
Package-Aware Scheduling of FaaS Functions
Cristina L. Abad

Escuela Superior Politécnica del

Litoral, ESPOL, Ecuador

cabad@fiec.espol.edu.ec

Edwin F. Boza

Escuela Superior Politécnica del

Litoral, ESPOL, Ecuador

eboza@fiec.espol.edu.ec

Erwin van Eyk

TU Delft, The Netherlands

Platform9 Inc., USA

E.vanEyk@atlarge-research.com

ABSTRACT
We consider the problem of scheduling small cloud functions on

serverless computing platforms. Fast deployment and execution of

these functions is critical, for example, for microservices architec-

tures. However, functions that require large packages or libraries

are bloated and start slowly. A solution is to cache packages at

the worker nodes instead of bundling them with the functions.

However, existing FaaS schedulers are vanilla load balancers, ag-

nostic of any packages that may have been cached in response to

prior function executions, and cannot reap the benefits of pack-

age caching (other than by chance). To address this problem, we

propose a package-aware scheduling algorithm that tries to assign

functions that require the same package to the same worker node.

Our algorithm increases the hit rate of the package cache and, as a

result, reduces the latency of the cloud functions. At the same time,

we consider the load sustained by the workers and actively seek

to avoid imbalance beyond a configurable threshold. Our prelimi-

nary evaluation shows that, even with our limited exploration of

the configuration space so-far, we can achieve 66% performance

improvement at the cost of a (manageable) higher node imbalance.

CCS CONCEPTS
•Computer systems organization→Cloud computing; • Soft-
ware and its engineering→ Scheduling; •Networks→ Cloud
computing;

KEYWORDS
functions-as-a-service; scheduling; serverless computing; cloud

computing; load balancing

ACM Reference Format:
Cristina L. Abad, Edwin F. Boza, and Erwin van Eyk. 2018. Package-Aware

Scheduling of FaaS Functions. In ICPE ’18: ACM/SPEC International Confer-
ence on Performance Engineering Companion , April 9–13, 2018, Berlin, Ger-
many. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3185768.

3186294

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ICPE ’18, April 9–13, 2018, Berlin, Germany
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5629-9/18/04. . . $15.00

https://doi.org/10.1145/3185768.3186294

1 INTRODUCTION
The serverless computing paradigm [8, 19] is increasingly being

adopted by cloud tenants as it facilitates the development and com-

position of applications while relieving the tenant of the manage-

ment of the software and hardware platform. Moreover, by making

the server provisioning transparent to the tenant, this model makes

it straightforward to deploy scalable applications in the cloud.

Within the context of serverless computing, the Function-as-a-
Service (FaaS) model enables tenants to deploy and execute cloud

functions on the cloud platform. Cloud functions are typically small,

stateless, with a single functional responsibility, and are triggered

by events. The FaaS cloud provider takes care of managing the

infrastructure and other operational concerns, enabling developers

to easily deploy, monitor, and invoke cloud functions [19]. These

functions can be executed on any of a pool of servers managed by

the cloud provider and potentially shared between the tenants.

The FaaS model holds good promise for future cloud applications,

but raises new performance challenges that can hinder its adop-

tion [18]. One of these performance challenges is the scheduling

or mapping of cloud functions to a specific worker node, as this

task may entail conflicting goals [8, 13, 18]: (1) Minimize node im-

balance, (2) maximize code locality, and (3) maximize data locality.

Current load balancers already achieve (1), while (3) is only a goal

of data-intensive workflows (and as such, the workflow scheduler

should work in conjunction with the function scheduler to achieve

this goal). In this work, we focus in achieving (2), which is becom-

ing progressively more important as the number, complexity, and

desired performance requirements of cloud functions increases.

Small cloud functions can be launched rapidly, as they run in pre-

allocated virtual machines (VMs) and containers. However, when

these functions depend on large packages their launch time slows

down; this affects the elasticity of the application, as it reduces

its ability to rapidly respond to sharp load bursts [13]
1
. Moreover,

long function launch times have a direct negative impact on the

performance of serverless applications using the FaaS model [18].

