
CC4CS: an Off-the-Shelf Unifying Statement-Level
Performance Metric for HW/SW Technologies

Vittoriano Muttillo
Università degli Studi dell’Aquila

vittoriano.muttillo@graduate.univaq.it

Giacomo Valente
Università degli Studi dell’Aquila

giacomo.valente@univaq.it

Luigi Pomante
Università degli Studi dell’Aquila

luigi.pomante@univaq.it

Vincenzo Stoico
Università degli Studi dell’Aquila

vincenzo.stoico@graduate.univaq.it

Fausto D’Antonio
Università degli Studi dell’Aquila

fausto.dantonio@graduate.univaq.it

Fabio Salice
Politecnico di Milano
fabio.salice@polimi.it

ABSTRACT
Outlining the general characteristics of embedded systems is an
arduous task. In fact, the design of such kind of systems is
heavily influenced by functional and non-functional
requirements, and it is based on quite complex design flows. So,
there is often the need to adopt a HW/SW co-design
methodology able to support the designers during high-level
phases so that they can perform early analysis before dealing
with low-level ones. Such a methodology, to be effective, should
consider also performance estimation and ESL HW/SW timing
co-simulation. The goal of this paper is to introduce a novel and
fast performance metric able to speed-up the early analysis and
design space exploration to identify the more promising
architectures for different application domains. In particular, the
paper presents a framework to evaluate such a metric and to
perform some preliminary analysis to evaluate its
meaningfulness when exploited in the HW/SW domain.

ACM Reference Format:
Vittoriano Muttillo, Giacomo Valente, Luigi Pomante, Vincenzo Stoico,
Fausto D’Antonio, and Fabio Salice. CC4CS: An Off-the-Shelf Unifying
Statement-level Performance Metric for HW/SW Technologies. In
ICPE’18 Companion: ACM/SPEC International Conference on Performance
Engineering, April 9-13, 2018, Berlin, Germany, USA. ACM, NY, NY, USA,
4 pages. DOI: http://doi.org/10.1145/3185768.3186291

1 INTRODUCTION
In the last thirty years there has been an exponential increase

of the exploitation of embedded systems in everyday life. Due to
their HW/SW heterogeneity and the critical impact of non-
functional constraints, the adoption of a HW/SW co-design
methodology is a key factor for a successful development. In
such a context, early performance estimation and HW/SW
timing co-simulation are always crucial steps. In such steps, the
availability of performance metrics suitable for both HW and SW
technologies and with a low computational complexity are
fundamental in the early design stages. It is worth noting that a
low computational complexity usually induces a reduction in the
accuracy of the metric; however, this accuracy decay provides
the undeniable advantage of allowing a preliminary evaluation
of the architectural spaces and the identification of a solutions
subspace.

One of the most known assembly-level metrics for SW
performance estimation are MIPS (Millions of Instructions per
Second), CPI (Clock Cycles per Instructions) or IPC (Instructions per
Clock Cycles) [1]. Among them, at least MIPS can be considered
as off-the-shelf, since it is normally available on data-sheets even
if it is not so clear how standard is the evaluation process and
what are its statistical characterization (e.g. precision and
accuracy). Unfortunately, although MIPS, CPI and IPC can be
considered an efficient way to compare different
microprocessors with the same ISA (Instruction Set Architectures),
they are ineffective when different ISA have to be compared.
Finally, these metrics are SW oriented (assembly-based) and, due
to this, they are not applicable in the HW domain. So, for all the
reasons above discussed, MIPS, CPI and IPC cannot be
considered a useful evaluation means in the field of Electronic
System-Level (ESL) HW/SW co-design methodologies.

