
A Performance Study of Big Data Workloads in Cloud
Datacenters with Network Variability

Alexandru Uta
Vrije Universiteit Amsterdam

The Netherlands
A.Uta@vu.nl

Harry Obaseki
Vrije Universiteit Amsterdam

The Netherlands
i.h.obaseki@student.vu.nl

ABSTRACT
Public cloud computing platforms are a cost-effective solution for
individuals and organizations to deploy various types of workloads,
ranging from scientific applications, business-critical workloads,
e-governance to big data applications. Co-locating all such different
types of workloads in a single datacenter leads not only to per-
formance degradation, but also to large degrees of performance
variability, which is the result of virtualization, resource sharing
and congestion. Many studies have already assessed and character-
ized the degree of resource variability in public clouds. However,
we are missing a clear picture on how resource variability impacts
big data workloads. In this work, we take a step towards character-
izing the behavior of big data workloads under network bandwidth
variability. Emulating real-world clouds’ bandwidth distribution,
we characterize the performance achieved by running real-world
big data applications. We find that most big data workloads are
slowed down under network variability scenarios, even those that
are not network-bound.Moreover, themaximum average slowdown
for the cloud setup with highest variability is 1.48 for CPU-bound
workloads, and 1.79 for network-bound workloads.

ACM Reference Format:
Alexandru Uta and Harry Obaseki. 2018. A Performance Study of Big Data
Workloads in Cloud Datacenters with Network Variability. In ICPE ’18:
ACM/SPEC International Conference on Performance Engineering Companion
, April 9–13, 2018, Berlin, Germany. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3185768.3186299

1 INTRODUCTION
Cloud computing platforms have become the de facto platform for
running various types of workloads, from either individuals and
institutions. The economy of scale helps cloud providers reduce
costs through co-locating client workloads by means of separating
them through virtual machines (VMs), which offer user isolation.
Such virtual machines are scheduled on the same physical hard-
ware for an increased total resource utilization. In such setups, a
challenging problem appears: resource variability. As currently net-
works are a more scarce resource than, for example, processing
power, network variability is more likely to impact application

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPE ’18, April 9–13, 2018, Berlin, Germany
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5629-9/18/04. . . $15.00
https://doi.org/10.1145/3185768.3186299

performance, or, more importantly, performance predictability. As
many studies [3, 31] already point out, in public clouds the network
performance exhibits large degrees of variability - due to virtualiza-
tion, colocation and congestion overheads [4, 15]. In this paper, we
study the performance implications of network variability when
running big data workloads.

Due to the data deluge, a new paradigm of data driven science has
emerged [11]. As a consequence, big data processing systems have
become pervasive. Such systems handle many types of workloads,
ranging from scientific applications [24], graph-processing [38],
analytics and data-warehousing solutions [1, 33], to machine learn-
ing [21], where data collection, curation, and analysis play an in-
creasingly important role in preparing data for artificial intelligence
algorithms [32]. Big data processing systems, such as Hadoop [37]
or Spark [40] have already been deployed successfully on cloud
computing environments. Moreover, for clients that choose not
to manage their own VM cluster, commercial clouds even offer
Hadoop, or Spark as a service1. The key problem when deploying
such big data processing systems in cloud computing environments
is that they do not run in isolation, and hence are prone to be
impacted by resource variability.

This issue is exacerbated by the big data processing systems’
intrinsic design: such systems are built to run in isolation, in pri-
vate cluster computing environments. Therefore, the computation
is optimized for, and achieves predictable performance on homo-
geneous and symmetric setups. A limited number of approaches
try to address the issue of network heterogeneity in big data plat-
forms [10, 23, 28, 41], but are either tailored towards theMapReduce
ecosystem, or consider multi-cloud environments and do not opti-
mize for the variability within a single cloud datacenter.

Moreover, such approaches suffer from several significant short-
comings. First, these solutions focus on bandwidth heterogeneity,
not variability. Cloud network bandwidth is not only heteroge-
neous, but also highly variable with time, with possibly highly
unpredictable behavior. Second, they are not evaluated under real-
world cloud bandwidth distributions. Furthermore, such solutions
do not offer any performance predictability guarantees, models, or
insights into how variable network affects the behavior of big data
workloads.

