
An Analysis of Workflow Formalisms for
Workflows with Complex Non-Functional Requirements

Laurens Versluis
Computer Systems
Vrije Universiteit

Amsterdam, The Netherlands
l.f.d.versluis@vu.nl

Erwin van Eyk
Distributed Systems Group
Technische Universiteit Delft

Delft, The Netherlands
E.vanEyk@atlarge-research.com

Alexandru Iosup
Computer Systems
Vrije Universiteit

Amsterdam, The Netherlands
a.iosup@vu.nl

ABSTRACT
Cloud and datacenter operators offer progressively more sophisti-
cated service level agreements to customers. The Quality-of-Service
guarantees by these operators have started to entail non-functional
requirements customers have regarding their applications. At the
same time, expressing applications as workflows in datacenters
is increasingly more common. Currently, non-functional require-
ments (NFRs) can only be defined on entire workflows and cannot
be changed at runtime, possibly wasting valuable resources. To
move towards modifiable NFRs at the task level, there is a need
for a formalism capable of expressing this. Existing formalisms do
not support this level of granularity or are restricted to a subset of
NFRs. In this work, we investigate the current support for NFRs
in existing formalisms. Using a library containing workflows with
and without NFRs, we inspect the capability of existing formalisms
to express these requirements. Additionally, we create and evaluate
five metrics to qualitatively and quantitatively compare each for-
malism. Our main findings are that although current formalisms do
not support arbitrary NFRs per-task, the Directed Acyclic Graphs
(DAGs) formalism is the most suitable to extend.

ACM Reference Format:
Laurens Versluis, Erwin van Eyk, and Alexandru Iosup. 2018. An Analysis
of Workflow Formalisms for Workflows with Complex Non-Functional Re-
quirements. In ICPE ’18: ACM/SPEC International Conference on Performance
Engineering Companion , April 9–13, 2018, Berlin, Germany. ACM, New York,
NY, USA, 6 pages. https://doi.org/10.1145/3185768.3186297

1 INTRODUCTION
Expressing applications and processes as workflows is a well-
established practice in various disciplines, including scientific com-
puting, big data processing, business process management, and
cloud computing [16]. These diverse use cases for workflows lead
to a correspondingly diverse set of job-specific constraints or non-
functional requirements (NFRs) associated with parts of workflows.
Examples of these NFRs for workflows are that a particular task

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE ’18, April 9–13, 2018, Berlin, Germany
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5629-9/18/04. . . $15.00
https://doi.org/10.1145/3185768.3186297

needs to be computed in an on-premise database for legal or pri-
vacy reasons, a task with a specific deadline, or a particular task
that needs to be computed on a server with a GPU. Although some
workflowmanagement systems allow users to define NFRs on work-
flows, such as deadlines [9], prior work indicates that just applying
these NFRs on entire workflows still is wasteful [20]. This is an im-
portant problem as minimizing resource usage while still adhering
to the quality demands of customers is increasing in importance.
To address this problem, we aim to refine the granularity and apply
NFRs at the task level. However, despite the popularity of work-
flows, there is no well-defined notion for expressing these NFRs
on a task-based level. Prior work such as [1] have introduced the
concept of task-based NFRs, yet only support specific requirements
such as high-performance. Therefore, in this paper, we aim to ana-
lyze existing formalisms in order to assess their ability to express
workflows with NFRs at the task-based level.

The concept of a workflow can be described as follows. A work-
flow describes the necessary computational steps and their data needs,
required to reach a certain goal [7]. The goal of a workflow can range
from achieving a certain system state to calculating specific data
points. Given this concept, there are several encapsulated concepts.

First, a task represents a computation process or step. This pro-
cess receives data as input through one or more incoming depen-
dency links, processes it and, optionally, emitting the output data
over its outgoing dependency links.

Second, a dependency link or (data) constraint represents the data
transfer from one task A to another task B. Due to the expectation
of the incoming data, task B depends on task A.