In such a context, the goals of this work are to analyze the
usefulness and the meaningfulness of an innovative performance
metric that is concurrently “Off the Shelf”, “HW/SW Unifying”,
and “Statement Level”. In fact, to overcome existing metrics
limitations, the idea is to consider one related to Clock Cycles
for C Statement (CC4CS), i.e. the number of clock cycles needed
to a specific processor technology to execute a generic C
statement. So, it is would be at statement-level of abstraction
and, thanks to even more improved High-Level Synthesis (HLA)
tools that are able to synthesize C functions, it would be targeted
to both SW and HW processor technologies (i.e. HW/SW
unifying): processors built to execute a given ISA (General
Purpose Processors, GPP; Application Specific Processors, ASP) and
processors built to directly (i.e. NO ISA involved) execute
applicative functions (Single/Specific Purpose Processors, SPP). So,
such a metric would be an ideal one for the very early steps of an
ESL HW/SW Co-Design Methodology but also for the
comparison of SW implementation performances. However,
some critical issues soon arise when thinking with more
attention to CC4CS. First of all, the concept of generic C
statement is ambiguous, since a C statement is not a-priori
limited in complexity and can give rise to very different HW/SW
implementations. Second, to evaluate it in a standard, repeatable,
fast and low-cost way, they are needed an evaluation framework
and a meaningful set of benchmark functions. The first point can
be addressed by considering as “generic C statements” the most
common way a programmer writes them (so it is better to talk
about common C statements), and this consideration should drive
the selection of the adopted benchmark. An encouraging
precedent can be considered the work done for the definition of
the very first (and successful) COCOMO model [2] where, by
analyzing a very huge set of source codes, a relationship by the
number of Lines of Code (LOC) and the SW development cost has

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To
copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from
Permissions@acm.org.
ICPE '18 Companion, April 9–13, 2018, Berlin, Germany.
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5629-9/18/04 …$15.00
https://doi.org/10.1145/3185768.3186291

LTB Workshop ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

119

been identified, independently by the complexity of each line.
The second point, other than identifying a relevant benchmark,
can be addressed by designing a proper framework for CC4CS
evaluation. So, this work mainly focuses on the development of
such a framework and, by means of a simple benchmark, tries to
evaluate usefulness and meaningfulness of CC4CS to understand
if further effort must be invested in such a direction. For this,
Sections II and III define the metric, the framework, and the
adopted benchmark, while Sections IV and V evaluate CC4CS
both in the SW and HW domains also analyzing possible
exploitation opportunities. Finally, Section VI tries to understand
if, on the base of the obtained results, such a metric could have a
future or not.

2 DEFINITION OF CC4CS
The proposed metric is related to C programming language

statements, so it is called CC4CS (Clock Cycles for C Statement).
The choice of the C language is motivated by the following three
reasons: it is the most used language for embedded SW
development; it is very similar to SystemC [3] (especially when
focusing on SystemC Synthesizable Subset), one of the most used
specification languages for HW/SW co-design; the most diffused
HLS (High Level Synthesis) tools are able to realize SPPs that
implements an algorithm specified in C/SystemC language. So,
CC4CS is defined as follow:

Def. For a given processor X, CC4CS(X) is the number of clock
cycles needed by processor X to execute a common C statement

A first clarification is due with respect to the concept of
“common C statement”. It could be generally intended as
“something that ends with a semicolon” (other views are possible
too, e.g. Table 6.1 in [4]) but, to avoid ambiguity, this work
adopts an empirical approach: it refers to the way a common
profiling tool as gcov [5] performs the C statements
identification when profiling their execution. Another
clarification is related to the fact that such a metric will be for
sure influenced by the used compiler or HLS tool. Some ways to
manage this issue could be: to specify also the used tools
(possibly giving rise to a set of CC4CS for each processor); to
report the average of the results obtained by using the most
diffused tools; to report only the results related to the most
diffused one. At this point, it is quite clear that CC4CS, as
defined above, will be influenced by several factors and that a
CC4CS-based estimation will be affected by relevant errors.
However, these are acceptable by keeping in mind the following
aspects: it is a straightforward way to have an off-the-shelf
metric; it can be applied to each processor technology (i.e. GPP,
ASP and SPP); it is intended to be used for very early
performance analysis in SW and HW/SW domains. Anyway, as
described in the next sections, CC4CS can be also characterized
by a set of values related to Min, Max, Average, and Standard
Deviation (or by a statistical distribution). In this way, it is
possible to perform different analysis depending on the final
goal.