A solution is to cache packages at the worker nodes, leading to

speed-ups of up to 2000x when the packages are preloaded prior

to function execution instead of having to bundle them with the

cloud function (for workloads that require only one package) [14].

In sum, code locality improves performance as it reduces the time

that it takes to load packages, and thus, reduces request latency.

Existing FaaS schedulers—like those from OpenWhisk, Fission

and OpenLambda—are simple load balancers, unaware of any pack-

ages that may have been cached and preloaded in response to prior

1
For simplicity, in this paper we talk about large packages, but the start-up time is

not only due to having to download the package; the local installation and run-time

import processes also add overhead. The whole process can take on average more than

four seconds, with close to half of that time attributable to the download time [13, 14].

HotCloudPerf Workshop ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

101

https://doi.org/10.1145/3185768.3186294
https://doi.org/10.1145/3185768.3186294
https://doi.org/10.1145/3185768.3186294

function executions, and therefore cannot reap the benefits of pack-

age caching (except by chance). To address this problem, we propose

a novel approach to scheduling cloud functions on FaaS platforms

with support for caching packages required by the functions. To-

wards this end, our contributions consist of the following:

(1) We present the preliminary design of our package-aware

scheduler for FaaS platforms in section 3. The proposed algo-

rithm aims to maintain a good balance between maximizing

cache affinity and minimizing the node imbalance.

(2) Besides the proposed algorithm for pull-based scheduling,

we identify potential extensions for alternative forms of

scheduling: push-based scheduling in section 3.4, distributed

scheduling in section 3.5, and how to extend the algorithm

to deal with multiple packages in section 3.6.

(3) In section 4 we present a preliminary evaluation of our

package-aware scheduling algorithm. Using simulation with

synthetic workloads we demonstrate that our approach can

improve function latency at the cost of node imbalance.

2 BACKGROUND: PACKAGE CACHING
WITH PIPSQUEAK

Our scheduling algorithm assumes that there is a package cache at

each worker node within the FaaS platform. In particular, we plan

on using the Pipsqueak package cache for the OpenLambda open-

source FaaS platform [8, 13]. The goal of Pipsqueak is to reduce

the start-up time of cloud functions via supporting lean functions

whose required packages are cached at the worker nodes.

Pipsqueak maintains a set of Python interpreters with packages

pre-imported, in a sleeping state. When a cloud function is assigned

to a worker node, it checks if the required packages are cached. To

use a cached entry, Pipsqueak: (1) Wakes up and forks the corre-

sponding sleeping Python interpreter from the cache, (2) relocates

its child process into the handler container, and (3) handles the

request. If a cloud function requires two packages that are cached

in different sleeping interpreters, then only one can be used and

the missing package must be loaded into the child of that container

(created by step 2 above). To deal with cloud functions with multiple

package dependencies, Pipsqueak supports a tree cache in which

one entry can cache package A, another entry can cache package

B, and a child of either of these entries can cache both packages.

Having pre-initialized packages in sleeping containers speeds

up function start-up time because it eliminates the following steps

present in an unoptimized implementation: (1) downloading, (2)

installing, and (3) importing the package. The last step also includes

the time to initialize the module and its dependencies. Especially for

cloud functions with large libraries, this process can be extremely

time consuming, as it can take 4.007s on average [14].

3 PROPOSED DESIGN
In this section, we describe the goals and preliminary design of our

function scheduler. We use the generic terms task and worker to
describe the design. Tasks are cloud functions that need to be exe-

cuted on worker nodes. A worker node is capable of running many

tasks simultaneously and can be, for example, a virtual machine

managed by a container orchestration system such as Kubernetes.

3.1 System model and assumptions
In section 3.2 we outline the goals for a package-aware scheduler

for FaaS functions; our proposed scheduling algorithm is described

in section 3.3. This algorithm assumes a pull-based model where a

centralized scheduler assigns tasks to queues. When a worker has

spare capacity, it contacts the scheduler to get a function assignment

from one of the functions at the head of the task queues. In other

words, as shown in Figure 1, we assume a centralized scheduler

from which tasks are pulled by the worker nodes. We discuss how

to relax these assumptions for push-based scheduling in section 3.4

and for distributed scheduling in section 3.5.