Third, each workflow has a clear start and end defined. It has
one or more starting tasks or entry tasks. These tasks can be iden-
tified by having one or more outgoing dependency links, while
not having any incoming dependency links. A workflow having
multiple starting events may have a single task added to emphasize
the initial start of the application as described in [12]. A workflow
concludes with one or more end tasks. These tasks can be recog-
nized by having one or more incoming dependency links, while not
having any outgoing dependency links. A workflow is said to be
completed once all its end tasks have finished their computation.

Based on these definitions, elementary workflow structures can
be identified. Bharathi et al. [5] mention four basic workflow struc-
tures (excluding start and end tasks). These basic workflow struc-
tures are the building blocks of complex workflows.

HotCloudPerf Workshop ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

107

https://doi.org/10.1145/3185768.3186297
https://doi.org/10.1145/3185768.3186297

ICPE ’18, April 9–13, 2018, Berlin, Germany Laurens Versluis, Erwin van Eyk, and Alexandru Iosup

A workflow formalism is a formal grammar, which allows
users to express the workflow concepts using consistent, machine-
readable semantics. There are several reasons for establishing for-
malisms for workflows, including allowing users to work with com-
mon syntax that is parseable by workflow management systems.
Existing workflow formalisms differ in various, often ambiguous as-
pects, such as the popularity, expressiveness, and semantics. For this
reason, a comparison of these workflow formalisms with regards
to extending one with NFRs is a non-trivial endeavor.

NFRs specify quality attributes that the workflow management
system has to adhere to. These attributes often are detailed in
the service level agreement (SLA) through service level objectives
(SLOs). A resource and management system must continuously
monitor if none of these SLOs is being violated. As cloud computing
is moving towards higher-level resource abstractions, workflows
with granular NFRs are becoming increasingly more relevant in
order to express these abstract requirements for common cloud
metrics. The SPEC CLOUD research group notes four important
system properties: elasticity, performance isolation, availability, and
operational risk [11]. To analyze these properties, several metrics
are introduced per property. Many of these metrics can be expressed
as NFRs. Elasticity is important while running any workload, as
minimizing resource consumption while not affecting performance
is important for both the cloud operator and customer. Availability
is necessary when running e.g., a (business) critical job or a job
consuming a lot of time to avoid expensive re-computation in the
case of failure. Performance isolation is important in the face of
e.g., parallelism and multi-tenancy. When serving multiple tenants,
the cloud operator must ensure other tenants are not or minimally
affected by a single tenant. Operational risk is necessary to classify
and map risks such as contention or under- and overprovisioning.

In this work we assign a performance isolation, high-availability,
and resource contention NFR to different applications to observe
the expressiveness of existing formalisms.

Overall, our contribution is threefold:

(1) A quantitative investigation of the popularity of the vari-
ous workflow formalisms in the computer science domain
(Section 2).

(2) A library of six complexworkflows of which three containing
NFRs, including the mapping of these workflows to each of
the selected popular workflows formalism (Section 3).

(3) A comparison of the most popular formalisms in Section 4,
followed by the motivation of which formalism that should
be chosen to extend.

2 SELECTION OF FORMALISMS FOR
DEFINING COMPLEXWORKFLOWS IN
DISTRIBUTED COMPUTING SYSTEMS

In this section we describe the method used to extract the most
applied workflow formalisms currently used in computer systems
literature. Our focus is on investigating the support of existing
formalisms for defining complex workflows. The key idea is that by
using a well-known formalism, we can leverage existing tools built
around this formalism and architectures can be used. If a formalism

Table 1: The number of papers per conference that explicitly
mention one of the three most used formalisms surveyed.

Conference Workflow BPMN Petri net DAG
HPDC 2 0 0 0
NSDI 1 0 0 0
SOCC 0 0 0 0
ICPE 1 1 1 0
Cluster 20 0 0 5
OSDI 1 0 0 0
SIGMETRICS 0 0 0 0
CCgrid 50 1 2 15
ICPP 12 0 0 7
IEEECLOUD 21 1 2 12
IPDPS 8 0 0 5
Total 116 (100%) 3 (3%) 5 (4%) 44 (38%)

requires modifications, creating an extension that has backwards-
compatibility allows for existing workflows to be defined as well,
which increases its traction and adoption.

