
Towards Automating Representative Load Testing
in Continuous Software Engineering

Henning Schulz
NovaTec Consulting GmbH

Karlsruhe, Germany

Tobias Angerstein
NovaTec Consulting GmbH

Leinfelden-Echterdingen, Germany

André van Hoorn
University of Stuttgart
Stuttgart, Germany

ABSTRACT
As an application’s performance can significantly impact the user
satisfaction and, consequently, the business success, companies
need to test performance before delivery. Though load testing al-
lows for testing the performance under representative load by sim-
ulating user behavior, it typically entails high maintenance and
execution overhead, hindering application in practice. With regard
to the trend of continuous software engineering with its parallel
and frequently executed delivery pipelines, load testing is even
harder to be applied.

In this paper, we present our vision of automated, context-specific
and low-overhead load testing in continuous software engineering.
First, we strive for reducing the maintenance overhead by evolving
manual adjustments to generated workload models over a changing
environment. Early evaluation results show a seamless evolution
over changing user behavior. Building on this, we intend to sig-
nificantly reduce the execution time and required resources by
introducing online-generated load tests that precisely address the
relevant context and services under test. Finally, we investigate
minimizing the amount of components to be deployed by utilizing
load-test-capable performance stubs.

ACM Reference Format:
Henning Schulz, Tobias Angerstein, and André van Hoorn. 2018. Towards
Automating Representative Load Testing in Continuous Software Engi-
neering. In ICPE ’18: ACM/SPEC International Conference on Performance
Engineering Companion , April 9–13, 2018, Berlin, Germany. ACM, New York,
NY, USA, 4 pages. https://doi.org/10.1145/3185768.3186288

1 INTRODUCTION
Software performance as one dimension of quality of service (QoS)
is a crucial attribute of today’s enterprise applications. As an ex-
ample, Amazon found they lose 1 % of sales per 100 ms delay [7].
To prevent such a business loss, companies aim at testing their
applications’ performance before delivery. As Jin et al. [5] show,
considering the correct workload when measuring performance is
indispensable. Surveying 109 real-world performance bugs, they are
able to ascribe 42 of the bugs to wrong workload assumptions. This

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPE ’18, April 9–13, 2018, Berlin, Germany
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5629-9/18/04. . . $15.00
https://doi.org/10.1145/3185768.3186288

finding motivates the need for performance tests simulating repre-
sentative user behavior as it would be in a production environment,
commonly known as load tests.

Disregarding its importance, practice showed that load testing
often is not applied. Chen et al. [2] detect this circumstance to
essentially originate from high complexity and overhead during
the whole load testing lifecycle. For instance, finding representative
workloads is challenging as well as maintaining them over evolv-
ing applications and users’ behavior. Existing approaches address
these challenges by generating workload models from production
request logs [2, 6, 14] but still require manual changes to the finally
generated load tests. Hence, maintaining the load tests still entails
manual overhead. Furthermore, the authors identify long execution
times of load tests to hinder its application.

Within the last years, industry strengthened the named chal-
lenges even more by introducing the new paradigm of continuous
software engineering, including DevOps, microservice architec-
tures, continuous integration, and continuous delivery [1, 9]. Ser-
vices are now small and self-contained, and are developed and
delivered in individual, automated pipelines. In addition, the re-
lease cycles are shortened, down to less than a day. Consequently,
the time and resources available for load testing tend to be even less
while now several load tests for several pipelines are needed and
automation is added as a new requirement. With this context of con-
tinuous software engineering, representative load testing can only
cope by being short-running, resource-saving and automatable, and
respect the service self-containment.

