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ABSTRACT 
Outlining the general characteristics of embedded systems is an 
arduous task. In fact, the design of such kind of systems is 
heavily influenced by functional and non-functional 
requirements, and it is based on quite complex design flows. So, 
there is often the need to adopt a HW/SW co-design 
methodology able to support the designers during high-level 
phases so that they can perform early analysis before dealing 
with low-level ones. Such a methodology, to be effective, should 
consider also performance estimation and ESL HW/SW timing 
co-simulation. The goal of this paper is to introduce a novel and 
fast performance metric able to speed-up the early analysis and 
design space exploration to identify the more promising 
architectures for different application domains. In particular, the 
paper presents a framework to evaluate such a metric and to 
perform some preliminary analysis to evaluate its 
meaningfulness when exploited in the HW/SW domain. 
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1 INTRODUCTION 
In the last thirty years there has been an exponential increase 

of the exploitation of embedded systems in everyday life. Due to 
their HW/SW heterogeneity and the critical impact of non-
functional constraints, the adoption of a HW/SW co-design 
methodology is a key factor for a successful development. In 
such a context, early performance estimation and HW/SW 
timing co-simulation are always crucial steps. In such steps, the 
availability of performance metrics suitable for both HW and SW 
technologies and with a low computational complexity are 
fundamental in the early design stages. It is worth noting that a 
low computational complexity usually induces a reduction in the 
accuracy of the metric; however, this accuracy decay provides 
the undeniable advantage of allowing a preliminary evaluation 
of the architectural spaces and the identification of a solutions 
subspace. 

One of the most known assembly-level metrics for SW 
performance estimation are MIPS (Millions of Instructions per 
Second), CPI (Clock Cycles per Instructions) or IPC (Instructions per 
Clock Cycles) [1]. Among them, at least MIPS can be considered 
as off-the-shelf, since it is normally available on data-sheets even 
if it is not so clear how standard is the evaluation process and 
what are its statistical characterization (e.g. precision and 
accuracy). Unfortunately, although MIPS, CPI and IPC can be 
considered an efficient way to compare different 
microprocessors with the same ISA (Instruction Set Architectures), 
they are ineffective when different ISA have to be compared. 
Finally, these metrics are SW oriented (assembly-based) and, due 
to this, they are not applicable in the HW domain. So, for all the 
reasons above discussed, MIPS, CPI and IPC cannot be 
considered a useful evaluation means in the field of Electronic 
System-Level (ESL) HW/SW co-design methodologies. 

In such a context, the goals of this work are to analyze the 
usefulness and the meaningfulness of an innovative performance 
metric that is concurrently “Off the Shelf”, “HW/SW Unifying”, 
and “Statement Level”. In fact, to overcome existing metrics 
limitations, the idea is to consider one related to Clock Cycles 
for C Statement (CC4CS), i.e. the number of clock cycles needed 
to a specific processor technology to execute a generic C 
statement. So, it is would be at statement-level of abstraction 
and, thanks to even more improved High-Level Synthesis (HLA) 
tools that are able to synthesize C functions, it would be targeted 
to both SW and HW processor technologies (i.e. HW/SW 
unifying): processors built to execute a given ISA (General 
Purpose Processors, GPP; Application Specific Processors, ASP) and 
processors built to directly (i.e. NO ISA involved) execute 
applicative functions (Single/Specific Purpose Processors, SPP). So, 
such a metric would be an ideal one for the very early steps of an 
ESL HW/SW Co-Design Methodology but also for the 
comparison of SW implementation performances. However, 
some critical issues soon arise when thinking with more 
attention to CC4CS. First of all, the concept of generic C 
statement is ambiguous, since a C statement is not a-priori 
limited in complexity and can give rise to very different HW/SW 
implementations. Second, to evaluate it in a standard, repeatable, 
fast and low-cost way, they are needed an evaluation framework 
and a meaningful set of benchmark functions. The first point can 
be addressed by considering as “generic C statements” the most 
common way a programmer writes them (so it is better to talk 
about common C statements), and this consideration should drive 
the selection of the adopted benchmark. An encouraging 
precedent can be considered the work done for the definition of 
the very first (and successful) COCOMO model [2] where, by 
analyzing a very huge set of source codes, a relationship by the 
number of Lines of Code (LOC) and the SW development cost has 
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been identified, independently by the complexity of each line. 
The second point, other than identifying a relevant benchmark, 
can be addressed by designing a proper framework for CC4CS 
evaluation. So, this work mainly focuses on the development of 
such a framework and, by means of a simple benchmark, tries to 
evaluate usefulness and meaningfulness of CC4CS to understand 
if further effort must be invested in such a direction. For this, 
Sections II and III define the metric, the framework, and the 
adopted benchmark, while Sections IV and V evaluate CC4CS 
both in the SW and HW domains also analyzing possible 
exploitation opportunities. Finally, Section VI tries to understand 
if, on the base of the obtained results, such a metric could have a 
future or not. 

