
ABench: Big Data Architecture Stack Benchmark
[Vision Paper]

Todor Ivanov
Frankfurt Big Data Lab, Goethe University

Frankfurt am Main, Germany
todor@dbis.cs.uni-frankfurt.de

Rekha Singhal
TCS Research
Mumbai, India

rekha.singhal@tcs.com

ABSTRACT
Distributed big data processing and analytics applications demand
a comprehensive end-to-end architecture stack consisting of big
data technologies. However, there are many possible architecture
patterns (e.g. Lambda, Kappa or Pipeline architectures) to choose
from when implementing the application requirements. A big data
technology in isolation may be best performing for a particular
application, but its performance in connection with other technolo-
gies depends on the connectors and the environment. Similarly,
existing big data benchmarks evaluate the performance of different
technologies in isolation, but no work has been done on benchmark-
ing big data architecture stacks as a whole. For example, BigBench
(TPCx-BB) may be used to evaluate the performance of Spark, but
is it applicable to PySpark or to Spark with Kafka stack as well?
What is the impact of having different programming environments
and/or any other technology like Spark? This vision paper proposes
a new category of benchmark, called ABench, to fill this gap and
discusses key aspects necessary for the performance evaluation of
different big data architecture stacks.

CCS CONCEPTS
• Computer systems organization → Distributed architec-
tures; • Information systems → Data management systems; •
Computing methodologies → Symbolic and algebraic manipu-
lation;

KEYWORDS
ABench, BigBench, Big Data Benchmarking, Big Data
ACM Reference Format:
Todor Ivanov and Rekha Singhal. 2018. ABench: Big Data Architecture Stack
Benchmark: [Vision Paper]. In ICPE ’18: ACM/SPEC International Conference
on Performance Engineering Companion , April 9–13, 2018, Berlin, Germany.
ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3185768.3186300

1 MOTIVATION
There is a growing number of new applications and use cases that
challenge the capabilities of the existing systems due to availabil-
ity of large size and high speed data. Big data analytics is one of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPE ’18, April 9–13, 2018, Berlin, Germany
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5629-9/18/04. . . $15.00
https://doi.org/10.1145/3185768.3186300

the applications which is going viral both inside and outside an
enterprise. The 3Vs characteristics of Big Data are still changing
their dimensions helped by new Vs, defined by the growing need
of the industry. On the other hand, the speed with which new tech-
nologies and features are emerging makes it very hard for both
developers and users to keep track of the best technology on the
market. Nowadays, many of these software tools are open source
and created by communities, which do not have sufficient time
and resources to keep the documentation up-to-date and present
the tool in a way comparable to the enterprise products. Moreover,
full deployment of an application may require multiple technolo-
gies connected to each other such as streaming applications which
may be deployed on Kafka and Storm platforms. This architecture
should be modular by design, to accommodate mix-and-match con-
figuration options as they arise. Lambda and Kappa architectures
can differ in implementation, depending on technology deployed at
each of the layers in the architecture stack. Exactly these variations
in the architectural components lead to the relevance of the hetero-
geneity in big data architectures. It is a concept outlined in multiple
studies [7, 8, 13] as an emerging trend, which will open many new
challenges. Moreover, size of application workload and data size
may play a critical role in choosing an architecture. Performance
prediction models such as [10, 11] may be extended for architecture
benchmarks to predict the performance for different workload and
data size avoiding multiple executions of the benchmark.

There is a need to benchmark the performance of a given so-
lution architecture which may get deployed using different set of
technologies and hardware. We propose a new type of benchmark
to evaluate the performance of big data stacks for different deploy-
ment architectures. This benchmark can act as a tool to evaluate
performance of a particular big data technology/architecture stack
for desired hardware. The benchmark can be used by solution ar-
chitects to compare features and performance of an architecture
instances with different technology specified at each layer. The
available benchmarks [12] (TPC-DS, TPCx-BB, TPCx-HS, etc.) mea-
sure performance of a technology but do not address the perfor-
mance of connectors connecting two technologies for creating an
architecture.

The reminder of the paper is organized as follows: Section 2
gives an overview of the proposed benchmark and presents the
main benchmark concepts. Section 3 presents a general benchmark
framework for big data architecture benchmarks with challenges.
Section 4 presents two use cases with BigBench and the final Section
5 concludes the paper.