With our approach, we want to enable the newly required fea-
tures of load testing. We build on existing approaches to automated
workload model generation and test execution and propose new
contributions in the following fields. (1) As a basis, we admit a need
for manual adjustments of generated load tests and propose an
approach to minimizing them by evolving them over changes of
the users’ behavior and the application itself. (2) Corresponding
to self-contained microservices, we target modularized load tests
that can be executed against one or few services. (3) In addition to
that, we plan to enrich the load tests with contextual information
to restrict the load test scenario to the respectively relevant context.
In combination with (2), we assume this approach to significantly
reduce the test execution time. (4) In order to finally minimize the
needed resources as well, we want to introduce performance stubs
that can be used as replacements of dependent services during a
load test.

Summing up, this paper presents our vision of load testing in
continuous software engineering and provides insights into first
evaluation results of our load test adjustment evolution approach.

LTB Workshop ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

123

https://doi.org/10.1145/3185768.3186288
https://doi.org/10.1145/3185768.3186288

6

4

5

3

FEEDBACK

1

2

7

8
9

Workload
Analysis

Performance
Analysis

Workload Repository

Stub Repository

Workload
Selection

Transformation
to Load Test

Stubs
Selection

System
Deployment

Load Test
Execution

API SpecificationLEGEND

Contextual information

Workload

Annotation Model

Composition Model

Measurement
Data

Measurement
Data
RESULT

Figure 1: Visionary load testing process from measurement data recorded in production to load test results.

2 PROPOSED APPROACH
With our approach, we want to reform load testing with respect
to continuous software engineering. Conceptually, we are going
to replace fixed, human-defined load test scripts by time series of
generated workload models from which context-relevant portions
can be selected on demand. By furthermore restricting the tests to
the services that are actually to be tested, we expect to minimize
the test execution time and the amount of deployed services.

Figure 1 illustrates our new load testing process. The process
starts with production monitoring data 1○ consisting of request
logs, traces, and response times of the service interfaces. In ad-
dition, for later test selection, the data are enriched by various
contextual information, e.g., marketing campaigns, public holidays,
or sports events. In a workload analysis 2○, the request logs are
transformed into workloadmodels by utilizing an existing approach
like WESSBAS [14] and stored in a workload repository along with
the contextual information. Continuously streaming measurement
data to the workload analysis yields a time series of workloads and
contexts.

Once a load test is to be executed, a context description serves as
input and trigger 3○. This description can hold contexts as recorded
with the monitoring data, the services to be tested and, additionally,
information about the requirements to the test, e.g., the available
time for testing, the required confidence in the test results or the
acceptable costs when testing in a cloud. Based on this description,
we can automatically select the relevant sections from the workload
time series in the workload repository and merge them into one or
several workload models. In addition, we plan to restrict the work-
load models to the specified services by considering the initially
collected traces. That is, if a backend service is to be tested, we
compute the workload on the backend service resulting from the
selected workload models and run the load directly to the backend
without deploying any frontend services.

In the next step, the selected workload models are transformed
into an executable load test 4○. Using the existing approaches, this
transformation step typically needsmanual intervention formaking
the load tests actually executable. For instance, operations like ID
correlation and input data specification are to be applied [14]. As we
generate the load tests on demand, a user would have to do this in-
tervention before every test execution. To overcome this drawback,
we admit some adjustments to be necessarily done manually but
evolve them over environment changes. For this purpose, we store
the adjustments as an annotation in a separate, tool-independent
model that only depends on the application, respectively the appli-
cation programming interface (API). Hence, the annotation model
can be applied to all different workload models for the same API.
For adapting to changing APIs, we can utilize commonly used API
specifications [9] to detect the changes and, if possible, adapt the
annotation automatically or notify an application expert.

In parallel to the load test generation process, we plan to intro-
duce a process for generating performance stubs. In doing so, we
want to minimize the amount of services deployed for the load test
and hence, save resources and costs. Resource saving is especially
crucial in continuous software engineering, since several pipelines
may run load tests in parallel. Simultaneously to the workload anal-
ysis, a performance analysis 5○ utilizes the collected response times
to calculate the performance behavior of the individual services.
Here, we plan to base on Wert et al. [15] who derive such perfor-
mance behavior from tests. Building on existing functional stubs,
we want to merge the performance behavior and store the resulting
performance stubs in another repository.