We advocate for performance predictability and for devising
realistic performance models for big data applications even under
the influence of variable networks. Even though recent seminal
work [26] towards understanding the performance of big data plat-
forms shows that network is not a performance bottleneck, this

1https://aws.amazon.com/emr/

HotCloudPerf Workshop ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

113

https://doi.org/10.1145/3185768.3186299
https://doi.org/10.1145/3185768.3186299
https://aws.amazon.com/emr/

 0

 200

 400

 600

 800

 1000

 1200

A B C D E F G H

B
a
n
d
w

id
th

 (
M

b
it
/s

)

Cloud use case

Figure 1: Bandwidth distributions for A-H cloud use cases.
1st-25th-50th-75th-99th percentiles. Data points courtesy of
authors of [3].

does not imply that its variability does not impact application per-
formance (predictability). We conjecture that network variability
generates performance variability in big data processing systems.

Towards validating this statement, the following research ques-
tions arise: how to assess the impact of network bandwidth variability
on big data workloads running on clouds?. What is the impact of net-
work bandwidth variability when running big data workloads on
clouds?

To answers these research questions, we make the following
contributions:

(1) We create a framework to emulate the network variability
behavior of eight real-world clouds [3] (Section 2).

(2) We characterize the performance of six real-world big data
applications from the HiBench suite [12] running on top of
Spark (Section 3).

2 EXPERIMENTAL SETUP
In this sectionwe present our experimental framework for assessing
the impact of network bandwidth variability over big data process-
ing workloads. We introduce the eight real-world cloud bandwidth
distributions that we emulate and the mechanisms used to imple-
ment the emulation. Furthermore, we present the six real-world
big data workloads we run in our emulated setup. We conclude
this section by presenting the hardware and software platforms we
used for conducting the experiments.

2.1 Emulated Cloud Scenarios
In [3], Ballani et al. present network bandwidth variability results
for eight real-world cloud setups in the form of bandwidth distribu-
tions. Figure 1 summarizes their findings. Out of eight clouds, six
are highly variable in network bandwidth, with differences between
minimum and maximum values as high as one order of magnitude
(e.g., distribution H).

These bandwidth distributions are the results of benchmarking
network traffic between virtual machines in the respective clouds

Figure 2: Graph representation of the hose model

Table 1: Resource Utilization for HiBench Workloads.

Application CPU Disk Memory Network
Wordcount High Low Moderate Moderate

Sort Low High Moderate High
Terasort High Moderate High High

Naive Bayes Moderate Moderate High Low
K-means High Low Moderate Low
Pagerank Moderate Low Moderate Low

over relatively coarse periods of time (hours-days). These results
provide clear upper and lower bounds of achievable performance
when two virtual machines communicate in a cloud. However, due
to the uncertainty of the underlying conditions (e.g. networking ac-
tivity bursts of other cloud customers’ virtual machines co-located
on the same physical infrastructure), the bandwidth variation gran-
ularity could be much finer (e.g. seconds, minutes). In this work, we
only consider scenarios where the achievable bandwidth of one VM
does not change during the course of a single experiment. Chang-
ing the bandwidth distribution during the course of an experiment
remains for future work.

2.2 The Hose Model
As shown in Section 4, there are several models to implement
bandwidth guarantees in cloud computing setups. We have chosen
to implement the older Hose Model [8], due to its simpler design
and flexibility: in our use-case of emulating real-world setups, we
want to provide VMs with bandwidth guarantees given by the
distributions in Figure 1.

In the hose model (Figure 2), the VM cluster is connected to a
virtual switch that guarantees, for each endpoint (i.e., VM) a certain
egress and ingress bandwidth. Therefore, using the aforementioned
bandwidth distributions, we only have to specify the pair of (egress,
ingress) guarantees for each VM in the cluster. To implement the
hose model in our setup, we use VM-based rate-limiting achieved
through the Linux tc [13] tool.