Work-in-Progress & Vision Paper ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

13

https://doi.org/10.1145/3185768.3186300
https://doi.org/10.1145/3185768.3186300

ICPE ’18, April 9–13, 2018, Berlin, Germany Todor Ivanov and Rekha Singhal

Figure 1: Abstract Big Data Stack

2 BENCHMARK OVERVIEW
Historically, the TPC benchmarks [12] have been used as an in-
dustry standard for performance comparisons of hardware and
software systems. The TPC benchmark specifications are imple-
mented by the vendors and then audited for transparency and
fairness purposes. Today, several new technologies are open source
and developed by communities such as the Apache Foundation and
not by a single vendor company. Similarly, the primary users of the
emerging benchmarks are the data engineers, software developers
and architects participating in this open source communities, in
contrast to the declining number of enterprises ready to create their
own implementation of a TPC benchmark, execute it and finally go
through the process of result auditing. For example, the TPC-DS
benchmark is often used to stress test the SQL-on-Hadoop engines
such as Hive, Impala and SparkSQL, but no officially audited results
are published.

At the same time, the variety of new emerging big data technolo-
gies (including Data Science, Machine Learning and Deep Learning
tools) opens the space and need for new standardized benchmarks
that target exactly these new tools and analytics techniques. The
challenge is to find new methodologies and techniques that will
address this problem and provide us with a practical approach that
solves the benchmarking gap. Our solution to the benchmarking gap
is to develop a new type of Big Data Architecture Stack benchmark
(ABench) that will first incorporate the best practices of the exist-
ing benchmarks and second will try to use innovative approaches
to solve the challenges posed by the new big data technologies.
In contrast to the typical TPC benchmarks, which provide strict
specification, ABench will be more similar to the Java Client/Server
benchmark defined by SPEC. The benchmark framework will cover
a broad spectrum of realistic use cases and the common best practice
architectures for implementing them.

As mentioned, one of the biggest developers’ challenge is to deal
with the complexity and variety of big data technologies in all layers
of the data platform stacks. Figure 1 depicts the functional layers in a
typical big data platform in an abstract way. Implementing a typical
big data use case involves the use of tools from most of the depicted
layers in the stack. This requires that the application developer
has a good knowledge first of the application requirements and
second of the available big data technologies at each layer. After
identifying the necessary tools, he/she should be able to configure
them properly and make sure they can exchange data in an effective
way. The platform administration and the optimal configuration are

Figure 2: Types of Benchmarks

other important points that are key for the application performance.
What will be helpful in this situation? As a benchmark framework,
ABenchwill provide a common big data application implementation
that can be used for platform testing and starting point in the
development process. For example, for a streaming application
using a pre-configured Lambda or Kappa architecture with the
implemented tools on the different stack layers will immensely
reduce the starting overhead for the developer. Meanwhile, setting
up the benchmark on his infrastructure will enable him to directly
measure the performance of both the single tool and the entire
platform stack including the overhead for data exchanges between
the components. Furthermore, making our benchmark framework
open source and accessible to everyone will give the opportunity
for the users to contribute their code and improve the performance
of the implemented best practices. Some of the basic principle that
will be followed are:

• Open source implementation and extendable design
• Easy to setup and extend
• Include data generator or public data sets to simulate work-
load that stresses the architecture

• Reuse of existing benchmarks
Another important aspect in our vision is to define the bench-

marking perspectives of ABench. Inspired by Andersen and Pet-
tersen [1], who defined four benchmark types (generic, competitive,
functional and internal benchmarking) in the context of a company
comparison, we adapt these four benchmark types to the context
of complex big data architecture stacks as follows:

• Generic Benchmarking checks if the general business re-
quirements and specifications according to which the imple-
mentation is done are fulfilled.

• Competitive Benchmarking is a performance comparison
between the best tools on the platform layer that offer similar
functionality.

• Functional Benchmarking is a functional comparison of
the features of the tool against technologies from the same
area.

• Internal Benchmarking is on the lowest level, comparing
variations of the implementation code done using a particular
tool.