Corresponding to the workload selection, the performance stubs
that replace the services which the tested services are dependent
from are to be selected 6○ and deployed together with the tested
services 7○. The knowledge about the services’ deployment comes
from a composition model, e.g., a docker-compose file. Since the

LTB Workshop ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

124

deployment step as well as the subsequent execution of the gener-
ated load tests 8○ is already covered by existing work [4], we do
not plan to investigate these steps.

A final step in our process will be a feedback of the test results to
the workload and stub selection 9○. For instance, if a performance
regression could be detected, the impact on the user experience
might be unclear, if only backend services were tested. In such a case,
we can use the collected traces for determining the services calling
the tested ones and, hence, the possibly impacted user interfaces.
In a new load test, we then can test the services providing the user
interfaces as well.

For integration into continuous integration and delivery pipelines,
all manual steps in our process can be done offline. Specifying
a template of the context description holding the services to be
tested as well as the requirements, contextual information can be
dynamically added from marketing databases, calendars etc. The
annotation model can completely be defined in advance. In case of
API changes, they can be detected before committing them to the
code repository and thus, the programmer can be asked to instantly
adapt the annotation.

3 EVALUATION
As illustrated at 4○ in Figure 1, evolving manual adjustments to
generated load tests is a fundament of our vision. For this reason,
we provide early evaluation results of this approach. We show that
we can specify the adjustments in an annotation once and apply
them to changing load tests representing different usage behaviors
without manual intervention. Due to space constraints, we only
describe the most relevant results, but provide details online1.

3.1 Experiment Setup
Our experiment is set up as follows. For a sample web shop, we
define the required load test annotation as well as four different
reference load tests representing the changing usage behavior. The
annotation specifies the input values to the request parameters.
Some values are specified directly while others have to be extracted
from former requests by applying regular expressions.

In several iterations, we repeat the following steps. First, one
of the reference load tests is randomly selected and executed. The
resulting measurement data are used as input to WESSBAS [14]
which generates a workload model. Next, the workload model is
transformed to a JMeter2 test plan, taking the annotation into ac-
count. After executing the test plan, we compare the measurement
results to detect differences. Since the annotation is to be used to
make load tests executable, the number of errors is the main met-
ric of interest. In addition, we compare the CPU utilization as an
indicator for the similarity of the load tests.

3.2 Experiment Results
In Figure 2, the errors per minute as well as the CPU utilization
for each executed load test are shown. The reference load tests 1,
2, and 3 did not introduce any errors. Similarly, the corresponding
generated load tests introduced zero errors except for the beginning
of each test. Since the generated load tests implement a Markov
1https://continuity-project.atlassian.net/wiki/x/AQC2B
2http://jmeter.apache.org/

0
25

50
75

10
0

C
PU

 [%
]

●

●

●

● ● ● ● ● ●

●

● ● ● ●

●

● ● ●

●

●0
25

50
75

10
0

er
ro

rs
 [m

in
−1

]

4 1 4 1 3 2 1 1 2 4 2 1 2 2 4 2 1 2 4 1
sequence of used load tests

errors: ● , CPU:

reference
generated

Figure 2: Errors per minute and CPU utilization for each
used reference and generated load test.

chain, the order of the requests is random to some degree. For
this reason, requests whose input data have to be retrieved from
regular expression extractions fail if the response where the data
are extracted from did not arrive yet. From testing, we know that
load tests generated without the annotation continuously cause
errors due to the missing regular expression extraction. Hence, we
conclude that the load tests were correctly annotated.

One of the requests of load test 4 was intentionally configured
with a wrong path and failed. In our experiment, the error rates of
the reference test were between 88.8 and 99.9 per minute. The gen-
erated test also introduced the same error with rates between 88.4
and 99.2 per minute. Furthermore, the error rates correspond to the
execution rates of the broken request in both cases. Consequently,
for this load test, the annotation was correctly applied as well.

