. Performed in its intended way, the TPC-H benchmark
defines a user as a set of queries executed in a predefined order.
However, this does not allow an analysis of the individual impact of
one query on the database’s performance. Hence, we chose to run
each TPC-H query isolated. In our context, we defined the number
of users as the number of concurrently executed queries of one
type. With parameter x; we considered the individual TPC-H query.
To avoid including caching effects in our results, we executed the
queries as regular, non-prepared statements. Parameter x3 mainly
determines the workload intensity. It is defined as the number of
concurrent executions of a certain query. As stated earlier, we uti-
lized the multi-tenant database containers of SAP HANA in our
experiment. SAP HANA consists of multiple server processes. How-
ever, the so-called index server process is mainly responsible for
the performance of a tenant. In the multi-tenancy concept of SAP
HANA, every tenant database container is running its own index
server process. Tenant databases are self-contained databases sep-
arated from each other regarding data, security and performance.
We considered the number of active tenant databases in parameter

132

ICPE’18 Companion, April 9-13, 2018, Berlin, Germany

1
(]
£ 09f §

[}
§8 gl .
3T
55
52 07} 4
< O
£ o6l -
© O
=g=1
ST o5t
=2

0.4 | | | | | | | | | | |

1 2 3 4 5 6 7 8 9

Number of active users

10 20 50 100

Figure 1: Normalized execution time with a single active ten-
ant database.

x2 with a maximum of five active tenants. This allows further in-
sights on the performance behavior in a multi-tenant setup. In our
experiment, we conducted multiple benchmark runs observing the
response times of the executed queries.

The first run utilized a single active tenant database. We executed
the single TPC-H queries and varied the number of users from
one to 100. Because of a high benchmark runtime with larger user
numbers, each user conducted five executions per query. The results
show the performance behavior of each query and how well the
performance scales in a single tenant. In our second run, we varied
the number of active tenants from one to five in a setup with 20
active users. To execute a similar workload on the complete system
during this run we utilized 20, 10, 7, 5 or 4 users per tenant to achieve
20 parallel executions. Furthermore, we raised the number of active
users to 50 in our third benchmark run. In this case, we utilized 50,
25,17, 13 or respectively 10 users per tenant. In these benchmark
runs, each user conducted 50 executions per query in order to
reduce measurement errors. The results show the performance
behavior of the database in different multi-tenant scenarios. We
chose to limit the number of concurrently active tenants, because
the benchmark utilizes the full CPU capacity even with less active
tenants. A higher number of active tenants should give no further
performance insights. Since a benchmark run with 50 users took
over one week to complete, we chose to limit the number of users
to 50.

3 RESULTS

3.1 Discussion of the results

Figure 1 shows the results of the first benchmark run. We noticed
the normalized execution time being constant up to 20 users. This
implies a strict linear growth of response time within this range
of users. The relatively high execution times with only one or two
active users are the result of limited utilization of multithreading
capabilities of certain queries. More interesting are the results with
50 and 100 users. The results in these cases are significantly lower
than expected. However, a further analysis of the CPU usage has
shown no difference between the scenario with 20 users, 50 users
or 100 users. All those scenarios utilized the full CPU capacity.

LTB Workshop

1.4 ‘
o 1.35 | 1 Tenant memm]
£ 2 Tenants memm
pas o 1.3 - 3 Tenants *
235 1.25| 4Tenants -
§§ 1.2 | 5 Tenants mmmmm |
3>
= 1.15 E
8T 11 -
£8 1.05f -
= A ‘]

0.95

20 Users 50 Users
Active users

Figure 2: Normalized execution time with multiple active
tenant databases in comparison to a single active tenant.

Normalized execution times

Figure 3: Normalized execution times with five active ten-
ant databases compared to the execution time in one active
tenant database with 50 users.

To further investigate the unusual performance behavior, we now
analyze the results of the following benchmark runs. We show
the results of the second and third benchmark runs in Figure 2.
It is noticeable, that the execution of identical workload split to
a varying number of active tenants is very similar in scenarios
with 20 users, although we use different data sets in each tenant
database. However, in the scenario with 50 active users, we noticed
a significant difference, whether the workload has been executed
in a single tenant or in multiple tenants. We show the dependency
between the performance of the database, the number of active
tenants and the executed workload in Figure 3. To highlight the
performance differences, we normalize the results and compare the
execution times of 50 users in a single tenant with the execution
times of 10 users per tenant with five active tenants. The results
show a very different performance behavior depending on the
executed TPC-H query.

133

ICPE’18 Companion, April 9-13, 2018, Berlin, Germany

50
C 4t \
Q
E 30l b
c
= S ———
I+
2 10F -
w

0 +
Unlimited 8 Threads 3 Threads
Thread limitation

0 User, 1 Tenant
—=— 50 User, 5 Tenants

—+— 1 User, 1 Tenant
—»— 20 User, 1 Tenant
—x— 20 User, 5 Tenants

- 5

Figure 4: Execution time with JobWorker thread limitation.