2.3 Big Data Workloads
We selected a number of six big data applications from the Hi-
Bench [12] suite: Wordcount, Sort, Terasort, K-Means, Bayes, Pager-
ank. Table 1 presents the resource usage characteristics of these
workloads. We characterize these applications in terms of CPU,
Disk, Memory and Network utilization, using three increments
low (1%-30% utilization), moderate (31%-60% utilization), and high

HotCloudPerf Workshop ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

114

(61%-100%). This characteristics are determined from both the Hi-
Bench [12] study and our own empirical analysis. We consider these
workloads representative for a wide range of big data applications,
as they cover a wide spectrum of resource utilization combinations.
The HiBench data size parameter is set to large. Experimenting
with larger problem sizes remains for future work.

2.4 Experimental Workflow
The logical workflow of our experiments is as follows. We deploy
16 VMs in our OpenNebula cluster. Then, we limit the VMs network
bandwidth according to each of the eight bandwidth distributions
depicted in Figure 1. For each bandwidth setup, we run the six big
data applications. Each application is executed 10 times, and we
record average running times and the standard deviation. The six
big data workloads are run on top of Spark [40], a widely-used
in-memory cluster computing engine, which extends the classical
MapReduce model with a very expressive and extensive API.

2.5 Hardware and Software Platforms
We perform our experiments on the local DAS-4 cluster [2]. Each
compute node is equipped with a dual-quad-core Intel E5620 2.4
GHz CPUs and 24GB memory. The nodes are connected by a com-
modity 1Gb/s Ethernet and a Quad Data Rate (QDR) InfiniBand
providing a theoretical peak bandwidth of 32Gb/s. Since the eight
bandwidth distributions presented in Figure 1 contain values of at
most 1Gb/s, in our experiments we use the 1Gb/s Ethernet.

To provision the VMs, the DAS-4 cluster runs OpenNebula [25].
The VMs run Spark 2.0.2, Hadoop 2.7.3, and HiBench 5.0. For our
experiments, we provision 16 VMs, each equipped with 8 virtual
cores, 20GB memory, and a 30GB disk. For our experiments, each
node runs a Spark worker that uses 7 virtual cores (1 virtual core
is reserved for the operating system) and 18GB memory (2GB are
reserved for the operating system).

3 EXPERIMENT RESULTS
In this section we present the results of our study. Using the exper-
imental platform introduced in Section 2, we run six real-world big
data workloads on eight real-world cloud bandwidth distributions.
Our main findings are:

(1) Our experimental framework is effective in emulating band-
width variability for the provisioned VMs.

(2) Network-bound workloads (e.g., Sort, Terasort) are impacted
most by bandwidth variability (up to 1.79 slowdown).

(3) Even CPU-bound applications (e.g., Wordcount, K-means)
exhibit significant slowdowns (up to 1.48 slowdown).

(4) Generally, the more variable setups generate more variance
when repeatedly performing the same experiment.

3.1 Validating the Emulated Setup
We first assess whether our hose model implementation is able
to emulate the eight cloud bandwidth distributions. We conduct
experiments using the Linux iperf [34] tool. We set pairs of VMs to
communicate using four different bandwidth values. Figures 3(a)-
3(d) show the achieved bandwidth of a virtual machine when its
network traffic is limited to bw ∈ {200, 400, 800, 1000} Mb/s. We
notice that the achieved values are, in practice, slightly lower than

the theoretical limitation. However, this is an expected behaviour
and it is important to notice that the difference is always below
10%.

3.2 The Implications of Network Variability on
Big Data Workloads

We run the six big data workloads on the eight bandwidth dis-
tributions. We compare the results achieved with a setup where
the bandwidth is not limited, and thus can make use of the entire
1Gbps the system can achieve. Figure 4 plots the results. For each
application and bandwidth distribution we made 10 repetitions. We
plot the average runtime of each of the six application, and we also
report the variability range.

We find that the more network-bound workloads (i.e., Terasort,
Sort) are not only slower than in the homogeneous setup, but also
exhibit more variability between runs, as shown by the range of
the error bars. As expected, the distributions that contain lower
bandwidth values (A, D, F, H) give the slowest average running
times for each of the six workloads.