Package caching. We assume that there is a package or library

caching mechanism implemented at the worker level; as described

in section 2. In this work, we consider the case where the sleeping

containers in the package cache have been preloaded with single

packages. This means, that if a cache has preloaded packages A

and B, it would have done so in independent sleeping containers,

and a function requiring both A and B can only leverage one of the

two. In case of a function depending on more than one package, the

additional packages would need to be loaded on-demand. For more

details on how the Pipsqueak package cache works, see section 2.

Our scheduler is agnostic of the contents of the worker caches.

An alternative approach would be to keep track of the information

of which packages are cached by which workers. However, we did

not pursue this idea as we suspect that this approach would impose

a significant overhead on the system (network communications,

resources to store, and managing the caching directory component).

We seek to achieve scheduling affinity for the largest package

required by a task, as this is the package that is most useful to

accelerate its loading time. In section 3.6 we discuss how to extend

the algorithm to consider multiple package requirements.

3.2 Conflicting goals
To balance the load, a single first-come-first-served (FCFS) queue

is sufficient for the pull-based model. The analogous approach in

the push-based model is to use a Round-Robin assignment, though

this is not optimal, as the resource consumption of tasks may vary

significantly [11]. Better alternatives are Join-the-Shortest-Queue

(JSQ) [7] and Join-Idle-Queue (JIQ) [11].

Tomaximize cache affinity (of the package cache), we can use

consistent hashing [9] to assign all tasks that require a particular

package to the same worker.
2
However, as package popularity is

not uniformly distributed, this approach would create hot-spots,

overloading workers that cache popular packages.

In this paper, our goal is to maintain a good balance between
maximizing cache affinity and minimizing the node imbalance.

3.3 Proposed scheduling algorithm
Algorithm 1 shows the details of the proposed procedure. The sched-

uler keeps track of one FIFO scheduling queue per worker, and uses

hashing to try to assign all tasks that require the same package to

the sameworker, to encourage cache affinity. To avoid overloading a

worker to which one or more popular packages map, a configurable

2
This is in case we are optimizing only for affinity with the largest package required by

each task. To maximize affinity of multiple packages simultaneously, we could model

this as a mathematical optimization problem.

HotCloudPerf Workshop ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

102

Figure 1: Model assumed in the algorithm proposed in section 3.3. The scheduler assigns incoming tasks to queues, based
on package affinity while avoiding node imbalance (design goals). The worker nodes have a shared package cache that can be
leveraged by the cloud functions to speedup the startup times. Variations of the algorithmsuitable for a push-based scheduling,
distributed scheduling and multi-package affinity are discussed in sections 3.4, 3.5, and 3.6, respectively.

Algorithm 1: Queue assignment algorithm (scheduler)

Global data: List of workers,W = w1, ...,wn , list of

scheduling queues Q = q1, ...,qn , such that qi
corresponds to the functions assigned towi ,

Hash functions H1 and H2, maximum load

threshold, t
Input: Function id, fid , largest package required by task, pl

1 if (pl is not NULL)then
/* Calculate two possible worker targets */

2 t1 = H1(pl)%|W | + 1
3 t2 = H2(pl)%|W | + 1

/* Select target with least load */

4 if (lenдth(qt1) < lenдth(qt2))then
5 A := t1

6 else
7 A := t2

/* If target is not overloaded, we are done */

8 if (lenдth(qA) < t)then
9 Insert fid into qA

10 return

/* Try to balance load */

11 Insert fid into shortest queue, qi

maximum load threshold is used. If the scheduler cannot achieve

affinity without assigning a task to an overloaded node (defined as

one for which its task queue has exceeded the threshold, t), then
the scheduler chooses the shortest worker queue. To improve cache

affinity while improving load balance, we apply the power-of-2

choices technique [12], by using two hashing functions to map a

task to a queue; each hash function maps the task to a different

queue, and the task is assigned to the shortest of those queues.

