
Better Early Than Never: Performance Test Acceleration by
Regression Test Selection

David Georg Reichelt
Universität Leipzig
Leipzig, Germany

davidgeorg_reichelt@dagere.de

Stefan Kühne
Universität Leipzig
Leipzig, Germany

stefan.kuehne@uni-leipzig.de

ABSTRACT
Currently, performance tests take much time and are therefore not
able to provide fast feedback. Fast feedback on performance tests
would support finding performance problems. In order to accelerate
performance tests we provide a regression test selection method for
performance tests. It is based on test selection by (1) code analysis
and (2) trace analysis. We show the efficiency of our approach by
comparison with the test selection tools EKSTAZI and Infinitest.

CCS CONCEPTS
• Software and its engineering→ Software performance; Soft-
waremaintenance tools; Software testing anddebugging; Em-
pirical software validation;

KEYWORDS
Regression Test Selection, Performance Testing, Benchmarking

ACM Reference Format:
David Georg Reichelt and Stefan Kühne. 2018. Better Early Than Never:
Performance Test Acceleration by Regression Test Selection. In ICPE ’18:
ACM/SPEC International Conference on Performance Engineering Companion
, April 9–13, 2018, Berlin, Germany. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3185768.3186289

1 INTRODUCTION
Currently, only 3,4% of all GitHub projects execute performance
tests [7]. Assuming a test coverage of performance tests equal to the
test coverage of unit tests and 10minutes test duration, the currently
6582 tests of the application server Jetty would need 45 hours
to build per commit. Only 62% of all GitHub projects containing
performance tests get results within 4 hours [7]. Since software
developers have towait so long for performance result, it gets harder
for them to fix possibly created performance problems. In order to
reduce the test time and give rapid feedback, we provide PRONTO
(Performance RegressiON Test chOosing), a method for reducing
the amount of experiments. The usage of PRONTO facilitates fast
feedback on the performance impact of changes and could be used
in continuous integration.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPE ’18, April 9–13, 2018, Berlin, Germany
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5629-9/18/04. . . $15.00
https://doi.org/10.1145/3185768.3186289

We can prune the measurement of tests where the performance
stays the same. The performance stays the same if the called code
and the execution environment, i.e., used operating system, man-
aged environment etc. do not change. Assuming equal execution
environment during benchmarking, only the measurement of tests
with changes in the test itself or the called code is necessary. PRONTO
determines the performance tests that need to be run in a new ver-
sion. They will be called selected tests. We select them with two
techniques: (1) Static Selection Rules, defining when to select a
test with static code analysis and (2) Trace Analysis, where two
traces, i.e., the sorted list of all method executions of a program,
are compared. While the first is faster, the latter is more efficient in
selecting performance changes.

We assume that (1) the same workload is executed in every
version, (2) some or all performance tests examine only parts of a
software and (3) test traces do not change due to load size. Therefore,
PRONTO is not able to select tests (1) if the test itself changes, (2) if
there exists only one big load test which examines every part of
the software or (3) if the system behavior changes with load size,
e.g. in stress tests.

The remainder of this paper is organized as follows: Section
2 describes the method of PRONTO, including the test selection
by code analysis with static selection rules and the test selection
by trace analysis. Section 3 evaluates this work by comparing the
selected tests to the tests which are selected by the functional test
selection tools EKSTAZI and Infinitest. Finally, section 4 gives a
summary and an outlook.

2 METHOD
In order to determine the selected tests of a new version, the old
source, the new source and the diff of the sources produced by
the version control system can be used. If a test uses any part of
the source code that has been changed, this test needs to be re-
executed and therefore is selected. Since it is in general undecidable
whether a part of the code is called, a static analysis can solve this
problem only for special cases. Therefore, a combination of static
and dynamic code analysis is applied.

A performance test P usually consists of equal executions p0,
p1, .., pn in order to produce statistical reliable results [1]. If the
behaviour of p0 is not changed in a new version, the performance of
P cannot change sincewe assume that all executions are equal. Since
the amount of executions n is usually high, a one time execution of
p0 is not consuming too much time for test selection.