2 DEFINITION OF CC4CS 
The proposed metric is related to C programming language 

statements, so it is called CC4CS (Clock Cycles for C Statement). 
The choice of the C language is motivated by the following three 
reasons: it is the most used language for embedded SW 
development; it is very similar to SystemC [3] (especially when 
focusing on SystemC Synthesizable Subset), one of the most used 
specification languages for HW/SW co-design; the most diffused 
HLS (High Level Synthesis) tools are able to realize SPPs that 
implements an algorithm specified in C/SystemC language. So, 
CC4CS is defined as follow: 

Def. For a given processor X, CC4CS(X) is the number of clock 
cycles needed by processor X to execute a common C statement 

A first clarification is due with respect to the concept of 
“common C statement”. It could be generally intended as 
“something that ends with a semicolon” (other views are possible 
too, e.g. Table 6.1 in [4]) but, to avoid ambiguity, this work 
adopts an empirical approach: it refers to the way a common 
profiling tool as gcov [5] performs the C statements 
identification when profiling their execution. Another 
clarification is related to the fact that such a metric will be for 
sure influenced by the used compiler or HLS tool. Some ways to 
manage this issue could be: to specify also the used tools 
(possibly giving rise to a set of CC4CS for each processor); to 
report the average of the results obtained by using the most 
diffused tools; to report only the results related to the most 
diffused one. At this point, it is quite clear that CC4CS, as 
defined above, will be influenced by several factors and that a 
CC4CS-based estimation will be affected by relevant errors. 
However, these are acceptable by keeping in mind the following 
aspects: it is a straightforward way to have an off-the-shelf 
metric; it can be applied to each processor technology (i.e. GPP, 
ASP and SPP); it is intended to be used for very early 
performance analysis in SW and HW/SW domains. Anyway, as 
described in the next sections, CC4CS can be also characterized 
by a set of values related to Min, Max, Average, and Standard 
Deviation (or by a statistical distribution). In this way, it is 
possible to perform different analysis depending on the final 
goal. 

3 CC4CS EVALUATION FRAMEWORK 
Starting from the definition provided before, to evaluate 

CC4CS for a given processor technology there is the need for a 
methodology supported by tools to allow fast and repeatable 
operations. In fact, as already said, considering a single C 
function, CC4CS is the ratio between the number of clock cycles 

required by the target processor technology to execute the 
function and the number of executed C statements:  

CC4CS = #Required_Clock_Cycles / #Executed_C_Statements. 

So, to make the metric meaningful for a given processor it is 
needed, at least, to: define a set of relevant C functions to be 
used as benchmark for all the processor technologies; for each 
benchmark function to identify a way to stimulate (i.e. execute) 
it by means of relevant input data sets; to identify a tool to 
perform profiling in order to count the number of executed C 
statements for each input; to identify tools to compile/synthesize 
the C function for the target processor and to simulate its 
execution in order to obtain the number of clock cycles needed 
for the on-target execution. Naturally, such steps must be 
applied for each different processor technology. However, it is 
worth noting that it is an offline one-shot task since CC4CS, 
once evaluated, would be available “for free” for next projects. 
So, to support CC4CS evaluation, a proper framework has been 
developed. Additionally, such a framework is also able to 
evaluate statistics on the metric. A simple benchmark composed 
of 10 well-known algorithms (i.e. C leaf functions) has been 
realized. The functions of the benchmark are the following ones: 
Quicksort, Mergesort, Matrix Multiplication, Kruskal, Floyd-
Warshall, Dijkstra, Breadth First Search, Depth First Search, 
Banker's Algorithm, A*. The source code is available on [11]. The 
following paragraphs describes the main features of the generic 
framework. 