3 CC4CS EVALUATION FRAMEWORK
Starting from the definition provided before, to evaluate

CC4CS for a given processor technology there is the need for a
methodology supported by tools to allow fast and repeatable
operations. In fact, as already said, considering a single C
function, CC4CS is the ratio between the number of clock cycles

required by the target processor technology to execute the
function and the number of executed C statements:

CC4CS = #Required_Clock_Cycles / #Executed_C_Statements.

So, to make the metric meaningful for a given processor it is
needed, at least, to: define a set of relevant C functions to be
used as benchmark for all the processor technologies; for each
benchmark function to identify a way to stimulate (i.e. execute)
it by means of relevant input data sets; to identify a tool to
perform profiling in order to count the number of executed C
statements for each input; to identify tools to compile/synthesize
the C function for the target processor and to simulate its
execution in order to obtain the number of clock cycles needed
for the on-target execution. Naturally, such steps must be
applied for each different processor technology. However, it is
worth noting that it is an offline one-shot task since CC4CS,
once evaluated, would be available “for free” for next projects.
So, to support CC4CS evaluation, a proper framework has been
developed. Additionally, such a framework is also able to
evaluate statistics on the metric. A simple benchmark composed
of 10 well-known algorithms (i.e. C leaf functions) has been
realized. The functions of the benchmark are the following ones:
Quicksort, Mergesort, Matrix Multiplication, Kruskal, Floyd-
Warshall, Dijkstra, Breadth First Search, Depth First Search,
Banker's Algorithm, A*. The source code is available on [11]. The
following paragraphs describes the main features of the generic
framework.

Figure 1: CC4CS Evaluation Framework.

3.1 Input Generation
To evaluate CC4CS, a module that (semi)automatically

generates inputs for the benchmark functions has been created.
In particular, for each function they have been randomly
generated 1000 input data sets. Moreover, for each function,
different data types have been considered (i.e. int8, int16, int32,
and float) to analyze the results with respect to the internal
architecture of the considered processor. Each input data set is
stored in a header file to be included in the function at compile
time.

3.2 Profiling on the Host Architecture
After the inputs generation phase, a procedure to count the

number of executed C statements is needed. This value is
obtained by performing a profiling of the benchmark functions
by means of the gcov [5] profiler for each generated input. To
obtain the total number of executed C statements for each
function, a sum of the single profiling numbers has been
performed. It is worth noting that such a profiling is performed
one-shot on the host platform since it is independent of the
target processor technologies.

3.3 Profiling on the Target Processor
The last data needed to calculate the CC4CS metric is the

number of clock cycles needed by the target processor
technology to execute each function in the benchmark.

CC4CS = Number of Clock Cycles

Executed C Statements

Compilaton/Synthesis for
the target processor

Profiling of the program

HDL Simulator (HW)

ISS (SW)

LTB Workshop ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

120

Depending on the processor technology there is the need for an
Instruction Set Simulator (ISS) or an HDL Simulator, for SPP
(Figure 1).

4 CC4CS IN THE SW DOMAIN
Once developed the framework, CC4CS has been evaluated

first in the SW domain by considering two different processor
technologies: an ASP (Intel 8051, an 8-bit CISC micro-controller)
and a GPP (LEON3, a 32-bit RISC core). The first one allows to
analyze the metric in the context of limited HW resources (i.e.
limited registers, limited internal memory to store code and data,
and no cache), while the second one allows to consider a more
performing architecture that relies on external memory and
cache.