Figure 2 briefly depicts the four types of benchmarks in quadrants to-
gether with examples of popular big data benchmarks. The generic
benchmarking is done manually by people and as such it is hard

Work-in-Progress & Vision Paper ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

14

ABench: Big Data Architecture Stack Benchmark ICPE ’18, April 9–13, 2018, Berlin, Germany

to automate by software. However, it is possible to classify the big
data applications in categories according to industry sector and
domain, so that each category is represented by a benchmark that
covers all main business requirements and specifications. Currently,
many popular big data benchmarks such as HiBench [6], YSCB
(TPCx-IoT) [2] and BigBench (TPCx-BB) [4, 5] are typically used
for competitive and functional benchmarking to compare common
features of different big data technologies. They focus on testing
the technical aspects of big data technologies and are built with
different goals in mind. For example, BigBench covers competitive
(Hive, SparkSQL, etc.) and functional (the same HiveQL code on
Hive and SparkSQL) benchmarking, SparkBench targets only the
Spark engine and as such covers only the functional benchmarking,
whereas HiBench covers competitive, functional (Spark, Flink, etc.)
and internal benchmarking (Scala, Java, Python).

In short, our goal is to cover all four benchmark types and de-
velop ABench as a multi-purpose benchmark framework that can
be used in many big data scenarios. For example, one approach is
to extend BigBench to cover more general application scenarios
(e.g. streaming, machine learning, etc. for generic benchmarking
requirements), to provide implementations in multiple big data
technologies (e.g. Flink, Kafka, Impala etc. for competitive and func-
tional benchmarking), and to offer implementations in different
APIs (e.g. Spark, PySpark, R, etc. for internal benchmarking).

3 ARCHITECTURE BENCHMARK
FRAMEWORK

Our proposal for the ABench benchmark framework shall stress
test the common application business requirements (e.g. retail ana-
lytics, retail operational, etc.), big data technologies functionalities
and best practice implementation architectures. The benchmark
framework need to define following components:

3.1 Data Model
The types of data models and relationship across them. For exam-
ple, a retail application may have structured, unstructured, semi-
structures and stream data types and a social networking applica-
tion may have graph data types. The relationship across different
types of data need to be specified on how the one is derived from
another. For relational and key-value store, data access mechanism
need to be defined - sequential or random scan through index.

3.2 Data Store
For each type of data model, possible actions on data model with
their required performance need to be specified. This may be used
to decide the storage type in terms of persistence, partitioning,
in-memory, duplicates or combination of these.

3.3 Data Generation
The framework need to have different types of data generators for
stream messages, structured, graph, unstructured, documents etc.
For example, stream data generator may also need to specify num-
ber of streams and velocity of generation whereas graph generator
may specify number of nodes and edges between them. Depending
on the data models in the architecture, the generators shall capture
their interdependency.

3.4 Workload
The workloads could be business problem dependent if only specifi-
cations are given or could be in form of SQL queries which may ac-
cess data across different data models. The workloads could include
graph queries, operational system workload, machine learning ana-
lytics, continuous queries and stream analytics. Each use case will
focus on different functionality and system architecture, which also
means that it will be implemented in different technologies.

3.5 Data Consistency and Security
Application level data consistency requirements such as ACID, CAP,
etc. impact the performance of a technology. Moreover, different se-
curity constraints with different technology may result in different
performance. For example mature technologies may ensure strict
security versus recent ones. The workloads shall be able to capture
these aspects in the benchmark.

3.6 Benchmark Control Knobs
The benchmark shall be able to execute with varying number of
concurrent users per second whereby each user may click with
his/her own speed (including think time) which results in the total
concurrent sessions supported in the system. For example, in a
streaming case each web click will generate a message which may
also be controlled since the performance of messages and connec-
tors depend on the message size moving across different layers of
the architecture stack. The data sizes shall be varying for all data
types - should we have control on feeding skewness in the data sets
especially in web clicks, where a user may click only one type of
products repeatedly.

3.7 Performance Data Collection
The benchmark shall havemechanism to collect technology specific,
component specific and architecture specific performance counters.