We present two steps for determining whether a test needs to
be called: (1) Static Selection Rules maintain a set of called code
parts and determine whether a test needs to be executed by static
code analysis and (2) Trace Analysis runs both versions of a test

LTB Workshop ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

127

https://doi.org/10.1145/3185768.3186289
https://doi.org/10.1145/3185768.3186289

ICPE ’18, April 9–13, 2018, Berlin, Germany David Georg Reichelt and Stefan Kühne

and determines which test needs to be run by trace analysis. The
following subsections will describe both steps.

The method of PRONTO is implemented for the usage of Java
JUnit tests which are transformed to performance unit tests using
KoPeMe1. A prototype of the described method is available online
in the dependency module in the PeASS repository2. The prototype
determines performance change candidates for Java projects in Git
repositories with a Maven build process and JUnit 3 or 4 tests in
the version history.

2.1 Static Selection Rules
For fast determination of selected tests, we first select those tests
where we can deduce that a change has happened based on static
code analysis. We cannot in general determine by static analysis
which methods are called. Therefore, we maintain a map from each
test case to its called methods, which we refer to as dependencies.
We will first describe how to determine changed tests based on
static code analysis and afterwards how to maintain dependencies.

Test Selection We define that a statically selected change (SSC)
happens when the source of a method or a called method may
have changed. We create static selection rules that define which
code change could change the executed code and therefore the
performance of a method.3

If we have a look at a call to methodM in classC , there are three
cases that could influence the performance of the method itself:
(1) the code of method M itself is changed, (2) there happened a
code change in the classC , but outside of their methods or (3) there
happened a code change in a sub or super class of C . (1) follows
directly from the definition. (2) may influence the performance,
since the class code may change the behaviour of its methods, e.g.
if a method is overridden that was not overridden in the previous
version or if a static value is changed that may change execution
paths in the method. (3) could introduce a performance change for
the same reasons: A method or a value that is used may be changed.
Listing 1 demonstrates this: If the class is changed (red part), every
test calling any method of the class needs to be re-evaluated. If only
something inside the method changes (green part) only tests calling
the method need to be re-evaluated.

Listing 1: Example Source for SSC
class MyClass extends MySuper {

static int var = 3;
public void methodA () {

var++;
}

}

The implementation uses javaparser4 to parse the code. All com-
ments are cleared in the beginning. Afterwards, PRONTO identifies
whether there is a change in the class, which indicates a change in
all methods, or a change in certain methods, which indicates that

1GitHub Repository of KoPeMe: https://github.com/dagere/kopeme
2Repository of PeASS: https://github.com/DaGeRe/peass
3This can be started by using the DependencyReadingStarter from the PeASS-
Repository.
4Source of javaparser: https://github.com/javaparser/javaparser

those methods are marked as changed. A method change only oc-
curs if the method itself is changed (case 1). A class change happens
if a change outside of the method occurs in its class or its sub or
super classes, e.g. if a variable is changed or an initialization block
is added (cases 2 and 3).

Dependency Maintenance In order to maintain the depen-
dencies, we initially execute every performance test once with
instrumentation by the performance monitoring and software anal-
ysis framework Kieker [8]. Every method that is called by a test
is added to the dependencies of this test. Tests that are changed
may introduce dependencies or remove dependencies, e.g. when a
tested method calls a new class or stops calling a class. Therefore,
the dependencies of each selected test need to be updated after a
new version vi was committed. This is done using the mechanism
described above for the changed tests of vi . Since updated depen-
dencies are only needed for test selection in version vi+1, the tests
of vi may be selected before the dependency update.

Shortcomings Static selection rules also selects changes which
are not relevant, for example if a method is added to a class that
is not called. Furthermore, performance changes caused by non-
source files, e.g. changed libraries, database configuration or VM
configurations are not found.

2.2 Trace Analysis
The SSCs indicate where a performance changemay have happened.
The SSC contains changes caused by (1) newly declared methods,
(2) changed method signatures, (3) added variable declarations
and (4) initialization blocks. In most cases, these changes do not
cause performance changes, since (1) new methods may not be
called, (2) changed method signatures may change only visibility,
(3) new variables may not be used and make no heavy initialization
operations and (4) initialization blocks may only change unused
variables. Listing 2 shows this. Themethod declaration (1), signature
(2), variable declaration (3) and variable initialization (4) changes
(green part) do not affect the performance of the test testMe or
any other test existing before the changes. Nevertheless, they are
identified as changes by static selection rules. Changes to called
methods or the test itself (red part) may influence the performance.