 
Figure 1: CC4CS Evaluation Framework. 

3.1 Input Generation  
To evaluate CC4CS, a module that (semi)automatically 

generates inputs for the benchmark functions has been created. 
In particular, for each function they have been randomly 
generated 1000 input data sets. Moreover, for each function, 
different data types have been considered (i.e. int8, int16, int32, 
and float) to analyze the results with respect to the internal 
architecture of the considered processor. Each input data set is 
stored in a header file to be included in the function at compile 
time. 

3.2 Profiling on the Host Architecture 
After the inputs generation phase, a procedure to count the 

number of executed C statements is needed. This value is 
obtained by performing a profiling of the benchmark functions 
by means of the gcov [5] profiler for each generated input. To 
obtain the total number of executed C statements for each 
function, a sum of the single profiling numbers has been 
performed. It is worth noting that such a profiling is performed 
one-shot on the host platform since it is independent of the 
target processor technologies. 

3.3 Profiling on the Target Processor 
The last data needed to calculate the CC4CS metric is the 

number of clock cycles needed by the target processor 
technology to execute each function in the benchmark. 

CC4CS =  Number of Clock Cycles

Executed C Statements

Compilaton/Synthesis for
the target processor

Profiling of the program

HDL Simulator (HW)

ISS (SW)
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Depending on the processor technology there is the need for an 
Instruction Set Simulator (ISS) or an HDL Simulator, for SPP 
(Figure 1). 

4 CC4CS IN THE SW DOMAIN 
Once developed the framework, CC4CS has been evaluated 

first in the SW domain by considering two different processor 
technologies: an ASP (Intel 8051, an 8-bit CISC micro-controller) 
and a GPP (LEON3, a 32-bit RISC core). The first one allows to 
analyze the metric in the context of limited HW resources (i.e. 
limited registers, limited internal memory to store code and data, 
and no cache), while the second one allows to consider a more 
performing architecture that relies on external memory and 
cache. 

 
Figure 2: CC4CS (8051): frequency distribution for int8. 

4.1 Evaluation of CC4CS for 8051 
The first considered processor technology is an ASP: the 

original Intel 8051 microcontroller built around an 8-bit CPU 
core with Harvard architecture. The University of California has 
developed a project [6] which provides several tools useful for 
simulating C code execution on 8051. In particular, the Dalton 
ISS provides the number of clock cycles required by the 8051 to 
execute a program. So, it has been integrated into the CC4CS 
framework customized for 8051. The benchmark has been 
compiled, with SDCC (Small Device C Compiler) [7] by using 
default optimizations. At the end, the ISS has been used to 
simulate the program execution. Then, the framework provides 
the metric and some statistics. The results for 1000 executions of 
the benchmark functions are summarized in Table 1.  

Table 1: CC4CS (8051) 

Data Type Min Max AM SD GM 95% 
Int8 59 375 117,51 44,92 110,72 176 
Int16 82 493 162,01 64,88 151,09 297 
Int32 106 473 223,01 87,57 207,09 402 
float 4 1322 526,56 271,68 457,88 1198 

*AM: Arithmetic Mean, SD: Standard Deviation, GM: Geometric Mean, 95%: 95th Percentile 

For each function, different data types have been considered 
(int8, int16, int32, and float). In fact, performances change with 
respect to the dimension of data since original 8051 is based on 
an 8-bit CPU core and an 8-bit ALU. Furthermore, with float data 
type, the values of CC4CS(8051) is considerably higher with 
respect to the other values due to the lack of a FPU (Floating 
Point Unit). For example, by considering int8 data type, 
CC4CS(8051) belongs to a Min-Max interval equals to 59-375, 
with an Arithmetic Mean near to 118 (with Standard Deviation 
near to 45), a Geometric Mean near to 111 and the 95th Percentile 
near to 176. It is worth noting the relevant difference between 
this last value and the Max one. As an example of further 
possible statistical analysis, Figure 2 shows the frequency 

distribution graphs of CC4CS(8051) for int8 for the whole 
benchmark. Such figure clarifies the reason behind the difference 
between Max and 95th Percentile values. In [11] it is possible to 
find more details about performed analyses. 