Figure 2: CC4CS (8051): frequency distribution for int8.

4.1 Evaluation of CC4CS for 8051
The first considered processor technology is an ASP: the

original Intel 8051 microcontroller built around an 8-bit CPU
core with Harvard architecture. The University of California has
developed a project [6] which provides several tools useful for
simulating C code execution on 8051. In particular, the Dalton
ISS provides the number of clock cycles required by the 8051 to
execute a program. So, it has been integrated into the CC4CS
framework customized for 8051. The benchmark has been
compiled, with SDCC (Small Device C Compiler) [7] by using
default optimizations. At the end, the ISS has been used to
simulate the program execution. Then, the framework provides
the metric and some statistics. The results for 1000 executions of
the benchmark functions are summarized in Table 1.

Table 1: CC4CS (8051)

Data Type Min Max AM SD GM 95%
Int8 59 375 117,51 44,92 110,72 176
Int16 82 493 162,01 64,88 151,09 297
Int32 106 473 223,01 87,57 207,09 402
float 4 1322 526,56 271,68 457,88 1198

*AM: Arithmetic Mean, SD: Standard Deviation, GM: Geometric Mean, 95%: 95th Percentile

For each function, different data types have been considered
(int8, int16, int32, and float). In fact, performances change with
respect to the dimension of data since original 8051 is based on
an 8-bit CPU core and an 8-bit ALU. Furthermore, with float data
type, the values of CC4CS(8051) is considerably higher with
respect to the other values due to the lack of a FPU (Floating
Point Unit). For example, by considering int8 data type,
CC4CS(8051) belongs to a Min-Max interval equals to 59-375,
with an Arithmetic Mean near to 118 (with Standard Deviation
near to 45), a Geometric Mean near to 111 and the 95th Percentile
near to 176. It is worth noting the relevant difference between
this last value and the Max one. As an example of further
possible statistical analysis, Figure 2 shows the frequency

distribution graphs of CC4CS(8051) for int8 for the whole
benchmark. Such figure clarifies the reason behind the difference
between Max and 95th Percentile values. In [11] it is possible to
find more details about performed analyses.

4.2 Evaluation of CC4CS for LEON3
The second processor technology is a GPP: the LEON3

microprocessor. LEON3 is a 32-bit synthesizable soft-processor
that is compatible with SPARC V8 architecture: it has a seven-
stage pipeline and Harvard architecture, and uses separate
instruction and data caches. It represents a soft-processor for
aerospace applications. Cobham Gaisler offers TSIM System
Emulator as an accurate emulator of LEON3 processors. A free
evaluation version of TSIM/LEON3 is available on Cobham
website [8], but it does not support code coverage, configuration
of caches, memories and so on. Anyway, it has been chosen as
the reference ISS for first analysis since it provides the
information needed to evaluate CC4CS. By default, TSIM/LEON3
emulates the FPU. Benchmark functions have been compiled,
with the Bare C Cross-Compiler (BCC) for LEON3 with standard
optimization options. Then, the framework has been used to
evaluate the metric and some statistics. The obtained results for
1000 executions of the 10 benchmark functions are summarized
in Table 2.

Table 2: CC4CS (LEON3)

Data Type Min Max AM SD GM 95%
Int8 11 2197 193 304 90 721
Int16 12 2194 291,96 401,52 149,11 1322
Int32 23 2194 437,12 512,07 258,81 2053
float 28 2200 481,70 516,99 305,98 2058

*AM: Arithmetic Mean, SD: Standard Deviation, GM: Geometric Mean, 95%: 95th Percentile

For each function, different data types have been considered
(int8, int16, int32, and float). In fact, performances, especially the
average ones, change with respect to the dimension of data.
However, in this case, the differences with float data type are not
as relevant as in the 8051 case since LEON3 exploits a dedicated
FPU. For example, by considering int8 data type, CC4CS(LEON3)
belongs to the Min-Max interval 11-2197, with an Arithmetic
Mean equals to 193 (with Standard Deviation equals to 304), a
Geometric Mean of 90 and the 95th Percentile equals to 721. It is
still worth noting the relevant difference between this last value
and the Max while the same difference is not so relevant when
considering int32 and float data types.