In most cases, performance only changes if the trace changes,
i.e. if the source of a called method or the order of called methods
is changed. Therefore we determine which test in which version is
likely to contain a performance change based on the trace. We call
this trace selected changes (TSC).5

Determination of TSC is done by (I) instrumented run of both
versions, (II) trace annotation with (III) trace reduction and (IV) diff
analysis.

In step (I), the test case and its predecessor are run with instru-
mentation. By using the instrumentation output, traces, i.e. the
methods with their signature and order, are created for both ver-
sions. Since changes may also happen inside a method, in step (II),
these traces are annotated with sources. Therefore, the code of both
versions is parsed and the corresponding method sources are de-
rived. In step (III), the traces are reduced. This has two advantages:

5This can be started by using the ViewPrintStarter from the PeASS-Repository. It
additionally creates diffs of traces with method, which supports manual inspection of
a change.

LTB Workshop ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

128

Better Early Than Never: Performance Test Acceleration by Regression Test Selection ICPE ’18, April 9–13, 2018, Berlin, Germany

It speeds up automatic analysis and it facilitates manual analysis
of the trace differences. In order to compress the trace, it is repre-
sented as a context-free grammar with Sequitur and afterwards it
is compressed using run-length encoding as described by Reiss and
Renieris [5]. A TSC happens iff the method-annotated traces of two
versions differ, i.e. if a method signature, the method order or the
implementation of at least two methods differs. This is determined
in step (IV).

Listing 2: Changes neither affecting trace nor performance.
class MyTest {

int var = 3;
int var2 = 5; // (iii)
{ var2 = 8; } // (iv)
protected int methodA () {// (ii)

return var++;
}
public void newMethod () {//(i)

var++;
}
public void testMe () {

int val = methodA ();
Assert.assertEquals(val , 4);

}
}

Implementation The instrumentation and trace creation are
done using KoPeMe and Kieker as described above. In order to parse
the source, javaparser is used. The creation of the diff of the traces
is done by the Unix diff tool. Determination of TSC takes more
time than SSC, since two instrumented executions of the tests, the
trace annotation and the trace minimization are needed. Therefore,
we only determine whether an SSC is also a TSC.

Listing 3: Non Selected Change Affecting Performance
class MyTest {

int var = 5;
public void testMe () {

int sum = 0;
for (int i = 0; i < var; i++) sum+=i;
Assert.assertEquals(sum , var*var /2);

}
}

Shortcomings There are cases where wemaymiss performance
changes with this method that are found by SSC, e.g. if a conditional
execution changes because of a variable initialization change like in
Listing 3: TSC would not select a new version is the value of var is
changed, since the trace would not be changed. SSC would identify
a variable initialization change as a code change outside of a method
and would therefore select testMe . Since AspectJ, the framework
Kieker uses for generating its traces, does not allow to instrument
e.g., method-local field access or loop iterations, a full logging and
therefore a full analysis of such operations is not possible. This
could be fixed by an own weaving implementation. Furthermore,
not all TSC are real changes - a method may be replaced by another
method with the same performance characteristic.

Besides, the current implementation does not handle package
name changes. Therefore, if package names are changed, the tests
are recorded as new tests. Furthermore, the current implementation
is not capable of handling multi-module projects and unit tests that
use custom test runners.

3 RELATEDWORK
There are methods choosing (I) potential performance changes and
(II) potential functional regressions.

Methods choosing potential performance changes (I) currently
work based on heuristics. Alcocer et al. [6] identify potential changes
by assigning costs to source code changes. They identify 87 % of all
performance regressions by benchmarking only 14 % of all versions.
Mostafa et al. [4] prioritise performance tests by estimating the
impact of a code change on the performance. While those methods
speed up performance benchmarking, they do not find all perfor-
mance changes. There exists work, e.g., [3] [9] which focuses on
selection of test input variables, e.g., user count, in order to de-
termine the performance model, e.g. the function of the response
time. This works focus on benchmarks where the same test case is
executed with different parameters. PRONTO on the other hand
finds all potential performance changes when testcases are exe-
cuted with constant configuration but introduces the cost of a one
time instrumented execution.