2.1 Method
To select literature on workflow formalisms, we perform a com-
prehensive survey of existing literature with an explicit focus on
workflows.We first make a selection of conferences having topics in
distributed computing systems. From these conferences, we select
papers in the span of 2012 – 2016, that have the word “workflow”
in either their title or abstract. We then manually investigate each
paper that meets these criteria and keep track of explicit mentions
of the use of workflow formalisms. Implicit mentions such as a
workflow management system, which supports a certain workflow
formalism, are not be taken into account.

The conferences we investigate are HPDC, NSDI, SOCC, ICPE,
Cluster, OSDI, SIGMETRICS, CCGrid, ICPP, IEEECLOUD, and
IPDPS. These conferences have been selected to reflect the cur-
rent state-of-the-art, diverse approaches, and directions of research
regarding scheduling workflows in (cloud) datacenters.

2.2 Results
In total, 116 papers meet the criteria defined in the previous section.
Table 1 shows the distribution of these papers among the eleven
surveyed conferences. Additionally, the three most used formalisms
are outlined in the table: Business Process Model and Notation
(BPMN), Petri net (PN), and Directed Acyclic Graph (DAG).

From Table 1 we observe the DAG formalism is by far the most
applied. This supports statements made by previous work on DAG
popularity in e.g., [16] and [25]. In the following sections, we will
investigate the support for NFRs of these three formalism.

3 A LIBRARY OF COMPLEXWORKFLOWS
WITH ANDWITHOUT NON-FUNCTIONAL
REQUIREMENTS

To investigate the characteristics of the selected formalisms, we
need a library containing complexworkflows bothwith andwithout
NFRs. As shown by [13], the current state of cloud computing has
made it economically and technically appealing to execute complex,

HotCloudPerf Workshop ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

108

An Analysis of Workflow Formalisms for
Workflows with Complex Non-Functional Requirements ICPE ’18, April 9–13, 2018, Berlin, Germany

often scientific, workflows there rather than use self-managed dedi-
cated HPC clusters. In this section we will introduce six workflows,
consisting of three existing applications without NFRs and three
fictive, yet representative workflows with NFRs. Next, we describe
each formalism and map the six workflows on them. From these
mappings, we assess whether the current formalisms are capable
of expressing NFRs.

3.1 Workflows
Table 2: Characteristics of the BLAST, Montage and Epige-
nomics workflows.

Workflow Domain CPU IO Memory
BLAST Bioinformatics High Mid Mid
Montage Astronomy Low High Low
Epigenomics Bioinformatics High Low Low

Figure 1: The Montage workflow structure.

First, we describe three real, complex workflows structures:
BLAST (bioinformatics), Montage (astronomy), and Epigenomics
(bioinformatics). These belong to the class of scientific workflows
and have different characteristics, visible in Table 2.

The BLAST workflow is a bioinformatics application to perform
rapid sequence comparisons. It can be applied in a variety of con-
texts including straight-forward DNA or protein sequence database
searches [3]. BLAST is characterized by its high CPU and medium
memory and IO consumption.

The Montage workflow is an astronomy application in which
custom mosaics of the sky are created using a set of input images [4,

5, 27]. This workflow is characterized by its IO-intensive behaviour.
In contrast to the BLAST and Epigenomics structures, entry nodes
pass data to several nodes at later levels. Levels are defined by tasks
that have the same distance from the entry task. Figure 1 visualizes
the Montage workflow structure.

The Epigenomics workflow is a CPU intensive application to
automate the execution of various genome sequencing operations
[5, 18]. Different from BLAST and Montage, it features a high par-
allel chain structure with a single entry node.

Next, we introduce three fictive yet representative workflows
with availability, performance isolation, and operational risk NFRs
as specified in Section 1. To maintain the representativeness of the
workflows, we select existing, real-world workflows and set NFRs
on (some of) their tasks. The workflow structure and properties
(e.g. task runtime) are left untouched.

The first workflow originates from the Big Data domain. The
BTWorld workflow is a workflow of coupled MapReduce jobs that
is derived from the BitTorrent network [8, 10]. In this workflow,
the AH, TKSL, TKSG, TKHL, and TKHG queries are the most time
consuming [10]. As such, it is preferred to keep the contention
risk low. For example, the contention risk rc defined in [11] is not
allowed to exceed 0.9.