Considering the CPU utilization, the workloads executed by the
reference load tests 2 and 4, and the corresponding generated tests
appear not to differ significantly. The request counts and response
times measured during the tests substantiate this hypothesis. How-
ever, there are apparent differences for the reference tests 1 and
especially for test 3. During these tests, we observed overload ef-
fects. For instance, in some cases, the response times increased to
up to 52 seconds while the minimum response time of the same
request in the test was 66 milliseconds. For this reason, we assume
that the workload generation did not properly work due to too high
load, e.g., because the monitored requests differed from the ones
JMeter executed. Regardless, our annotation approach does neither
affect the intensity nor the order of requests. Hence, it is unlikely
that the difference in the workloads is caused by our approach.

4 RELATEDWORK
In regard to automated load testing, several approaches have been
proposed in literature. Chen et al. [2] not only highlight common
challenges to load testing but also provide a set of solutions to the
majority of them, including automated generation of load tests from
request logs. However, the authors do not explicitly respect con-
tinuous software engineering. For instance, they claim to execute
the generation after several months to check if they have to adjust
the original test. This manually attended procedure is not ready for
dynamically generated load tests.

LTB Workshop ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

125

https://continuity-project.atlassian.net/wiki/x/AQC2B
http://jmeter.apache.org/

In addition to the work by Chen et al., further workload model
generation approaches have been proposed. Some of them are based
on Markov chains [8, 10] while others try to overcome the draw-
backs ofMarkov chains by using sequences of requests [6], extended
finite state machines [11], or adding guards and actions [14]. In the
end, all these approaches enable automated load test generation
but require manual adjustments like input data specification or ID
correlation. With our approach, we want to minimize these adjust-
ments in cases new load tests are generated. Furthermore, we want
to add functionality to restrict the load tests to individual services.

Concerning the problem of manual adjustments, there has only
been work that derives the difference of test and production work-
loads [13]. This approach can be used to determine if a new load
test generation is worthwhile, but does not facilitate the new gen-
eration as such. Thus, it is not advantageous for online generation
of load tests.

To the best of our knowledge, selecting load tests based on the
context is a new approach. However, such approaches have been in-
vestigated for functional tests. As an example, Srivastava et al. [12]
prioritize functional tests based on the introduced changes. We
assume to need different optimization objectives for load tests but
plan to build on the existing work if possible.

Finally, there is related work in the field of performance stubs.
The field is already investigated for applications in an early devel-
opment phase [3]. We want to use stubs also in late-phase load
testing, when the performance behavior can already be determined
from production monitoring. Determination of the performance
behavior could be realized by building on the work by Wert et
al. [15] who use systematic testing for deriving the behavior. By
adapting this approach to production monitoring and merging the
resulting performance behavior with existing functional stubs, we
want to achieve the required load-test-capable stubs.

5 CONCLUSIONS
While always being challenging, the classic approach of load testing
turns out not to be applicable in continuous software engineering.
For instance, the maintenance and execution overhead is high and
contradicts automated, parallel delivery pipelines generating highly
frequent releases. For this reason, the load testing process has to
be refined.

In this paper, we presented our vision of load testing in continu-
ous software engineering as well as first evaluation results. As a
basis, we presented an approach to minimizing the manual over-
head for defining manual adjustments that are required to make
generated load tests executable. By storing the adjustments in an
annotation model only dependent from the application’s API, we
strive for evolving the adjustments over a changing environment
without manual intervention. In a first evaluation, we showed that
our annotation approach is suitable of evolving once created anno-
tations over newly generated load tests if only the user behavior
changes. Even if we could detect significant differences between
reference and generated load tests, we assume they do not emanate

from our approach. However, in future evaluations, we have to
substantiate this hypothesis.