When a worker has spare capacity, it contacts the scheduler to

request a task assignment (Algorithm 2). The scheduler assigns the

task to the worker at the front of the queue corresponding to that

Algorithm 2: Task-worker mapping algorithm (scheduler)

1 FnGetTaskAssignment(w) /* called by worker w */
2 if (qw is not empty)then
3 return Front task from qw

4 else
/* work stealing step */

5 return Front task from longest queue

worker. If the queue is empty, the scheduler selects the front task

from the longest queue, which is known as the work stealing step.

3.4 Push-based model
Schedulers can use pull or push-based models, as described next.

In the pull-based approach, the scheduler assigns tasks to one or

more queues. When a worker has spare capacity, it contacts the

scheduler and gets assigned the front task from one of the queues.

The scheduling algorithm determines how the tasks are placed

on the queues, and from which queue a worker pulls a task. The

tasks in these queues are serviced in FIFO order. With the push-
based approach, upon task arrival, the scheduler maps a task to a

worker and sends the task to the worker, which will either execute

it immediately using a processor sharing approach, or will queue it

locally until it has spare capacity. Examples of frameworks that use

the pull-based approach to scheduling are OpenWhisk andKubeless;

Fission and OpenLambda instead use a push-based approach.

The algorithms proposed in section 3.3 cannot be directly ported

to a push-based scheduler for two reasons: (1) When selecting the

least-loaded worker, the scheduler cannot exactly know the length

of the task queues at each worker, and (2) in the work stealing step,

a worker cannot know which of the other queues is the longest.

To deal with issue (1), the scheduler can keep track of the load

being sustained by each worker (requests per second); however,

this fails if the size of the tasks is unbalanced, and some workers

could become overloaded. Alternatively, workers could periodically

report their load (queue length) to the scheduler, as in JSQ [7].

HotCloudPerf Workshop ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

103

Regarding issue (2), to avoid having to communicate the load

between the workers, there are two possible solutions: (a) Have the

worker ask the scheduler which worker to steal work from, or (b)

use the power-of-2 choices approach and have a worker poll two

other random workers and steal a task from the most loaded one.

3.5 Distributed scheduler
If the load of the FaaS platform is large enough that scheduling

decisions cannot be made in a reasonably short time, then the sched-

uling load can be distributed between a set of scheduler nodes [2].

We call this, a distributed scheduler.
In the case of a distributed scheduler, it is not a good idea to

try to have all the scheduler nodes share perfect knowledge of the

length of the queues [11]. Furthermore, if each scheduler decides a

mapping from the task to worker independently, this could result in

overloading the worker that had the shortest queue. The alternative

would be for the schedulers to use a consensus algorithm, although

this would add additional overhead on the critical path.

To avoid this problem in a distributed scheduling scenario, we

propose changing the Join-the-Shortest-Queue component of our

scheduler with the Join-Idle-Queue algorithm [11], which decou-

ples discovery of lightly loaded servers from job assignment, thus

leading to very fast task assignments.

3.6 Affinity with multiple required packages
The simplest way to extend our algorithm for the multiple package

case is to use a greedy approach in which we only try to achieve

affinity for the largest package. If the nodes possibly caching the

package are overloaded, then we try to achieve affinity with the

next largest package, and so on.

Alternatively, we could map a task to a worker that has affinity to

multiple packages the function needs (modeling this as a mathemat-

ical optimization problem). However, our current solution assumes

we cannot leverage multiple cached packages, as they would be

preloaded in different sleeping interpreters (see sections 2 and 3.1);

we leave relaxing this assumption for future work.

3.7 Caching policy
Our algorithm is agnostic to the caching policy being used at the

workers. However, to maximize the effectiveness of our approach

we can co-design a caching policy that takes advantage of the

knowledge of which packages are affinity packages for the current

worker. Towards this goal, we propose to divide the memory into

two caching segments: S1, which will hold the affinity packages,

and S2, which can cache any type of package. The reasoning is that

it may be useful to cache very popular packages, even if they are not

considered affinity packages for the node. Algorithm 3 describes

how we decide whether to cache a package or not.

For the evaluations in section 4, we only consider the extreme

cases when the size of S1 is 0, and when the size of S2 is 0. In other

words, we only evaluated the use of only a regular (LRU) cache, and

the alternative of only caching affinity packages. In future work,

we will assess how the segmenting of the cache affects the overall

hit rate, and we will consider alternative policies to LRU.