4.3 Exploitation of CC4CS in SW Domain
Since the main goal of this work is to evaluate usefulness and

meaningfulness of CC4CS, this section presents, as a sort of
validation, a first attempt to use CC4CS for very early
performance analysis in the SW domain. In particular, the goal is
to evaluate the errors to be considered when using CC4CS for
execution time estimation at very early stages. For this, a set of 5
functions out of the benchmark has been used as testbench:
Selection Sort, Insertion Sort, GCD, Binary Search, Bellman Ford
(the source code is available on [11]). For each function it has
been performed a profiling with respect to several inputs and
measured the real execution time for 8051@12MHz. Then, such a
time has been compared with the estimation made by
multiplying the profiling results (i.e. the number of executed C
statements) for CC4CS(8051) from Table 1 for the processor
frequency. Considering all the testbench, Table 3 shows the
average estimation errors obtained by using AM and GM as
estimations.

LTB Workshop ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

121

Table 3: Estimation errors for 8051@12 MHz: AM and GM

Data
Types

RMSE
AM

PRMSE
AM

RMSE
GM

PRMSE
GM

Min
95%

Min
Max

Int8 2.90 ms 42.2% 2.50 ms 37.4% 5.74% 0.00%
Int16 1.35 ms 22.9% 1.43 ms 21.9% 4.40% 0.00%
Int32 1.84 ms 21.0% 1.99 ms 24.3% 7.20% 0.00%
float 1.05 ms 76.6% 0.92 ms 60.2% 0.00% 0.00%
AVG 1.79 ms 40.68% 1.71 ms 35.95% 4.34% 0.00%

*RMSE: Root Mean squared Error, PRMSE: Root Mean Squared Percentage Error

Considering all the testbench, Table 3 shows the percentage
of estimations that are outside of the Min-95th Percentile and
Min-Max intervals. It is worth noting as all the actual results are
contained in Min-Max. Despite to fact that such intervals could
be quite large (e.g. for float), this could mean that CC4CS is quite
robust with respect to different common C statements.
Moreover, by considering Min-95% it is possible to reduce
sensitively the range (at least for int8 and int16) while keeping
limited errors.

5 CC4CS IN THE HW DOMAIN
To highlight another important feature of CC4CS, i.e. to be

unifying with respect to HW and SW domains, this section
provides a very preliminary evaluation of CC4CS for functions
implemented by means of SPP (i.e. HW) exploiting FPGA
technologies. For this, to avoid the need of synthesize all the
previously adopted benchmark functions (it will be done for
future analyses), it has been exploited the already synthesized
(with standard-optimization options) benchmark used in [9]. The
selected C functions originate from different application
domains, which are control-flow as well as data-flow dominated.
An important aspect of such benchmarks is that golden inputs
and related output vectors are already available for each
program. So, it has been possible to execute each function to
perform profiling. Then, by exploiting the already available
number of clock cycles needed to execute the HW function on a
Virtex7, evaluated by means of RTL (Register-Transfer Level)
simulations, it has been straightforward to evaluate
CC4CS(Virtex7). Table 4 shows the corresponding CC4CS for
each tool considered in [9].

Table 4: CC4CS (Virtex7)

Tool Min AM GM Max
Commercial 0.117 1.137 0.758 4.006

Bambu 0.015 1.179 0.468 7.357
DWARV 0.018 1.253 0.650 4.485
LegUp 0.001 1.339 0.583 7.404

*AM: Arithmetic Mean, GM: Geometric Mean

So, at a very first glance, it is possible to state that
CC4CS(Virtex7), with standard optimizations, belongs to a Min-
Max interval equals to 1-8 (rounding up to the nearest integer).