We quantify the average slowdown induced by the network vari-
able bandwidth distributions. The results are depicted in Figure 5.
All applications are slowed down by 7 out of 8 scenarios. The only
distribution that does not slow down any application is C. This is an
expected result, as 75% of its bandwidth values are clustered close
together in an interval between 950 Mbit/s and 850 Mbit/s, there-
fore having low variability. Furthermore, we find that distributions
A and D generate the largest slowdowns. These two distributions
contain the smallest bandwidth values and also a large amount of
variability. It is interesting to notice that the distributions with a
median value higher than 500 Mbit/s (B, F, G, H) generate small,
but still significant slowdowns.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 5 10 15 20 25 30 35 40

B
a
n
d
w

id
th

 (
M

b
it
/s

)

Time (s)

Achieved Bandwidth

(a) Bandwidth limit = 200 Mbit/s

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 5 10 15 20 25 30 35 40

B
a
n
d
w

id
th

 (
M

b
it
/s

)

Time (s)

Achieved Bandwidth

(b) Bandwidth limit = 400 Mbit/s

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 5 10 15 20 25 30 35 40

B
a
n
d
w

id
th

 (
M

b
it
/s

)

Time (s)

Achieved Bandwidth

(c) Bandwidth limit = 800 Mbit/s

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 5 10 15 20 25 30 35 40

B
a
n
d
w

id
th

 (
M

b
it
/s

)

Time (s)

Achieved Bandwidth

(d) Bandwidth limit = 1000 Mbit/s

Figure 3: VM achieved bandwidth when network link is lim-
ited to bw ∈ {200, 400, 800, 1000}.

HotCloudPerf Workshop ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

115

1Gbps A B C D E F G H
Bandwidth Distribution

0

10

20

30

40
T

im
e

(s
)

(a) Wordcount

1Gbps A B C D E F G H
Bandwidth Distribution

0

10

20

30

T
im

e
(s

)

(b) Sort

1Gbps A B C D E F G H
Bandwidth Distribution

0
20
40
60
80
100
120
140

T
im

e
(s

)

(c) Terasort

1Gbps A B C D E F G H
Bandwidth Distribution

0
10
20
30
40
50
60

T
im

e
(s

)

(d) Naive Bayes

1Gbps A B C D E F G H
Bandwidth Distribution

0
20
40
60
80
100
120
140

T
im

e
(s

)

(e) K-Means

1Gbps A B C D E F G H
Bandwidth Distribution

0
10
20
30
40
50
60

T
im

e
(s

)

(f) Pagerank

Figure 4: Average Runtime for Wordcount (a), Sort (b), Tera-
sort (c), Naive Bayes (d), K-Means (e), and Pagerank (f) when
deployed on the eight bandwidth distributions and a 1Gbps
homogeneous setup.

A B C D E F G H
Bandwidth Distribution

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75

Sl
ow

do
w

n

(a) Wordcount

A B C D E F G H
Bandwidth Distribution

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75

Sl
ow

do
w

n

(b) Sort

A B C D E F G H
Bandwidth Distribution

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75

Sl
ow

do
w

n

(c) Terasort

A B C D E F G H
Bandwidth Distribution

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75

Sl
ow

do
w

n

(d) Naive Bayes

A B C D E F G H
Bandwidth Distribution

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75

Sl
ow

do
w

n

(e) K-Means

A B C D E F G H
Bandwidth Distribution

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75

Sl
ow

do
w

n

(f) Pagerank

Figure 5: Application Runtime Slowdown forWordcount (a),
Sort (b), Terasort (c), Naive Bayes (d), K-Means (e), and Pager-
ank (f) when deployed on the eight bandwidth distributions.

HotCloudPerf Workshop ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

116

Table 2: Maximum slowdown per application.

Application Maximum
Slowdown

Bandwidth
Distribution

Wordcount 1.61 A
Sort 1.51 D

Terasort 1.79 A
K-Means 1.48 D
Bayes 1.14 A

Pagerank 1.07 A

Finally, we quantify the maximum slowdown per application.
Table 2 depicts the results. Themaximum slowdown ranges between
1.07 (Pagerank) and 1.79 (Terasort). It is clear that the most slowed
down application is the most network-bound. However, even the
more CPU-bound applications, such as K-Means, or Wordcount
suffer from significant performance degradation. Moreover, the two
slowest bandwidth distributions (e.g., A and D) generate the largest
amount of slowdown.