Algorithm 3: Caching policy (called upon a cache miss)

Global data: Hash functions H1 and H2, Cache segments, S1
and S2, Number of workers, n, Current worker
id,w

Input: Package, p
/* Calculate affinity workers for package */

1 t1 = H1(p)%n + 1
2 t2 = H2(p)%n + 1
/* Does current worker have affinity for p? */

3 if (w == t1 orw == t2)then
4 Cache p in S1

5 else
6 Cache p in S2

4 PRELIMINARY EVALUATION
In this section, we present preliminary results of a simulation-

based evaluation of our algorithm. We implemented the simulator

in Python, using the SimPy simulation framework
3
and ran tests

using the following configuration parameters:

• Arrivals are exponentially distributed, with a mean inter-

arrival time of 0.1ms .
• The number of worker nodes is 1 000; each worker can run

as many as 100 tasks simultaneously (st = 100).

• The popularity of the packages is given by a Zipf distribution,

with parameter s = 1.1.

• The time to start the packages—including time to download,

install and import—is randomly sampled from an exponential

distribution with an average time to start of 4.007s .
• Each function requires a random number of packages, sam-

pled according to an exponential distribution, with an aver-

age number of 3 required packages.

• Each worker has a LRU package cache (capacity = 500MB).
• The sizes of the (cacheable) packages is modeled after the

sizes of the packages in the PyPi repository.

• Time to launch a function that requires no packages: 1s .
• The running time of a task (after loading required packages)

is exponentially distributed with mean = 100ms .
• Experiment duration: 30 minutes.

• Overload threshold: t = st = 100.

• In all cases, the eviction policy is LRU.

While the configuration described above represents an artificial

scenario, the configuration values were chosen to closely model

real observed behavior, as reported by related work [8, 10, 13]. In

the future, we plan to expand our evaluation to include trace-based

evaluations, as well as experiments in a public cloud.

We implemented four scheduling policies and compare their

performance regarding: (1) How well they balance the load, (2) the

package cache hit rate, and (3) the latency of each cloud function

(task time in system). The scheduling policies we implemented are:

(1) Join-the-Shortest-Queue (JSQrc): Scheduler keeps one task
queue for each worker. A new task is added to the shortest

3
https://pythonhosted.org/SimPy/

HotCloudPerf Workshop ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

104

https://pythonhosted.org/SimPy/

50

60

70

80

90

JSQ_rc Hash_rc Proposed_rc Proposed_ac

H
it
 R

a
te

 (
%

)

Figure 2: Box plots of the hit rates of the package caches at
the worker nodes. Our algorithm improves the average hit
rate by actively seeking to improve package-affinity.

Table 1: Task latency percentiles (in seconds). Our algorithm
improves latency due to improved cache hit rate.

Algorithm 50th 90th 95th 99th

JSQrc 3.95 18.53 25.29 40.86

Hashrc 4.43 277.81 606.12 1196.47

Proposedrc 1.36 11.03 16.21 28.88

Proposedac 1.36 11.00 16.11 29.42

queue. Queues are served in FIFO order. We evaluated this

policy with a per-worker package cache.

(2) Hash-based cache affinity (Hashrc): A hash function applied

to the largest package required by the cloud function deter-

mines the mapping of a function to a worker. A per-worker

package cache was used.

(3) Proposedrc : Our proposed algorithm, with the greedy ap-

proach to seeking affinity when multiple packages are re-

quired (section 3.6), and a per-worker package cache.

(4) Proposedac : Similar to Proposedrc , but with a different caching
policy: per-worker package cache that caches only those

packages that have affinity to it (as determined by the func-

tions H1 and H2 in Algorithm 1; see section 3.7).

Our preliminary results show we can improve the median hit
rate from 51.2% (JSQrc) to 64.1% (Proposedrc), as shown in Figure 2.
The proposal to cache only affinity packages (Proposedac) produced
results very similar to those of Proposedrc . In the future, we plan on

evaluating a split cache, as described in section 3.7, to see if there

is value in reserving some cache space for affinity packages, both

for Zipfian and real workloads.