3.2 In-depth analysis of the results

The obtained results indicate a difference in the thread handling de-
pending on the workload. Caching effects seem unlikely, since they
would not only show an impact in scenarios with a high number of
active users. We utilized the performance trace, which is built into
the SAP HANA database, to achieve insights into the performance
behavior of a certain query. In the following, we further examine
three queries with a different execution behavior in a single tenant
environment and in a multi-tenant environment. We pick query
18 (QU18) as an example for a query without large performance
differences. Furthermore, we choose query 11 (QU11) with inter-
mediate differences in execution times. Finally, we closer examine
query 04 (QU04) having significant performance differences in the
respective environments. As mentioned before, Query 18 shows
a relatively constant execution time independent on the number
of active tenants as Figure 3 shows. This query returns customers
ordering large volumes. It consists of multiple inner-join operations
and two aggregate operations. The aggregate operations are handled
by the method BwPopAggregateParallel, which creates a Hashmap
structure and can be parallelized to a high degree [4]. When execut-
ing this query, the first aggregation is the largest contributor to the
execution time. Query 11 returns the most important subset of the
supplier’s stock. The most relevant operations are two aggregate op-
erations and one inner-join operation. In this case, the BwPopJoin13
method creates intermediate data structures and handles the inner-
Jjoin operation. The major contributors to the total execution time
are one BwPopJoin13 and two BwPopAggregateParallel methods.
Query 04 performs a priority check on the orders. It consists of
a left-semi-join operation followed by a grouping operation. The
most time consuming method is JEStep2, which is part of the join
operation and also creates intermediate data structures.

In the scenario with five active tenants, query 04 shows a rather
constant execution time . In contrast, considering the scenario with
only one active tenant, we notice an increasing execution time to
a certain point. When reaching the maximum execution time, it
returns to a lower value. This shows certain threads being exe-
cuted much faster than others, resulting in a lower mean execution
time. SAP HANA utilizes specific threads for handling OLAP work-
load, naming them JobWorkers [8]. We analyzed the number of
JobWorker threads SAP HANA utilizes in each mentioned scenario.

LTB Workshop

In the scenario with five active tenants, we notice the database cre-
ating a significantly higher number of utilized JobWorker threads.
Of course, this reduces the CPU time each thread receives, result-
ing in longer mean execution times. To validate these results, we
conducted a small benchmark run with query 04. In this run, we
limit the number of JobWorker threads, each tenant can utilize to
three.

The result of the benchmark run is represented graphically in
Figure 04. It shows lower execution times for query 04 with 50 active
users when limiting the number of JobWorker threads to three. Thus,
each thread can consume more CPU time. In this particular scenario
the additional CPU time, each thread receives helps to accelerate
the execution time. However, it still shows a noticeable difference
between the execution times in an environment with one active
tenant and the execution times with five active tenants. Although
the number of JobWorker threads has decreased, it still utilizes more
threads with five active tenants. Thus, we can conclude SAP HANA
is able to improve the efficient usage of threads in an environment
with less active tenants for a certain workload.

4 RELATED WORK

There are several attempts of benchmarking, analyzing and pre-
dicting the performance of a database in a multi-tenant setup. The
authors in [3] propose a benchmark framework providing certain
benchmark guidelines in order to analyze the performance of a
database in a multi-tenant setup. However, the authors do not take
into account similar workload being executed in a varying number
of tenants. In addition, they propose utilizing the same data set in
different tenants. This increases the probability of caching effects
influencing the results. In a real world scenario, utilizing the same
data set in multiple tenants is unlikely. The author in [9] focuses on
SLA violations of SAP HANA in a multi-tenant environment. He
utilizes a modified TPC-H benchmark using very small tenant sizes.
Furthermore, he does not conduct a fine-grained analysis on how
the workload affects the performance of the database. In [5] per-
formance optimizations of a disk-based database in a multi-tenant
environment are provided. With given performance SLAs and hard-
ware capacities, their developed framework optimizes hardware
assignments. Furthermore, it returns a tenant scheduling policy,
optimizing the placement of a tenant in a system landscape with
multiple servers. The authors in [6, 7] provide a fine-grained per-
formance model for SAP HANA in a multi-tenant environment. In
[6], they conduct a similar experiment to analyze the performance
of SAP HANA in different multi-tenant scenarios. They provide
further insights on memory consumption and energy consumption
of the system. In addition, they evaluate different CPU assignment
strategies. However, they do only consider a limited number of
scenarios with 8 and 16 active users and 2 or 4 active tenants and
do not provide a fine-grained analysis of the performance impact of
the workload. In [7], they supplement their findings by providing
strategies to optimize workload placement in SAP HANA clusters.
They further analyze the executed workload and provide a queueing
network performance model. However, they do only consider up
to 32 active users. Summarizing, they do not consider the different
performance behavior of identical workload with a varying number
of active tenants.