Yoo et al. [10] give an overview about functional regression
test selection and prioritization (II). While selection defines exactly
which tests to run, prioritization defines an order of tests which
have higher priority, e.g. in order to detect similar bugs again.
Infinitest6 and EKSTAZI [2] are tools for regression test selection.
Infinitest determines which tests to execute when the developer
changes code in the IDE. Base of the change detection is the change-
timestamp of the .class files. Infinitest only takes into account class
relations produced by package membership and import statements.
Therefore, more tests than necessary are executed, e.g. when class
A and B are in the same package, a change to class B would imply
a re-execution of class A, even if there is no call from A to B. Since
Infinitest executes tests in parallel to the development process, fast
and non-resource-heavy unit tests are needed. The tool EKSTAZI
[2] saves dependencies of all test classes with the checksums of the
called class files and updates them in every new version. The update
is done by instrumenting the classes in order to determine which
classes are really called. Therefore, EKSTAZI avoids false positives
if files are imported and not called. Changes to a method that is
not called are counted as change. Because EKSTAZI compares the
checksum of the bytecode, it is not possible to handle changes of
non-called methods differently.

4 EVALUATION
In the following, we will evaluate the selection rate of PRONTO
against those of Infinitest and EKSTAZI. Therefore, the unit tests are
transformed to performance tests and the selected tests of PRONTO,
Infinitest and EKSTAZI are determined. Due to the current imple-
mentation, only projects using single module Maven in a part of its
versions were analysed from the first version where Maven 3 with
OpenJDK 8 runs until they stop using Maven or move to a multi
6https://infinitest.github.io/

LTB Workshop ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

129

ICPE ’18, April 9–13, 2018, Berlin, Germany David Georg Reichelt and Stefan Kühne

Project Versions Tests Ekstazi % Infinitest % PRONTO %
commons-compress 1 968 595 747 58 433 9.81% 0* 0% 7 504 1.24%
commons-csv 937 112 660 22 547 20 01% 12.757 11.32% 14 049 9.16%
commons-dbcp 119 13 927 1 527 10.96% 0* 0% 2 330 0.97%
commons-fileupload 656 28 474 2 844+ 9.99% 91+ 0.32% 309+ 2.59%
commons-io 1 193 205 171 40 534 19.76% 4 899 2.39% 22 751 2.80%
commons-numbers 157 48 365 7 403+ 15.31% 3 120+ 6.45% 22+ 0.04%
commons-text 325 142 487 9 061 6.36% 95 920 67.32% 230 0.22%
Average 1 146 831 142 349 12.41 % 116 787 10.18 % 47 195 4.11 %

Table 1: Change Candidates for Open Source Projects

module project. Table 1 shows the results. On average, 12,41 % of
the tests have to be executed based on EKSTAZI and 10.18 % based
on Infinitest. Based on TSC, 4.11 % of the tests have to be executed.

In order to evaluate the efficiency of our performance change
candidate selection, a process for determining all tests in all versions
that the regression test selection tool would run was implemented7.
Therefore, the same process is executed for every version in a
Git repository. In the end, the executed tests are saved into an
evaluation file, which makes it possible to compare it to PRONTO.
In order to automate EKSTAZI, its official Maven plugin is used
and added to the plugins section of a pom. Afterwards, the Maven
tests are executed and the output of the Maven process is parsed
in order to determine the tests which have been run. In order to
automate Infinitest, its methods for determining a change are used.
Since they depend on the change date of its .class-files, the Maven
compiler plugin is used in order to build only incrementally. Since
the build of commons-compress and commons-dbcp assume the
call of different lifecycle parts, their call could not be automated
by Infinitest (*). Since commons-fileupload and commons-numbers
move to multi-module builds, not all versions were analysed (+).

In order to test correctness of the selection, a process for deter-
mining all non-selected tests was implemented. The transformed
performance tests of the first 100 runnable versions of Apache Com-
mons IO were executed and no change was detected in the 37 146
non selected tests, but 7 in the 507 selected tests. We therefore as-
sume that PRONTO is correctly selecting tests in relevant use cases.
There were no additional executions found by PRONTO, therefore
Infinitest and EKSTAZI are sufficient to determine the candidates
for performance changes, but they produce more candidates.