The improved hit rate has a positive effect on the latency of

the tasks, as shown in Table 1. Median latency improves by 65.6%

(Proposedrc vs. JSQrc), and tail latency improves by 40.5% (90th
percentile). Note that we avoid the straw man fallacy of comparing

our algorithm against JSQ with no caching, as this is an unfair

comparison. Both JSQrc and Proposedrc are much better than JSQ
with no caching; the former improves median latency by 65 times,

while our algorithm improves median latency by 189 times.

Finally, we can quantify how well each scheduling algorithm

balances the load using the coefficient of variation, which is a

measure of dispersion defined as the ratio of the standard deviation

to the mean: cv = σ/µ. We count the total number of tasks assigned

to each worker, and report the coefficient of variation in Table 2
4
.

4
This simple metric quantifies the dispersion in the total work assigned to each worker;

in the future, we will study how the load changes during the test duration.

Table 2: Node unbalance, measured using the coefficient
of variation of the number of functions assigned to each
worker (smaller is better).

Scheduling Algorithm cv
JSQrc 1.02

Hashrc 357.65

Proposedrc 65.33

Proposedac 66.06

We can observe that our algorithm sacrifices some unbalance, to

seek a higher hit rate (and smaller latency). JSQ achieves near

perfect balancing, while the hash-based affinity algorithm produces

the most unbalanced task assignments.

Discussion. The main reason for load balancing is to improve

performance, as tasks that are assigned to overloaded workers are

bound to be delayed in their completion. However, the moderate

unbalance of our proposed algorithm is not necessarily an issue, as

our experiments show that we actually improve performance: tasks

that run on workers that have preloaded a required package, take

significantly less time to finish; thus, by improving the cache hit

rate, we improve overall system performance. This is not the case

for theHashrc algorithm, for which the worker overload is too high,

taking a significant toll on performance (tasks are 15 and 29 times

slower for the 90th and 99th percentiles, when compared to JSQrc).

Although the initial results are promising, more experimentation

should be done to better understand the limitations of our approach.

This submission seeks early feedback on our proposal, as well as

encouraging discussion from the Cloud Performance community

about future directions in improving FaaS performance.

5 RELATEDWORK
We build upon a large body of work in task scheduling. Early work

in affinity scheduling sought to improve performance in multi-

processor systems by reducing cache misses via preferential sched-

uling of a process on a CPU where it has recently run [5, 17]. How-

ever, the issue here is not how to map threads to CPUs, but how to

re-schedule them soon enough to reap caching benefits, while at

the same time avoiding unfairness and respecting thread priority.

Better related to the problem studied in this paper, is the case

of locality- or content-aware request distribution in Web-server

farms [3]. In this context, the simplest solution is static partitioning

of server files using URL hashing, to improve cache hit rate; though

this could lead to extremely unbalanced servers. Others have pro-

posed algorithms that partition Web content to improve cache hit

rate, while monitoring server load to reduce node unbalance [3, 15].

While these solutions share some similarities with ours, they only

try to improve the locality of the access to one Web object, as each

HTTP request targets one object only. We consider the case of tasks

that could require multiple objects (packages). We also differ in that

we propose co-designing the worker caches (eviction policy) with

the scheduler. Furthermore, the work in the Web domain typically

assumed that the workloads are relatively stable, as was the case

with traditional Web hosting systems. Modern cloud workloads are

HotCloudPerf Workshop ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

105

significantly more dynamic, making solutions that require offline

workload analysis (e.g., see [4]), inadequate for this domain.

We also build upon prior work in load balancing for server clus-

ters. In this domain, there is work in centralized load balancing [7]

and distributed load balancing [12]. For example, the Join-Idle-

Queue (JIQ) algorithm incurs no communication overhead between

the dispatchers and processors at job arrivals [11]; it does this by

decoupling the discovery of lightly-loaded servers from job assign-

ment, thus removing the load balancing work from the critical path

of the request processing. This technique can be used to port our

algorithm to a distributed scheduler (see section 3.5).