Building on the evolution approach, we are going to investigate
the other ideas described in this paper. First, we address modular-
ization of load tests in service granularity and allow for executing
the tests directly on the service to be tested. Then, we investigate
approaches for selecting a load test for a specific context, e.g., the
target services, environmental circumstances like marketing cam-
paigns or public events and requirements to the test. For integration
into a continuous delivery pipeline, such a requirement could be
a limit for the time available for testing as well as the costs when
testing in a cloud. Finally, we address performance stubs that are
capable for load testing. With this approach, we want to reduce the
set of deployed services to the ones to be tested, while stubbing
remaining services.

Altogether, we aim to reform the process of load testing, making
it more flexible, automatable and less time- and resource-consuming
and thus, applicable in continuous software engineering.

ACKNOWLEDGMENTS
This work is being supported by the German Federal Ministry of
Education and Research (grant no. 01IS17010, ContinuITy).

The authors have benefited from discussions with our colleagues
from the ContinuITy project, including Christoph Heger, Stefan
Siegl, Alexander Wert, Dusan Okanović, Vincenzo Ferme, and Al-
berto Avritzer.

REFERENCES
[1] L. J. Bass, I. M. Weber, and L. Zhu. DevOps - A Software Architect’s Perspective.

SEI series in software engineering. Addison-Wesley, 2015.
[2] T.-H. Chen, M. D. Syer, W. Shang, Z. M. Jiang, A. E. Hassan, M. N. Nasser, and

P. Flora. Analytics-driven load testing: An industrial experience report on load
testing of large-scale systems. ICSE-SEIP 2017.

[3] G. Denaro, A. Polini, and W. Emmerich. Early performance testing of distributed
software applications. ACM SIGSOFT Software Engineering Notes, 29(1):94–103,
2004.

[4] V. Ferme and C. Pautasso. Towards holistic continuous software performance
assessment. ICPE 2017, Companion Proceedings.

[5] G. Jin, L. Song, X. Shi, J. Scherpelz, and S. Lu. Understanding and detecting
real-world performance bugs. PLDI 2012.

[6] D. Krishnamurthy, J. A. Rolia, and S. Majumdar. A synthetic workload generation
technique for stress testing session-based systems. IEEE Transactions on Software
Engineering, 32(11):868–882, 2006.

[7] G. Linden. Make data useful. https://sites.google.com/site/glinden/Home/
StanfordDataMining.2006-11-28.ppt, 2006.

[8] D. A. Menascé. Load testing of web sites. IEEE Internet Computing, 6(4):70–74,
2002.

[9] S. Newman. Building Microservices – Designing Fine-Grained Systems. O’Reilly,
1st edition, 2015.

[10] G. Ruffo, R. Schifanella, M. Sereno, and R. Politi. Walty: A user behavior tailored
tool for evaluating web application performance. NCA 2004.

[11] M. Shams, D. Krishnamurthy, and B. H. Far. A model-based approach for testing
the performance of web applications. SOQUA 2006.

[12] A. Srivastava and J. Thiagarajan. Effectively priori- tizing tests in development
environment. ISSTA 2002.

[13] M. D. Syer, Z. M. Jiang, M. Nagappan, A. E. Hassan, M. N. Nasser, and P. Flora.
Continuous validation of load test suites. ICPE 2014.

[14] C. Vögele, A. van Hoorn, E. Schulz, W. Hasselbring, and H. Krcmar. Wessbas: Ex-
traction of probabilistic workload specifications for load testing and performance
prediction – a model-driven approach for session-based application systems.
Software & Systems Modeling, pages 1–35, 2016.

[15] A. Wert, J. Happe, and D. Westermann. Integrating software performance curves
with the palladio component model. ICPE 2012.

LTB Workshop ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

126

https://sites.google.com/site/glinden/Home/StanfordDataMining.2006-11-28.ppt
https://sites.google.com/site/glinden/Home/StanfordDataMining.2006-11-28.ppt

	Abstract
	1 Introduction
	2 Proposed Approach
	3 Evaluation
	3.1 Experiment Setup
	3.2 Experiment Results

	4 Related Work
	5 Conclusions
	Acknowledgments
	References