Regression test selection for performance changes and for func-
tional changes differs. For detecting a functional change, one run
is sufficient, so the test selection has to be faster than one execu-
tion. To detect a performance change, the test case needs to be
executed many times. Therefore, one run with instrumentation is
a reasonable effort in order to identify the tests that have to be
called. This makes more fine-grained performance regression test
selection possible.

5 SUMMARY AND FUTUREWORK
This paper presented the novel method PRONTO for selection of
potentially changed performance tests. It consists of two parts: stat-
ically selected changes, where a set of called methods of a test are

7The code is available in the evaluation-module in the PeASS-repo.

maintained and tests are selected based on static code analysis, and
trace selected changes, where traces with source codes are com-
pared. We evaluated this approach against the functional regression
test tools Infinitest and EKSTAZI and showed that we are able to
select fewer tests which need to be re-run.

The current implementation will be extended to be usable with
Maven multi-module projects and Gradle. This approach could
speed up all kinds of performance benchmarks or tests consisting
of equal executions, e.g. it could be extended to be usable with
benchmarking tools like jmh, with load test tools like JMeter, for
distributed applications by instrumenting all of them and for usage
in continuous integration servers.

ACKNOWLEDGEMENTS
This work was funded by the German Federal Ministry of Education
and Research within a PhD scholarship of Hanns Seidel Founda-
tion and within the project Competence Center for Scalable Data
Services and Solutions Dresden/Leipzig (ScaDS, BMBF 01IS14014B).
Computations for this work were done with resources of Leipzig
University Computing Centre.

REFERENCES
[1] Andy Georges, Dries Buytaert, and Lieven Eeckhout. 2007. Statistically Rigorous

Java Performance Evaluation. ACM SIGPLAN Notices 42, 10 (2007), 57–76.
[2] Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. 2015. Ekstazi: Lightweight

Test Selection. In Proceedings of the 37th International Conference on Software
Engineering. IEEE Press, 713–716.

[3] Raoufehsadat Hashemian, Niklas Carlsson, Diwakar Krishnamurthy, and Martin
Arlitt. 2017. IRIS: Iterative and Intelligent Experiment Selection. In Proceedings of
the 8th ACM/SPEC on International Conference on Performance Engineering. ACM,
143–154.

[4] Shaikh Mostafa, Xiaoyin Wang, and Tao Xie. 2017. PerfRanker: Prioritization of
Performance Regression Tests for Collection-Intensive Software. In Proceedings
of the 26th ACM SIGSOFT ISSTA. ACM, 23–34.

[5] Steven P Reiss and Manos Renieris. 2001. Encoding Program Executions. In
Proceedings of the 23rd ICSE. IEEE Computer Society, 221–230.

[6] Juan Pablo Sandoval Alcocer, Alexandre Bergel, and Marco Tulio Valente. 2016.
Learning from Source Code History to Identify Performance Failures. In Proceed-
ings of ACM/SPEC on International Conference on Performance Engineering. ACM,
37–48.

[7] Petr Stefan, Vojtech Horky, Lubomir Bulej, and Petr Tuma. 2017. Unit Testing Per-
formance in Java Projects: Are We There Yet?. In Proceedings of the 8th ACM/SPEC
on International Conference on Performance Engineering. ACM, 401–412.

[8] André Van Hoorn, Jan Waller, and Wilhelm Hasselbring. 2012. Kieker: A Frame-
work for Application Performance Monitoring and Dynamic Software Analysis.
In Proceedings of the 3rd ACM/SPEC ICPE. ACM, 247–248.

[9] Dennis Westermann, Rouven Krebs, and Jens Happe. 2011. Efficient Experi-
ment Selection in Automated Software Performance Evaluations. In European
Performance Engineering Workshop. Springer, 325–339.

[10] S. Yoo and M. Harman. 2012. Regression Testing Minimization, Selection and
Prioritization: a Survey. Software Testing, Verification and Reliability 22, 2 (2012),
67–120. https://doi.org/10.1002/stvr.430

LTB Workshop ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

130

https://doi.org/10.1002/stvr.430

	Abstract
	1 Introduction
	2 Method
	2.1 Static Selection Rules
	2.2 Trace Analysis

	3 Related Work
	4 Evaluation
	5 Summary and Future Work
	References