The near-data scheduling problem is a special case of affinity

scheduling applicable to data-intensive computing frameworks like

Hadoop, where each type of task has different processing rates

on different subsets of servers [21]; tasks that process data that is

stored locally execute the fastest, followed by tasks whose input

data is stored in the same rack, followed by tasks whose input data

is stored remotely (in a different rack). Several near-data schedulers

have been proposed for Hadoop [20, 22, 23]. However, these are not

directly applicable to the problem studied in this paper, as they re-

quire a centralized directory to keep track of the location of the data

blocks (i.e., the namenode in Hadoop). In contrast, our proposed

algorithm uses hash-based affinity mapping, a mechanism that has

a minimal overhead and requires no centralized directory. Imple-

menting a directory of cached packages in a serverless computing

platform would impose significant overhead on the infrastructure,

as extra communication and storage would be required. Moreover,

unlike data block storage in Hadoop, the contents of a package

cache could change rapidly, as packages can enter and leave the

cache frequently, leading to problems where the scheduler would

assign tasks based on stale knowledge about the status of the caches.

Finally, our work joins recent efforts by other researchers in seek-

ing to advance the state-of-the-art in the management of resources

in serverless computing clouds and the containerized platforms

that support them [6, 13, 16]. In particular, we were inspired by

the recent work in caching packages in OpenLambda by Oakes et

al. [13], though they left the global scheduling work (to improve

cache hit rates) for future work.

6 CONCLUSIONS AND FUTUREWORK
Current scheduling approaches in Function-as-a-Service (FaaS) plat-

forms are relatively simplistic, lacking awareness of cached pack-

ages required by cloud functions which could improve performance.

Towards solving this problem, we propose a package-aware schedul-

ing algorithm that attempts to optimize the use of cached packages

versus maintaining a balanced load over the worker nodes. Our

initial evaluation, based on simulation, shows that the latency of

cloud functions can be reduced by up to 66% by our proposed algo-

rithm at the expense of a higher node imbalance. These preliminary

results encourage us to continue our research in this direction.

In the future we will implement the algorithm in OpenLambda

and perform experiments in a public cloud, and perform more

extensive simulations to answer interesting questions that arose

during our study: Can we improve the cache hit-rates by giving

caching preference to affinity packages? How do the results change

when the skew of the popularity of the packages changes? What

happens with workloads with significant temporal locality?
5
What

is the optimal overload threshold value for a workload and how can

we automatically tune this parameter? Would it be beneficial to use

more than two affinity nodes for very popular packages? Is it a good

idea to try to improve package-locality for Big Data functions that

would possibly benefit more from seeking data-locality instead?

REFERENCES
[1] Abad, C., Yuan, M., Cai, C., Lu, Y., Roberts, N., and Campbell, R. Generating

request streams on big data using clustered renewal processes. Performance
Evaluation 70, 10 (2013).

[2] Beaumont, O., Carter, L., Ferrante, J., Legrand, A., Marchal, L., and Robert,

Y. Centralized versus distributed schedulers for bag-of-tasks applications. IEEE
Transactions on Parallel and Distributed Systems 19, 5 (2008).

[3] Cardellini, V., Casalicchio, E., Colajanni, M., and Yu, P. The state of the art

in locally distributed Web-server systems. ACM Comput. Surv. 34, 2 (2002).
[4] Cherkasova, L., and Ponnekanti, S. Optimizing a content-aware load balancing

strategy for shared web hosting service. In Intl. Symp. Model., Anal. and Sim. of
Comp. and Telecomm. Sys. (MASCOTS) (2000).

[5] Feitelson, D. Job scheduling in multiprogrammed parallel systems. Tech. rep.,

1997. IBM Research Report 19790.

[6] Ferreira, J., Cello, M., and Iglesias, J. More sharing, more benefits? A study

of library sharing in container-based infrastructures. In Intl. Conf. Par. Distrib.
Comp. (Euro-Par) (2017).

[7] Gupta, V., Harchol Balter, M., Sigman, K., and Whitt, W. Analysis of Join-

the-Shortest-Queue Routing for Web server farms. Perform. Eval. 64 (2007).
[8] Hendrickson, S., Sturdevant, S., Harter, T., Venkataramani, V., Arpaci-

Dusseau, A., andArpaci-Dusseau, R. Serverless computationwith OpenLambda.