5.1 Exploitation of CC4CS in HW/SW Domain
The availability of CC4CS for both HW and SW processor

technologies is very important to exploit such a metric in
HW/SW Co-Design methodologies for both early comparison
and selection, and for ESL HW/SW timing co-simulations. In the
first case, by having available CC4CS for different processors
technologies, with the same host-based profiling it is possible to
estimate the execution time of a function of interest for the
whole processor technologies set so making a very fast
preliminary comparison and selection. As an example, given a
target function and a related golden input, by means of host-
based profiling is possible to count the number of executed C
statements (e.g. 100). Then, as shown in Figure 3, it is

straightforward to compare the whole processor technologies set
by multiplying 100 for the related CC4CS (in this case by using
the Min-95% interval and GM). Depending on the required
execution time it is then possible to select a specific processor
technology or, at least, to reduce the set for further analyses. In
the second case, CC4CS is useful since several ESL HW/SW
timing co-simulations approaches (e.g. [10][12]) rely on the
availability of an estimated execution time for each statement
composing the ESL specification.

Figure 3: CC4CS-based HW/SW comparison.

5 CONCLUSION AND FUTURE WORKS
This work has presented an off-the-shelf unifying statement-

level performance metric and a related evaluation framework.
The metric, called CC4CS, has been evaluated both in SW and
HW domains analyzing possible exploitation opportunities. Main
goal has been to evaluate its usefulness and meaningfulness. For
sure some improvements are needed, especially in the C
statement and benchmark definition, and further statistical
analyses must be performed. For example, Figure 2 shows a
frequency distributions graph. Is it possible to individuate a
known one (e.g. Poisson-like) that fits with it? Probably, analyses
related to the specific processor technology features (e.g.
registers and memory size, cache and pipeline interferences, etc.)
can be considered as well. Moreover, this first approach has
voluntary avoided any detailed analysis of the statements
composing the given C functions. This kind of approach will be
considered as an opportunity to obtain more accuracy but at
more cost. Anyway, preliminary results are interesting enough
to justify further efforts on the topic.

ACKNOWLEDGMENTS
This work has been partially supported by the ECSEL RIA 2016
MegaM@Rt2 and AQUAS projects.

REFERENCES
[1] D.J. Lilja, Measuring Computer Performance, A Practitioner’s Guide,

Cambridge University Press, New York, USA, 2000.
[2] Barry Boehm's. COCOMO, Software Engineering Economics, 1981.
[3] SystemC, http://accellera.org/downloads/standards/systemc
[4] M. Siegesmund. Embedded C Programming, Newnes, 2014
[5] GCov Profiler, https://gcc.gnu.org/onlinedocs/gcc/Gcov.html.
[6] Dalton Project, http://www.ann.ece.ufl.edu/i8051/.
[7] SDCC, http://sdcc.sourceforge.net/doc/sdccman.pdf
[8] TSIM/LEON3, http://gaisler.com/doc/tsim-2.0.23.pdf
[9] R. Nane et al., "A Survey and Evaluation of FPGA High-Level Synthesis

Tools," in IEEE Trans. on CAD of Integrated Circuits and Systems, Oct. 2016.
[10] L. Pomante, P. Serri. “SystemC-based HW/SW Co-Design of Heterogeneous

Multiprocessor Dedicated Systems”, Int. Journal of Information Systems, 2014.
[11] CC4CS benchmark, https://github.com/vnzstc/cc4cs
[12] D. Di Pompeo, E. Incerto, V. Muttillo, L. Pomante, and G. Valente. An Efficient

Performance-Driven Approach for HW/SW Co-Design. In Proceedings of the
8th ACM/SPEC on International Conference on Performance Engineering
(ICPE '17). pages 323-326, ACM, 2017.

LTB Workshop ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

122