In [26], Ousterhout et al. show that networks are generally not
the bottleneck when running big data applications. Our study com-
plements such results by providing empirical evidence that network
variability has performance variability implications. Therefore, even
though network is not necessarily a bottleneck for big data work-
loads, the absence of predictable network performance also implies
the absence of predictable application performance.

4 RELATEDWORK
In this section we discuss results and studies related to our work.We
identify two categories: (i) literature that quantifies and assesses net-
work variability in clouds; (ii) models for providing infrastructure-
level solutions to achieving predictable network performance; (iii)
literature that addresses the problem of scheduling various types
of workloads in datacenters with heterogeneous network links.

4.1 Network Variability in Cloud Datacenters
Many studies [3, 14, 17–19, 27, 31, 36, 41] have already assessed
the performance variability of cloud datacenter networks. Cloud
vendors offer little to no guarantees when it comes to the network.
The main finding of the work in this category is that network per-
formance is highly variable, in terms of both latency and bandwidth.
The latter’s performance varies in some instances by even a fac-
tor or 5 or more. Moreover, both TCP and UDP performance are
similarly impacted.

4.2 Bandwidth Guarantees in Datacenters
Motivated by these findings, there are many approaches [3, 5, 9, 22,
29, 30] to solve the variability problem at the datacenter infrastruc-
ture layer.

Distributed Rate Limiting [29] (DSL) imposes an overall limit
on the sum of the traffic generated by all of the sites for a given
tenant (if the tenant has VMs in multiple sites). The core focus of
DSL is to support flat-rate, rather than usage-based pricing, and to
allow a given service some flexibility in how it allocates the total
bandwidth among its VMs.

GateKeeper [30] focuses on providing predictable performance.
It attempts to provide each tenant the illusion of a single, non-
blocking switch connecting all VMs. Each VM is given guaranteed
bandwidth, specified per-VM, into and out of this switch. Further-
more, Gatekeeper uses hypervisor-based rate limits, and a feedback-
based mechanism to prevent remote VMs from sending more traffic
to a VM than it is allowed to receive.

Oktopus [3] is an implementation of the Virtual Oversubscribed
Cluster (VOC) model, using hypervisor-based rate limiters together
with an algorithm for placing VMs to meet the requested bandwidth
demands (or to reject requests that cannot bemet.) Because Oktopus
relies on VM placement, it could introduce some delays associated
with moving VMs as workloads change.

ConEx [5] is a model which focuses on the amount of congestion
that each tenant imposes on the network, based on the intuition that
a tenant’s network load that does not create congestion does not
interfere with other tenants. Tenants purchase congestion-bit-rates,
which represent congestion allowances for that tenant. ConEx uses
ECN support from switches to measure congestion, and hypervi-
sor rate-limiters to ensure tenants do not cause more congestion
than they have purchased. The ConEx proposal requires users to
express their requests in terms of congestion allowances instead
of bandwidth guarantees, and hence, it could be hard to provide
predictable behavior.

SecondNet [9] is a Virtual Data Center (VDC) abstraction with
three service models: type-0 service guarantees bandwidth between
pairs of VMs; type-1 service provides ingress/egress guarantees
for a specific endpoints; other traffic is treated as best-effort. An
endpoint can be an entire VM, or a TCP/UDP port on a VM.

4.3 Adapting to Network Heterogeneity
We identify several approaches to adapt Hadoop-based ecosystems
to heterogeneous networks [16, 28, 39, 41]. Such work involves
either a software-defined networking solution to improve MapRe-
duce scheduling, online profiling of tasks, or speculative task re-
execution.

The problem of adapting to network heterogeneity has also
been treated for scientific applications [20] and workflows [6, 35].
Such work involves heuristic scheduling techniques and online
task profiling, and skewed data distribution for in-memory storage.
Furthermore, for cloud-based graph-processing [7], a bandwidth-
aware graph partitioning scheme is deployed to improve graph
algorithm runtimes.