The second workflow is a modified version of the Epigenomics
workflow. As Epigenomics features a highly parallel structure, per-
formance isolation is important. As the wait time of the MapMerge
step is determined by the slowest parallel chain, performance im-
balance will affect the runtime. For example, in this scenario, a
maximum performance imbalance of 10% can be set.

Figure 2: The MapReduce workflow structure.

The third workflow is a MapReduce workflow. This workflow
consists of a master (M), application master (AM), and several map,
shuffle, and reduce tasks. As the master monitors the several appli-
cation masters (in this workflow there is one), and the application
master monitors the other tasks, these two nodes require high
availability. As availability is usually defined by uptime, an uptime
guarantee of 99.99999% can be set for this application.

The other tasks do not require high availability as they can
be restarted by the application master. The MapReduce workflow
structure is visible in Figure 2.

HotCloudPerf Workshop ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

109

ICPE ’18, April 9–13, 2018, Berlin, Germany Laurens Versluis, Erwin van Eyk, and Alexandru Iosup

Table 3: Mapping of the six complex workflows to the BPMN formalism.

Workflow E A G F D T P
BLAST {estar t , eend } {a1,a2, . . . ,aA} {д1,д2, . . . ,дM+R} { f1, f2, . . . , fB} {d1,d2, . . . ,dC} {} {p1}
Montage {estar t , eend } {a1,a2, . . . ,aD} {д1,д2, . . . ,дN+S} { f1, f2, . . . , fE} {d1,d2, . . . ,dF} {} {p1}
Epigenomics {estar t , eend } {a1,a2, . . . ,aG} {д1,д2, . . . ,дO+T} { f1, f2, . . . , fH} {d1,d2, . . . ,dI} {} {p1}
BTWorld {estar t , eend } {a1,a2, . . . ,a10} {д1,д2, . . . ,дP+U} { f1, f2, . . . , f14} {d1,d2, . . . ,d12} {} {p1}
Mod. Epigenomics {estar t , eend } {a1,a2, . . . ,aG} {д1,д2, . . . ,дO+T} { f1, f2, . . . , fH} {d1,d2, . . . ,dI} {} {p1}
MapReduce {estar t , eend } {a1,a2, . . . ,aJ} {д1,д2, . . . ,дQ+V} { f1, f2, . . . , fK} {d1,d2, . . . ,dL} {} {p1}

3.2 Mapping to BPMN
The BPMN Version 2.0 (BPMN 2.0) is a visual standard for designing
and modelling (business) workflows [1]. It is often used to design
workflows at a high-level, targeted at human readability, and the
most used business process model [21].

Definition 3.1. [26] defines a BPMN 2.0 workflowW as:

W =< E,A,G, F ,D,T , P >

• E, the set of events.
• A, the set of activities.
• G, the set of gateways.
• F , the set of flows.
• D, the set of data.
• T , the set of artefacts.
• P , the set of swimlanes.

To outline each workflow in BPMN, we assume the following.
• BLAST contains A tasks, B constraints, and C units of data.
• Montage contains D tasks, E constraints, and F units of data.
• Epigenomics contains G tasks, H constraints, and I units of
data (the same holds for the modified version).
• BTWorld contains 10 tasks, 14 constraints, and 12 units of
data.
• MapReduce contains J tasks, K constraints, and L units of
data.

In the context of BPMN 2.0, we assume thatM,N ,O, P , andQ tasks
havemultiple outgoing flows for BLAST,Montage, (modified) Epige-
nomics, BTWorld, and MapReduce respectively. Next, we assume
R, S,T ,U , and V tasks require a merge gate because of multiple
incoming flows for BLAST, Montage, (modified) Epigenomics, BT-
World, and MapReduce respectively. The details for each workflow
are presented in Table 3. As we can observe, each workflow has a
similar structure in BPMN. All workflows have a single start and
end event and are contained in one pool. The NFRs required in the
modified Epigenomics, BTWorld, and MapReduce workflow cannot
be expressed in the formalism.