4.2 Evaluation of CC4CS for LEON3 
The second processor technology is a GPP: the LEON3 

microprocessor. LEON3 is a 32-bit synthesizable soft-processor 
that is compatible with SPARC V8 architecture: it has a seven-
stage pipeline and Harvard architecture, and uses separate 
instruction and data caches. It represents a soft-processor for 
aerospace applications. Cobham Gaisler offers TSIM System 
Emulator as an accurate emulator of LEON3 processors. A free 
evaluation version of TSIM/LEON3 is available on Cobham 
website [8], but it does not support code coverage, configuration 
of caches, memories and so on. Anyway, it has been chosen as 
the reference ISS for first analysis since it provides the 
information needed to evaluate CC4CS. By default, TSIM/LEON3 
emulates the FPU. Benchmark functions have been compiled, 
with the Bare C Cross-Compiler (BCC) for LEON3 with standard 
optimization options. Then, the framework has been used to 
evaluate the metric and some statistics. The obtained results for 
1000 executions of the 10 benchmark functions are summarized 
in Table 2.  

Table 2: CC4CS (LEON3) 

Data Type Min Max AM SD GM 95% 
Int8 11 2197 193 304 90 721 
Int16 12 2194 291,96 401,52 149,11 1322 
Int32 23 2194 437,12 512,07 258,81 2053 
float 28 2200 481,70 516,99 305,98 2058 

*AM: Arithmetic Mean, SD: Standard Deviation, GM: Geometric Mean, 95%: 95th Percentile 

For each function, different data types have been considered 
(int8, int16, int32, and float). In fact, performances, especially the 
average ones, change with respect to the dimension of data. 
However, in this case, the differences with float data type are not 
as relevant as in the 8051 case since LEON3 exploits a dedicated 
FPU. For example, by considering int8 data type, CC4CS(LEON3) 
belongs to the Min-Max interval 11-2197, with an Arithmetic 
Mean equals to 193 (with Standard Deviation equals to 304), a 
Geometric Mean of 90 and the 95th Percentile equals to 721. It is 
still worth noting the relevant difference between this last value 
and the Max while the same difference is not so relevant when 
considering int32 and float data types. 

4.3 Exploitation of CC4CS in SW Domain 
Since the main goal of this work is to evaluate usefulness and 

meaningfulness of CC4CS, this section presents, as a sort of 
validation, a first attempt to use CC4CS for very early 
performance analysis in the SW domain. In particular, the goal is 
to evaluate the errors to be considered when using CC4CS for 
execution time estimation at very early stages. For this, a set of 5 
functions out of the benchmark has been used as testbench: 
Selection Sort, Insertion Sort, GCD, Binary Search, Bellman Ford 
(the source code is available on [11]). For each function it has 
been performed a profiling with respect to several inputs and 
measured the real execution time for 8051@12MHz. Then, such a 
time has been compared with the estimation made by 
multiplying the profiling results (i.e. the number of executed C 
statements) for CC4CS(8051) from Table 1 for the processor 
frequency. Considering all the testbench, Table 3 shows the 
average estimation errors obtained by using AM and GM as 
estimations.  
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Table 3: Estimation errors for 8051@12 MHz: AM and GM 

Data  
Types 

RMSE  
AM 

PRMSE  
AM 

RMSE  
GM 

PRMSE  
GM 

Min 
95% 

Min 
Max 

Int8 2.90 ms 42.2% 2.50 ms 37.4% 5.74% 0.00% 
Int16 1.35 ms 22.9% 1.43 ms 21.9% 4.40% 0.00% 
Int32 1.84 ms 21.0% 1.99 ms 24.3% 7.20% 0.00% 
float 1.05 ms 76.6% 0.92 ms 60.2% 0.00% 0.00% 
AVG 1.79 ms 40.68% 1.71 ms 35.95% 4.34% 0.00% 

*RMSE: Root Mean squared Error, PRMSE: Root Mean Squared Percentage Error 

Considering all the testbench, Table 3 shows the percentage 
of estimations that are outside of the Min-95th Percentile and 
Min-Max intervals. It is worth noting as all the actual results are 
contained in Min-Max. Despite to fact that such intervals could 
be quite large (e.g. for float), this could mean that CC4CS is quite 
robust with respect to different common C statements. 
Moreover, by considering Min-95% it is possible to reduce 
sensitively the range (at least for int8 and int16) while keeping 
limited errors. 