5 CONCLUSION & FUTUREWORK
Current public clouds suffer from significant network bandwidth
variability, due to co-location, congestion and even virtualization
overheads. Big data applications are increasingly deployed at mas-
sive scale on cloud infrastructure. However, big data processing
systems are designed for homogeneous systems (e.g., private clus-
ters), which are not plagued by resource variability.

Therefore, deploying big data applications on clouds raises the
problem of unpredictable performance. In this work, we take a step
towards understanding the performance of big data workloads on
cloud setups with variable network bandwidth. To this end, we
emulate eight real-world cloud bandwidth distributions on which

HotCloudPerf Workshop ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

117

we run six real-world big data workloads. Our main finding is that
even though the most impacted workloads are the network-bound
ones, the workloads bound on other types of workloads are also
slowed down significantly.

For future work we plan to extend the set of experiments to
more types of modern big-data workloads, such as Spark SQL and
streaming applications. Furthermore, our ambition is to build a per-
formance prediction model for big data applications on bandwidth-
variable cloud datacenters and to build a scheduler that takes vari-
ability into account to reduce application slowdowns.

REFERENCES
[1] Michael Armbrust, Reynold S Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K

Bradley, Xiangrui Meng, Tomer Kaftan, Michael J Franklin, Ali Ghodsi, et al. 2015.
Spark sql: Relational data processing in spark. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data. ACM, 1383–1394.

[2] Henri Bal, Dick Epema, Cees de Laat, Rob van Nieuwpoort, John Romein, Frank
Seinstra, Cees Snoek, and Harry Wijshoff. 2016. A medium-scale distributed
system for computer science research: Infrastructure for the long term. Computer
49, 5 (2016), 54–63.

[3] Hitesh Ballani, Paolo Costa, Thomas Karagiannis, and Ant Rowstron. 2011. To-
wards predictable datacenter networks. In ACM SIGCOMM Computer Communi-
cation Review, Vol. 41. ACM, 242–253.

[4] Theophilus Benson, Aditya Akella, and David AMaltz. 2010. Network traffic char-
acteristics of data centers in the wild. In Proceedings of the 10th ACM SIGCOMM
conference on Internet measurement. ACM, 267–280.

[5] B. Briscoe and M. Sridharan. 2012. Network Performance Isolation in Data
Centres using Congestion Exposure (ConEx). (2012).

[6] Cesar G Chaves, Daniel M Batista, and Nelson LS da Fonseca. 2013. Scheduling
cloud applications under uncertain available bandwidth. In Communications
(ICC), 2013 IEEE International Conference on. IEEE, 3781–3786.

[7] Rishan Chen,Mao Yang, XuetianWeng, Byron Choi, BingshengHe, and Xiaoming
Li. 2012. Improving large graph processing on partitioned graphs in the cloud.
In Proceedings of the Third ACM Symposium on Cloud Computing. ACM, 3.

[8] Nick G Duffield, Pawan Goyal, Albert Greenberg, Partho Mishra, Kadangode K
Ramakrishnan, and Jacobus E van der Merive. 1999. A flexible model for re-
source management in virtual private networks. In ACM SIGCOMM Computer
Communication Review, Vol. 29. ACM, 95–108.

[9] Chuanxiong Guo, Guohan Lu, Helen J Wang, Shuang Yang, Chao Kong, Peng
Sun, Wenfei Wu, and Yongguang Zhang. 2010. Secondnet: a data center network
virtualization architecture with bandwidth guarantees. In Proceedings of the 6th
International COnference. ACM, 15.

[10] Zhenhua Guo and Geoffrey Fox. 2012. Improving mapreduce performance in
heterogeneous network environments and resource utilization. In Cluster, Cloud
and Grid Computing (CCGrid), 2012 12th IEEE/ACM International Symposium on.
IEEE, 714–716.

[11] Anthony JG Hey, Stewart Tansley, Kristin Michele Tolle, et al. 2009. The fourth
paradigm: data-intensive scientific discovery. Vol. 1. Microsoft research Redmond,
WA.