3.3 Mapping to PN
Petri nets (PNs) are state-transition systems that extend elementary
nets [19]. They are useful for describing and studying informa-
tion processing systems that feature concurrent, asynchronous,
distributed, parallel, non-deterministic, and/or stochastic charac-
ters [17].

Definition 3.2. [23] defines a Petri net PN as:

PN = (P ,T , F)

• P is a finite set of places.

Table 4: The elements per workflow, modeled using PNs.
Workflow P T F
BLAST {P1, P2, . . . , PA} {t1, t2, . . . , tB} { f1, f2, . . . , fM}
Montage {P1, P2, . . . , PD} {t1, t2, . . . , tE} { f1, f2, . . . , fN}
Epigenomics {P1, P2, . . . , PG} {t1, t2, . . . , tH} { f1, f2, . . . , fO}
BTWorld {P1, P2, . . . , P10} {t1, t2, . . . , t14} { f1, f2, . . . , fP}
Mod. Epigenomics {P1, P2, . . . , PG} {t1, t2, . . . , tH} { f1, f2, . . . , fO}
MapReduce {P1, P2, . . . , PJ} {t1, t2, . . . , tK} { f1, f2, . . . , fQ}

Table 5: The elements per workflow, modeled using DAGs.

Workflow V E
BLAST {v1,v2, . . . ,vA} {e1, e2, . . . , eB}
Montage {v1,v2, . . . ,vD} {e1, e2, . . . , eE}
Epigenomics {v1,v2, . . . ,vG} {e1, e2, . . . , eH}
BTWorld {v1,v2, . . . ,v10} {e1, e2, . . . , e14}
Mod. Epigenomics {v1,v2, . . . ,vG} {e1, e2, . . . , eH}
MapReduce {v1,v2, . . . ,vI} {e1, e2, . . . , eJ}

• T is a finite set of transitions.
• F ⊆ (PxT)

⋃
(TxP) is a set of arcs (flow relations).

To outline the elements for each workflow using PNs, we assume
the same information as in Section 3.2. In addition, we assume the
BLAST, Montage, (modified) Epigenomics, BTWorld, and MapRe-
duce workflows to have M,N ,O, P , and Q arcs respectively. The
outlines are visible in Table 4. From this table we observe that we
cannot express that the BTWorld, modified Epigenomics workflow,
and MapReduce workflows have NFRs.

3.4 Mapping to DAG
DAGs are frequently used to model (scientific) workflows [25]. They
are used in many areas of computer science, including distributed
systems. As the name implies, the graph dependency structure
may not contain cycles, unlike BPMN and PNs. While the absence
of support for loops is the biggest limitation [6], it simplifies the
processing and scheduling of tasks in cloud environments. Note
that tasks internally are allowed to use loops in their functions.

Definition 3.3. The definition of a DAG G is

G =< V ,E >

• V is the set of vertices.
• E is the set of directed edges.

To outline the elements for each workflow using DAGs, we again
assume the same information as in Section 3.2. The outline per
workflow is given in Table 5. Just like BPMN and PN, we cannot
express the NFRs using DAGs.

HotCloudPerf Workshop ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

110

An Analysis of Workflow Formalisms for
Workflows with Complex Non-Functional Requirements ICPE ’18, April 9–13, 2018, Berlin, Germany

3.5 Results
Given the results in section 3, we observe all workflows show a
similar structure for all formalisms. Yet none of the NFRs can be
fully represented in the mappings. Therefore, We conclude that the
current most used formalisms cannot express NFRs requirements.

4 A QUALITATIVE AND QUANTITATIVE
COMPARISON OF EXISTINGWORKFLOW
FORMALISMS

Although the investigated workflow formalisms do not have suffi-
cient support for NFRs, it is still possible to extend one of these for-
malisms in order to support NFRs. Extending one of these existing
formalisms has many clear advantages over attempting to develop
a completely novel formalism, such as existing tools, communities,
and workloads. Especially in cloud environments, extending an-
other, more ubiquitous formalism potentially increases the portabil-
ity of existing workloads, as well as lowers the barrier to introduce
interoperability between different cloud providers. Therefore, in
the remainder of this chapter a quantitative, as well as, qualitative
comparison is made between the three selected formalisms, BPMN,
PN, and DAG, in order to determine which formalism to extend.