5 CC4CS IN THE HW DOMAIN 
To highlight another important feature of CC4CS, i.e. to be 

unifying with respect to HW and SW domains, this section 
provides a very preliminary evaluation of CC4CS for functions 
implemented by means of SPP (i.e. HW) exploiting FPGA 
technologies. For this, to avoid the need of synthesize all the 
previously adopted benchmark functions (it will be done for 
future analyses), it has been exploited the already synthesized 
(with standard-optimization options) benchmark used in [9]. The 
selected C functions originate from different application 
domains, which are control-flow as well as data-flow dominated. 
An important aspect of such benchmarks is that golden inputs 
and related output vectors are already available for each 
program. So, it has been possible to execute each function to 
perform profiling. Then, by exploiting the already available 
number of clock cycles needed to execute the HW function on a 
Virtex7, evaluated by means of RTL (Register-Transfer Level) 
simulations, it has been straightforward to evaluate 
CC4CS(Virtex7). Table 4 shows the corresponding CC4CS for 
each tool considered in [9]. 

Table 4: CC4CS (Virtex7) 

Tool Min AM GM Max 
Commercial 0.117 1.137 0.758 4.006 

Bambu 0.015 1.179 0.468 7.357 
DWARV 0.018 1.253 0.650 4.485 
LegUp 0.001 1.339 0.583 7.404 

*AM: Arithmetic Mean, GM: Geometric Mean 

So, at a very first glance, it is possible to state that 
CC4CS(Virtex7), with standard optimizations, belongs to a Min-
Max interval equals to 1-8 (rounding up to the nearest integer). 

5.1 Exploitation of CC4CS in HW/SW Domain 
The availability of CC4CS for both HW and SW processor 

technologies is very important to exploit such a metric in 
HW/SW Co-Design methodologies for both early comparison 
and selection, and for ESL HW/SW timing co-simulations. In the 
first case, by having available CC4CS for different processors 
technologies, with the same host-based profiling it is possible to 
estimate the execution time of a function of interest for the 
whole processor technologies set so making a very fast 
preliminary comparison and selection. As an example, given a 
target function and a related golden input, by means of host-
based profiling is possible to count the number of executed C 
statements (e.g. 100). Then, as shown in Figure 3, it is 

straightforward to compare the whole processor technologies set 
by multiplying 100 for the related CC4CS (in this case by using 
the Min-95% interval and GM). Depending on the required 
execution time it is then possible to select a specific processor 
technology or, at least, to reduce the set for further analyses. In 
the second case, CC4CS is useful since several ESL HW/SW 
timing co-simulations approaches (e.g. [10][12]) rely on the 
availability of an estimated execution time for each statement 
composing the ESL specification. 

 
Figure 3: CC4CS-based HW/SW comparison. 

5 CONCLUSION AND FUTURE WORKS 
This work has presented an off-the-shelf unifying statement-

level performance metric and a related evaluation framework. 
The metric, called CC4CS, has been evaluated both in SW and 
HW domains analyzing possible exploitation opportunities. Main 
goal has been to evaluate its usefulness and meaningfulness. For 
sure some improvements are needed, especially in the C 
statement and benchmark definition, and further statistical 
analyses must be performed. For example, Figure 2 shows a 
frequency distributions graph. Is it possible to individuate a 
known one (e.g. Poisson-like) that fits with it? Probably, analyses 
related to the specific processor technology features (e.g. 
registers and memory size, cache and pipeline interferences, etc.) 
can be considered as well. Moreover, this first approach has 
voluntary avoided any detailed analysis of the statements 
composing the given C functions. This kind of approach will be 
considered as an opportunity to obtain more accuracy but at 
more cost. Anyway, preliminary results are interesting enough 
to justify further efforts on the topic. 
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