[12] Shengsheng Huang, Jie Huang, Jinquan Dai, Tao Xie, and Bo Huang. 2010. The Hi-
Bench benchmark suite: Characterization of the MapReduce-based data analysis.
In Data Engineering Workshops (ICDEW), 2010 IEEE 26th International Conference
on. IEEE, 41–51.

[13] Bert Hubert, Thomas Graf, Greg Maxwell, Remco van Mook, Martijn van Oost-
erhout, P Schroeder, Jasper Spaans, and Pedro Larroy. 2002. Linux advanced
routing & traffic control. In Ottawa Linux Symposium. 213.

[14] Alexandru Iosup, Nezih Yigitbasi, and Dick Epema. 2011. On the performance
variability of production cloud services. In Cluster, Cloud and Grid Computing
(CCGrid), 2011 11th IEEE/ACM International Symposium on. IEEE, 104–113.

[15] Srikanth Kandula, Sudipta Sengupta, Albert Greenberg, Parveen Patel, and Ronnie
Chaiken. 2009. The nature of data center traffic: measurements & analysis.
In Proceedings of the 9th ACM SIGCOMM conference on Internet measurement
conference. ACM, 202–208.

[16] Praveenkumar Kondikoppa, Chui-Hui Chiu, Cheng Cui, Lin Xue, and Seung-Jong
Park. 2012. Network-aware scheduling of mapreduce framework ondistributed
clusters over high speed networks. In Proceedings of the 2012 workshop on Cloud
services, federation, and the 8th open cirrus summit. ACM, 39–44.

[17] Donald Kossmann, Tim Kraska, and Simon Loesing. 2010. An evaluation of
alternative architectures for transaction processing in the cloud. In Proceedings
of the 2010 ACM SIGMOD International Conference on Management of data. ACM,
579–590.

[18] Katrina LaCurts, ShuoDeng, Ameesh Goyal, andHari Balakrishnan. 2013. Choreo:
Network-aware task placement for cloud applications. In Proceedings of the 2013

conference on Internet measurement conference. ACM, 191–204.
[19] Ang Li, Xiaowei Yang, Srikanth Kandula, and Ming Zhang. 2010. CloudCmp:

comparing public cloud providers. In Proceedings of the 10th ACM SIGCOMM
conference on Internet measurement. ACM, 1–14.

[20] Weiwei Lin, Chen Liang, James Z Wang, and Rajkumar Buyya. 2014. Bandwidth-
aware divisible task scheduling for cloud computing. Software: Practice and
Experience 44, 2 (2014), 163–174.

[21] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkatara-
man, Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde, Sean Owen, et al.
2016. Mllib: Machine learning in apache spark. The Journal of Machine Learning
Research 17, 1 (2016), 1235–1241.

[22] Jeffrey C Mogul and Lucian Popa. 2012. What we talk about when we talk about
cloud network performance. ACM SIGCOMM Computer Communication Review
42, 5 (2012), 44–48.

[23] Bogdan Nicolae, Carlos HA Costa, Claudia Misale, Kostas Katrinis, and Yoonho
Park. 2017. Leveraging adaptive I/O to optimize collective data shuffling patterns
for big data analytics. IEEE Transactions on Parallel and Distributed Systems 28, 6
(2017), 1663–1674.

[24] Frank Austin Nothaft, Matt Massie, Timothy Danford, Zhao Zhang, Uri Laser-
son, Carl Yeksigian, Jey Kottalam, Arun Ahuja, Jeff Hammerbacher, Michael
Linderman, et al. 2015. Rethinking data-intensive science using scalable analytics
systems. In Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data. ACM, 631–646.

[25] opennebula 2018. Open Nebula. http://www.opennebula.org. (2018).
[26] Kay Ousterhout, Ryan Rasti, Sylvia Ratnasamy, Scott Shenker, Byung-Gon Chun,

and V ICSI. 2015. Making Sense of Performance in Data Analytics Frameworks..
In NSDI, Vol. 15. 293–307.