4.1 Method
In this section the method for comparing the workflow formalisms
will be discussed. We introduce several metrics to quantitatively
and qualitatively compare the selected formalisms. The overall
method will consist of a table comparing each of the formalism on a
combination of both qualitative and quantitative metrics. For each
metric a description, argumentation regarding the relevance of the
metric and, if applicable, what value is most preferred are provided.

Complexity In this context complexity is a measure as the
perceived complexity of a given formalism. We use the car-
dinality of the set of symbols defined in each formalism as
a measure of the complexity. Intuitively, a formalism that
requires more abstract concepts or symbols to convey the
same workflow is more difficult to understand by users and
more error prone.

Utilization Related to the measure of complexity, is the mea-
sure of utilization. The utilization of a formalism is an indica-
tion of how well the formalism fits the context of workflows.
We measure the utilization as the percentage of symbols
used to model the Montage workflow compared to the total
number of symbols that the formalism defines. Formalisms
fitting the target applications will have a higher utilization,
which is desired.

Supports loops The support for loops in workflows is a sim-
ple, yet impactful differentiator between formalisms. The
support for loops allows workflows to be more expressive,
at the expense of workflows becoming potentially non-
deterministic. Due to the added complexity of having support
for non-determinism in workflows, either full support or no
support at all is preferred over ’limited’ support.

Support for Non-Functional Requirements (SNFR) The
main focus of this work is to establish a formalism to express
task-level NFRs. Even though the surveyed formalism do

Table 6: Comparison of BPMNs, PNs and DAGs using the
metrics defined in Section 4.1.

Properties BPMN PN DAG
Complexity 6 4 2
Utilization < 6% 100% 100%
Supports loops Yes Limited No
SNFR Limited No No
Popularity 4% 3% 38%

not support SNFRs at a task-level as shown in section 3,
there might be formalisms that already have a notion of
SNFRs to extend. Similar to the support for loops, here
we either prefer full support or no support at all. Having
limited support will solely increase the complexity of the
formalism, while not being expressive enough to express
with the various NFRs.

Popularity In section 2 we have performed a comprehensive
survey to inspect which formalisms are most applied. For
this metric the results from that section will be reused as
the percentage of usages of a certain workflow formalism
in papers. The reason for this is that popularity is an im-
portant factor for the eventual support and adoption of the
formalism. Extending a popular workflow formalism would
also allow for compatibility and easy integration of exist-
ing tools, communities and workloads. Moreover, a popular
formalisms tend to have more tools available. In this case a
higher popularity is preferred.

4.2 Results
The results of the workflow formalism comparison can be found in
table 6. Overall, there is much diversity in characteristics between
each formalism. The complexity metric shows that there is a distinct
difference in complexity between the formalisms, where BPMN is
the most complex. Moreover, the utilization metric shows that,
although more complex, the actual appropriateness of BPMN for
scientific workflows is low, where DAGs and PNs both do seem to be
appropriate given their low complexity and high utilization. In the
support for loops all of the investigated workflow formalisms take
a different approach. The DAG workflow formalism does not have
any support for loops, while BPMN does have complete support
for it. As concluded in section 3 not a single workflow formalism
currently has sufficient support for NFRs. BPMN does have some
support for NFRs as noted in the comparison. However, the support
is limited and is not extendible to all the NFRs we desire. Finally,
where DAGs are very popular in the scientific domain, PNs and
BPMNs are less common.

4.3 Discussion
These results of this comparison lead to a decision of which work-
flow formalism to extend. The BPMN formalism is needlessly com-
plex, given that the utilization of the formalism symbols is very low.
Although it supports loops and has very limited support for NFRs,
this is not a winning argument. Introducing NFRs in this formalism
would either increase the complexity even more or might break
compatibility with existing BPMN workflows. Finally, it is clear
that BPMN is not popular in the target domain.