3.8 Benchmark Metric
Defining a benchmark metric (e.g. TPS or BBQpm@SF) is always
a challenging task and especially in complex environments. Our
benchmark defines functionally independent components (stack
layer implemented in particular technology), which logically will
have different internal metrics and measures. However, for all com-
ponents the execution time is one of the most important metrics
that we adapt as a main metric in the benchmark. The total (End-
to-end) execution time of an application scenario is the sum of the
execution times of each benchmark component including the tech-
nology and its connector. The other most important performance
metric especially for big data distributed system are scalability and
reliability. One may need to define and calculate these in the context
of an architecture either at each component level or the whole stack.
The benchmark could have other metrics as throughput, energy
efficiency and cost of the solution as well.

3.9 Challenges
Below are the key challenges which one need to address while
designing and/or creating architecture benchmarks.

Work-in-Progress & Vision Paper ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

15

ICPE ’18, April 9–13, 2018, Berlin, Germany Todor Ivanov and Rekha Singhal

• An architecture benchmark may be defined as hybrid of
available benchmarks. The challenge may be to make those
benchmarks work together on the same platform and build
connectors across the chosen benchmarks

• Benchmark specifications may be provided to capture all
functional and non-functional details (e.g. people, time, etc.).
The challenge may be to give sufficient details for vendors
to implement on any given set of technologies. Also, the val-
idation of their implementations and result will be difficult.

• Express benchmarks (as defined by TPC) for a few archi-
tecture patterns with multiple technologies. However, it re-
quires a lot of implementations and standardization of these
benchmarks across different deployment systems.

• Where data generators should be residing especially for the
dynamic data generator (such as stream), which may inter-
fere with benchmark performance?

• Can the benchmark materialize fewer data sets in between
to improve performance?

4 BENCHMARK USE CASES
This section proposes two concrete use cases for architecture bench-
marks (as part of ABench) by re-using BigBench [4, 5] as a baseline.
The goal is to extend its retail business scenario to cover both stream
processing workloads and advanced machine learning techniques.

4.1 Stream Processing
A retail business application deployment may need message plat-
form (e.g. Kafka), streaming engine (e.g. Spark, Storm, Flink), in-
memory store (e.g. MemSQL, MongoDB) and persistent data store
(HDFS, HBase). A benchmark is needed to evaluate the performance
of the whole architecture stack. The benchmark shall have control
on ingestions of workloads in terms of the number of concurrent
sessions and data size. Data streaming and processing is one type
of workload which is still not addressed in BigBench and currently
represents a huge interests in both research and industry. Moreover,
continuous query workloads are not benchmarked with the cur-
rent BigBench. Therefore, there are multiple system architectures
like the Lambda and Kappa architectures that can be used as an
implementation standards for this type of applications.

The stream dataset size is a function of the number, size and rate
of messages per second. Semi-structured and structured datasets
are function of the data size in the file or table. Some streaming
queries in BigBench are:

• Find top 10 products (or categories) that are viewed by most
of the (at least 50 customers viewed that) users in last 10
minutes from current date and time.

• Generate an offer if a user has done total purchase of more
than USD 1000 together in his last 5 transactions.

• Find the top selling 10 products in last one hour.
• Show the number of unique visitors in last one hour.

4.2 Machine Learning
The traditional descriptive analytics and business intelligence (BI)
have evolved and companies today rely on variousmachine learning
(ML) techniques to get better and faster business insights. Gartner
[3] has defined four types of advanced analytics that businesses

adapt: descriptive analytics, diagnostic analytics, predictive
analytics and prescriptive analytics.

In the current BigBench [4, 5], five (Q5, Q20, Q25, Q26 and Q28)
out of the 30 queries are covering common ML algorithms like
Clustering (K-Means) or Classification (Logistic Regression and
Naive Bayes). A recent evaluation of the benchmark has proposed
to extend the BigBench workload with Collaborative Filtering us-
ing Matrix Factorization implementation in Spark MLlib via the
Alternating Least Squares (ALS) method [9]. The main objective is
to extend the existing workloads to cover wider spectrum of the
four advanced analytics types. At the same time there is a need of
new type of ML metrics that will allow to compare the scalability
and accuracy of different ML frameworks.