[27] Valerio Persico, Pietro Marchetta, Alessio Botta, and Antonio Pescapé. 2015.
Measuring network throughput in the cloud: the case of amazon ec2. Computer
Networks 93 (2015), 408–422.

[28] Peng Qin, Bin Dai, Benxiong Huang, and Guan Xu. 2015. Bandwidth-aware
scheduling with sdn in hadoop: A new trend for big data. IEEE Systems Journal
(2015).

[29] Barath Raghavan, Kashi Vishwanath, Sriram Ramabhadran, Kenneth Yocum,
and Alex C Snoeren. 2007. Cloud control with distributed rate limiting. ACM
SIGCOMM Computer Communication Review 37, 4 (2007), 337–348.

[30] Henrique Rodrigues, Jose Renato Santos, Yoshio Turner, Paolo Soares, and Dorgi-
val O Guedes. 2011. Gatekeeper: Supporting Bandwidth Guarantees for Multi-
tenant Datacenter Networks.. InWIOV.

[31] Jörg Schad, Jens Dittrich, and Jorge-Arnulfo Quiané-Ruiz. 2010. Runtime mea-
surements in the cloud: observing, analyzing, and reducing variance. Proceedings
of the VLDB Endowment 3, 1-2 (2010), 460–471.

[32] D Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar
Ebner, Vinay Chaudhary, Michael Young, Jean-Francois Crespo, and Dan Denni-
son. 2015. Hidden technical debt in machine learning systems. In Advances in
Neural Information Processing Systems. 2503–2511.

[33] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka,
Suresh Anthony, Hao Liu, Pete Wyckoff, and Raghotham Murthy. 2009. Hive: a
warehousing solution over a map-reduce framework. Proceedings of the VLDB
Endowment 2, 2 (2009), 1626–1629.

[34] Ajay Tirumala, Feng Qin, Jon Dugan, Jim Ferguson, and Kevin Gibbs. 2006. Iperf.
(2006).

[35] Alexandru Uta, Ove Danner, Cas van der Weegen, Ana-Maria Oprescu, Andreea
Sandu, Stefania Costache, and Thilo Kielmann. 2017. MemEFS: A network-aware
elastic in-memory runtime distributed file system. Future Generation Computer
Systems (2017).

[36] Guohui Wang and TS Eugene Ng. 2010. The impact of virtualization on network
performance of amazon ec2 data center. In Infocom, 2010 proceedings ieee. IEEE,
1–9.

[37] Tom White. 2012. Hadoop: The definitive guide. " O’Reilly Media, Inc.".
[38] Reynold S Xin, Joseph E Gonzalez, Michael J Franklin, and Ion Stoica. 2013.

Graphx: A resilient distributed graph system on spark. In First International
Workshop on Graph Data Management Experiences and Systems. ACM, 2.

[39] Lenar Yazdanov, Maxim Gorbunov, and Christof Fetzer. 2015. EHadoop: network
I/O aware scheduler for elastic MapReduce cluster. In Cloud Computing (CLOUD),
2015 IEEE 8th International Conference on. IEEE, 821–828.

[40] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion
Stoica. 2010. Spark: Cluster computing with working sets. HotCloud 10, 10-10
(2010), 95.

[41] Matei Zaharia, Andy Konwinski, Anthony D Joseph, Randy H Katz, and Ion Stoica.
2008. Improving MapReduce performance in heterogeneous environments.. In
OSDI, Vol. 8. 7.

HotCloudPerf Workshop ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

118

http://www.opennebula.org

	Abstract
	1 Introduction
	2 Experimental Setup
	2.1 Emulated Cloud Scenarios
	2.2 The Hose Model
	2.3 Big Data Workloads
	2.4 Experimental Workflow
	2.5 Hardware and Software Platforms

	3 Experiment Results
	3.1 Validating the Emulated Setup
	3.2 The Implications of Network Variability on Big Data Workloads

	4 Related Work
	4.1 Network Variability in Cloud Datacenters
	4.2 Bandwidth Guarantees in Datacenters
	4.3 Adapting to Network Heterogeneity

	5 Conclusion & Future Work
	References