HotCloudPerf Workshop ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

111

ICPE ’18, April 9–13, 2018, Berlin, Germany Laurens Versluis, Erwin van Eyk, and Alexandru Iosup

The PN formalism is less complex, while having a higher utiliza-
tion than BPMN. It does have limited loop support, which might
complicate the introduction of NFRs. Additionally, like BPMN, PN
is not popular in the target domain of cloud computing.

Therefore, themost optimal workflow formalism to extend seems
to be DAGs. Similar to PNs it has a very low complexity, while
being very applicable to the relevant workflows. It does not have
support for loops and NFRs, which allows for easier extension in
these areas, without having to break compatibility with existing
use cases. Finally, the popularity of DAGs is a very strong argument
in favor of this workflow formalism. As this would also imply that
most existing tools and workflows engines have support for DAGs.

5 RELATEDWORK
Prior works has attempted to extend formalisms to allow express-
ing NFRs. Bocciarelli et al. [1] propose an extension of BPMN to
allow for NFRs. While mentioning the NFRs also targeted by Mag-
naData [14] e.g., availability, high performance, and security, their
formalism does not support all of them. Tang et al. [22] propose an
approach where tasks are marked as e.g., IO- or CPU-intensive. This
allows schedulers to take into account tasks behavior and select
more appropriate resources. A drawback using this approach is not
being able to specify values. Different tasks may require different
percentages of availability, which this approach does not support.

Abiteboul et al. [2] introduce a framework to compare data-
driven formalisms using Views. Kim et al. mention a research
methodology for comparing formalisms [15]. In particular, they
argue the validity for users and analyst’s ability to perform model-
ing tasks are central. Dependent and independent variables play a
key role in this comparison. Task performance, perceived useful-
ness, comprehension, and discrepancy are mentioned as measures.

6 CONCLUSION AND ONGOINGWORK
In this paper we outline basic workflow concepts and introduce a
library of six complex workflows of which three containing non-
functional requirements (NFRs). Using our library, we conclude
that none of the surveyed formalisms is able to express NFRs at the
granularity we desire. To investigate which formalism is the most
suitable to extend, we create five metrics for quantitative and quali-
tative comparison. From the results of this comparison, we argue
that the DAGs formalism is the most suitable workflow formalism
to extend to allow for NFRs at the task-based level. DAGs feature
the smallest set of construct, are extensively used in literature, and
are supported by most workflow management systems.

In our ongoing work, we will focus on extending a workflow
formalism to incorporate NFRs at a task-based level as specified in
this work. Using this extended formalism, ongoing research will be
conducted in several directions.

A future direction of research is towards modifications of NFRs
at runtime. Modifications at runtime are necessary in dynamic sys-
tems, especially when conditions change. Research on the impact of
these dynamic changes is necessary to understand the implication
of such changes. Investigate changes required to current work-
flow engines to support a new formalism, possibly with dynamic
NFRs, is another direction of research. This will allow conducting
experiments in simulation or real world scenarios.

Another direction of future and ongoing research is into intro-
ducing DAG-based workflows along with NFRs to emerging fields
within cloud computing, including the serverless computing par-
adigm and Function-as-a-Service (FaaS) model. As a part of the
SPEC CLOUD research group we have found that both workflows
and NFRs are promising future directions to explore for this para-
digm [24]. The high level of abstraction and functional nature of
this cloud model is a good fit for the abstraction of technical details
of both workflows and NFRs. In the future, we want to explore this
topic in depth, evaluating workflows supporting NFRs with, next
to the common cloud metrics[11], other NFRs such as policies on
how to deal with version upgrades.

REFERENCES
[1] 2011. A BPMN extension for modeling non functional properties of business

processes, author=Bocciarelli, Paolo and others. In DEVS Integrative M&S Sympo-
sium.

[2] Serge Abiteboul et al. 2012. Comparing workflow specification languages: a
matter of views. TODS 37 (2012).

[3] Stephen F Altschul et al. 1990. Basic local alignment search tool. Journal of
molecular biology 215, 3 (1990).

[4] G Bruce Berriman et al. 2004. Montage: a grid-enabled engine for delivering
custom science-grade mosaics on demand. In SPIE Astronomical Telescopes+ In-
strumentation.