134

ICPE’18 Companion, April 9-13, 2018, Berlin, Germany

5 CONCLUSION AND FUTURE WORK

In our work, we provided fine-grained performance insights on the
in-memory database SAP HANA. We have shown the dependency
between the performance of the data-base, the number of active
tenants and the executed workload. In high load situations with
multiple active users, we noticed a significant difference between
the operation of a system with only a single active tenant and a
system with multiple active tenants.

With less active users, this difference is much smaller. Thus,
we concluded a more efficient usage of threads in a setting with
less active tenants. This effect however is strongly dependent on
the workload. The intensity of the effect depended strongly on the
executed TPC-H query. By limiting the number of threads, we could
observe a performance increase in a certain workload condition.
As we could show, changes in the configuration (e.g. modifying the
number of active tenants) can result in an unexpected performance
behavior. However, the change of other configuration parameters,
like the maximum number of threads, can have a positive impact
on the performance depending on the workload.

Thus, we plan to conduct more experiments in heterogeneous
environments with different tenant sizes in the future. In addition,
we plan to consider the effects of varying tenant loads to get further
insights on the correlation between executed workload and the
performance of a database tenant. We furthermore plan to repeat
the experiment with different CPU assignments. Moreover, it is a
desired goal to provide an according performance model enabling
simulations.

REFERENCES

[1] Andreas Brunnert, Christian Vogele, Alexandru Danciu, Matthias Pfaff, Manuel
Mayer, and Helmut Krcmar. 2014. Performance Management Work. Business &
Information Systems Engineering 6, 3 (01 Jun 2014), 177-179. https://doi.org/10.
1007/512599-014-0323-7

A. Floratou and J. M. Patel. 2015. Replica Placement in Multi-tenant Database
Environments. In International Congress on Big Data (BigData Congress 2015).
246-253. https://doi.org/10.1109/BigDataCongress.2015.42

Tim Kiefer, Benjamin Schlegel, and Wolfgang Lehner. 2013. MulTe: A Multi-
Tenancy Database Benchmark Framework. Springer Berlin Heidelberg, Berlin,
Heidelberg, 92-107. https://doi.org/10.1007/978-3-642-36727-4_7

Akash Kumar. 2015. PlanViz: Improving SAP HANA Performance. Rheinwerk
Verlag, Bonn.

W. Lang, S. Shankar, J. M. Patel, and A. Kalhan. 2012. Towards Multi-tenant
Performance SLOs. In 28th International Conference on Data Engineering (ICDE
2012). 702-713. https://doi.org/10.1109/ICDE.2012.101

Karsten Molka and Giuliano Casale. 2015. Experiments or simulation? A charac-
terization of evaluation methods for in-memory databases. In 11th International
Conference on Network and Service Management (CNSM 2015). IEEE, 201-209.
https://doi.org/10.1109/CNSM.2015.7367360

Karsten Molka and Giuliano Casale. 2016. Contention-Aware Workload Place-
ment for In-Memory Databases in Cloud Environments. ACM Transactions on
Modeling and Performance Evaluation of Computing Systems (TOMPECS 2016) 2,
1, Article 1 (Sept. 2016), 29 pages. https://doi.org/10.1145/2961888

SAP SE. 2016. SAP HANA Troubleshooting and Performance Analysis Guide.
Technical Report.

Jan Schaffner. 2014. Multi Tenancy for Cloud-Based In-Memory Column Databases:
Workload Management and Data Placement. Springer International Publishing,
Heidelberg. https://doi.org/10.1007/978-3-319-00497-6_1

Transaction Processing Performance Council. 2018. TPC-H benchmark specifica-
tion. http://www.tpc.org/tpch/. (2018).

—
=

https://doi.org/10.1007/s12599-014-0323-7
https://doi.org/10.1007/s12599-014-0323-7
https://doi.org/10.1109/BigDataCongress.2015.42
https://doi.org/10.1007/978-3-642-36727-4_7
https://doi.org/10.1109/ICDE.2012.101
https://doi.org/10.1109/CNSM.2015.7367360
https://doi.org/10.1145/2961888
https://doi.org/10.1007/978-3-319-00497-6_1
http://www.tpc.org/tpch/

	Abstract
	1 Introduction
	2 Methodology
	2.1 Hardware and Software Setup
	2.2 Experimental Design

	3 Results
	3.1 Discussion of the results
	3.2 In-depth analysis of the results

	4 Related work
	5 Conclusion and future work
	References