5 CONCLUSIONS
In this paper, we have proposed a new type of multi-purpose bench-
mark framework for big data architecture stacks, called ABench. It
can be created reusing or extending existing big data benchmarks
such as Hibench and BigBench. We have outlined a framework
for these new benchmarks and proposed streaming and machine
learning extensions based on BigBench.

ACKNOWLEDGMENTS
This research has been supported by the Research Group of the Stan-
dard Performance Evaluation Corporation (SPEC). Special thanks
for the valuable feedback to Roberto V. Zicari (Frankfurt Big Data
Lab).

REFERENCES
[1] Bjørn Andersen and P-G Pettersen. 1995. Benchmarking handbook. Champman

& Hall.
[2] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell

Sears. 2010. Benchmarking cloud serving systems with YCSB. In Proceedings of
the 1st ACM Symposium on Cloud Computing, SoCC 2010, Indianapolis, Indiana,
USA, June 10-11, 2010. 143–154.

[3] Gartner. 2017. Planning Guide for Data and Analytics. www.gartner.com/doc/
3471553/-planning-guide-data-analytics. (2017).

[4] Ahmad Ghazal, Todor Ivanov, Pekka Kostamaa, Alain Crolotte, Ryan Voong,
Mohammed Al-Kateb, Waleed Ghazal, and Roberto V. Zicari. 2017. BigBench V2:
The New and Improved BigBench. In ICDE 2017, San Diego, CA, USA, April 19-22.

[5] Ahmad Ghazal, Tilmann Rabl, Minqing Hu, Francois Raab, Meikel Poess, Alain
Crolotte, and Hans-Arno Jacobsen. 2013. BigBench: Towards An Industry Stan-
dard Benchmark for Big Data Analytics. In SIGMOD 2013. 1197–1208.

[6] Shengsheng Huang, Jie Huang, Jinquan Dai, Tao Xie, and Bo Huang. 2010. The Hi-
Bench benchmark suite: Characterization of the MapReduce-based data analysis.
In Data Engineering Workshops (ICDEW), 2010 IEEE 26th International Conference
on. IEEE, 41–51.

[7] Todor Ivanov, Sead Izberovic, and Nikolaos Korfiatis. 2016. The Heterogeneity
Paradigm in Big Data Architectures. In Managing and Processing Big Data in
Cloud Computing. IGI Global, 218–245.

[8] Sankaralingam Panneerselvam and Michael Swift. 2016. Rinnegan: Efficient
Resource Use in Heterogeneous Architectures (PACT 2016). ACM, New York,
USA, 373–386.

[9] Sweta Singh. 2016. Benchmarking Spark Machine Learning Using BigBench.
In 8th TPC Technology Conference, TPCTC 2016, New Delhi, India, September 5-9,
2016.

[10] Rekha Singhal and Praveen Singh. 2017. Performance Assurance Model for
Applications on Spark Platform. In 9th TPC Technology Conference 2017.

[11] Rekha Singhal and Abhishek Verma. 2016. Predicting Job Completion Time in
Heterogeneous MapReduce Environments. In IPDPS Work. 2016, Chicago, USA,
May 23-27.

[12] TPC. 2018. www.tpc.org/. (2018).
[13] Dongyao Wu, Liming Zhu, Xiwei Xu, Sherif Sakr, Daniel Sun, and Qinghua Lu.

2016. Building Pipelines for Heterogeneous Execution Environments for Big
Data Processing. IEEE Softw. (2016), 8.

Work-in-Progress & Vision Paper ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

16

www.gartner.com/doc/3471553/-planning-guide-data-analytics
www.gartner.com/doc/3471553/-planning-guide-data-analytics
www.tpc.org/

	Abstract
	1 Motivation
	2 Benchmark Overview
	3 Architecture Benchmark Framework
	3.1 Data Model
	3.2 Data Store
	3.3 Data Generation
	3.4 Workload
	3.5 Data Consistency and Security
	3.6 Benchmark Control Knobs
	3.7 Performance Data Collection
	3.8 Benchmark Metric
	3.9 Challenges

	4 Benchmark Use Cases
	4.1 Stream Processing
	4.2 Machine Learning

	5 Conclusions
	Acknowledgments
	References