[5] Shishir Bharathi et al. 2008. Characterization of scientific workflows. In WORKS
2008. Third Workshop on. IEEE.

[6] Jorge Cardoso et al. 2003. Workflow quality of service. In Enterprise Inter-and
Intra-Organizational Integration. Springer.

[7] Ewa Deelman et al. 2015. Pegasus, a workflow management system for science
automation. FGCS 46 (2015).

[8] Bogdan Ghit et al. 2014. Balanced resource allocations across multiple dynamic
MapReduce clusters. In SIGMETRICS, Vol. 42. ACM.

[9] Robert Grandl et al. 2016. Altruistic Scheduling in Multi-Resource Clusters. In
OSDI.

[10] Tim Hegeman et al. 2013. The BTWorld use case for big data analytics: Descrip-
tion, MapReduce logical workflow, and empirical evaluation. In IEEE BigData.

[11] Nikolas Herbst et al. 2016. Ready for Rain? A View from SPEC Research on the
Future of Cloud Metrics. arXiv preprint arXiv:1604.03470 (2016).

[12] Alexey Ilyushkin et al. 2015. Scheduling workloads of workflows with unknown
task runtimes. In CCGRID. IEEE.

[13] Alexey Ilyushkin et al. 2017. An Experimental Performance Evaluation of Au-
toscaling Policies for Complex Workflows. In ICPE.

[14] Alexandru Iosup. 2017. MagnaData: Massivizing Datacenter Scheduling to Bring
All Data Services to All People. (2017). http://www.ds.ewi.tudelft.nl/~iosup/
MagnaData/

[15] Young-Gul Kim et al. 1995. Comparing Data Modeling Formalisms. Commun.
ACM 38, 6 (1995).

[16] Ji Liu et al. 2015. A survey of data-intensive scientific workflow management.
GC 13, 4 (2015).

[17] Tadao Murata. 1989. Petri nets: Properties, analysis and applications. Proc. IEEE
77, 4 (1989).

[18] Maria Rodriguez et al. 2016. A taxonomy and survey on scheduling algorithms
for scientific workflows in IaaS cloud computing environments. CCPE (2016).

[19] Grzegorz Rozenberg et al. 1998. Elementary net systems. In Lectures on Petri
Nets I: Basic Models.

[20] Siqi Shen et al. 2015. An Availability-on-Demand Mechanism for Datacenters. In
CCGrid.

[21] Marigianna Skouradaki et al. 2015. On the road to benchmarking BPMN 2.0
workflow engines. In ICPE.

[22] Zhuo Tang et al. 2016. An optimized MapReduce workflow scheduling algorithm
for heterogeneous computing. SC 72, 6 (2016).

[23] Wil M. P. van der Aalst. 1998. The Application of Petri Nets to Workflow Man-
agement. JCSC 8, 1 (1998).

[24] Erwin van Eyk et al. 2017. The SPEC cloud group’s research vision on FaaS and
serverless architectures. In IWSC.

[25] Marek Wieczorek et al. 2009. Towards a general model of the multi-criteria
workflow scheduling on the grid. FGCS 25, 3 (2009).

[26] Peter YH Wong et al. 2008. A process semantics for BPMN. In International
Conference on Formal Engineering Methods.

[27] Zhao Zhang et al. 2012. Design and analysis of data management in scalable
parallel scripting. In SC.

HotCloudPerf Workshop ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

112

http://www.ds.ewi.tudelft.nl/~iosup/MagnaData/
http://www.ds.ewi.tudelft.nl/~iosup/MagnaData/

	Abstract
	1 Introduction
	2 Selection of Formalisms for Defining Complex Workflows in Distributed Computing Systems
	2.1 Method
	2.2 Results

	3 A Library of Complex Workflows With and Without Non-Functional Requirements
	3.1 Workflows
	3.2 Mapping to bpmn
	3.3 Mapping to petrinet
	3.4 Mapping to dag
	3.5 Results

	4 A Qualitative and Quantitative Comparison of Existing Workflow Formalisms
	4.1 Method
	4.2 Results
	4.3 Discussion

	5 Related Work
	6 Conclusion and Ongoing Work
	References