In USENIX Work. Hot Topics in Cloud Comp. (HotCloud) (2016).
[9] Karger, D., Sherman, A., Berkheimer, A., Bogstad, B., Dhanidina, R.,

Iwamoto, K., Kim, B., Matkins, L., and Yerushalmi, Y. Web caching with

consistent hashing. Comp. Netw. 31, 11 (1999).
[10] Lloyd, W., Ramesh, S., Chinthalapati, S., Ly, L., and Pallickara, S. Serverless

computing: An investigation of factors influencing microservice performance. In

IEEE Intl. Conf. Cloud Eng. (ICPE), to appear (2018).
[11] Lu, Y., Xie, Q., Kliot, G., Geller, A., Larus, J., and Greenberg, A. Join-Idle-

Queue: A novel load balancing algorithm for dynamically scalable Web services.

Perform. Eval. 68, 11 (2011).
[12] Mitzenmacher, M. The power of two choices in randomized load balancing.

IEEE Trans. Par. Distrib. Sys. 12, 10 (2001).
[13] Oakes, E., Yang, L., Houck, K., Harter, T., Arpaci-Dusseau, A., and Arpaci-

Dusseau, R. Pipsqueak: Lean Lambdas with large libraries. In IEEE Intl. Conf.
Distrib. Comp. Sys. Workshops (ICDCSW) (2017).

[14] Oakes, E., Yang, L., Houck, K., Harter, T., Arpaci-Dusseau, A., and Arpaci-

Dusseau, R. Pipsqueak: Lean Lambdas with large libraries, 2017. (Presentation

given at the) Workshop on Serverless Computing (WoSC).

[15] Pai, V., Aron, M., Banga, G., Svendsen, M., Druschel, P., Zwaenepoel, W.,

and Nahum, E. Locality-aware request distribution in cluster-based network

servers. SIGOPS Oper. Syst. Rev. 32, 5 (1998).
[16] Sampé, J., Sánchez-Artigas, M., García-López, P., and París, G. Data-driven

serverless functions for object storage. In ACM/IFIP/USENIX Middleware (2017).
[17] Torrellas, J., Tucker, A., and Gupta, A. Evaluating the performance of cache-

affinity scheduling in shared-memory multiprocessors. Journal of Parallel and
Distributed Computing 24, 2 (1995).

[18] van Eyk, E., Iosup, A., Abad, C. L., Grohmann, J., and Eismann, S. A SPEC RG

cloud group’s vision on the performance challenges of FaaS cloud architectures.

In (Under review) (2018).
[19] van Eyk, E., Iosup, A., Seif, S., and Thömmes, M. The SPEC cloud group’s re-

search vision on FaaS and serverless architectures. In Intl. Workshop on Serverless
Comp. (WoSC) (2017).

[20] Wang, W., Zhu, K., Ying, L., Tan, J., and Zhang, L. MapTask scheduling

in MapReduce with data locality: Throughput and heavy-traffic optimality.

IEEE/ACM Trans. Netw. 24, 1 (2016).
[21] Xie, Q., and Lu, Y. Priority algorithm for near-data scheduling: Throughput and

heavy-traffic optimality. In IEEE Conf. Comp. Comm. (INFOCOM) (2015).
[22] Xie, Q., Pundir, M., Lu, Y., Abad, and Campbell. Pandas: Robust locality-aware

scheduling with stochastic delay optimality. IEEE/ACM Trans. Netw. 25, 2 (2017).
[23] Zaharia, M., Borthakur, D., Sen Sarma, J., Elmeleegy, K., Shenker, S., and

Stoica, I. Delay scheduling: A simple technique for achieving locality and

fairness in cluster scheduling. In European Conf. Comp. Sys. (EuroSys) (2010).

5
The Independence Reference Model (IRM), used when sampling from Zipf, assumes no

temporal locality [1].

HotCloudPerf Workshop ICPE’18 Companion, April 9̶–13, 2018, Berlin, Germany

106

	Abstract
	1 Introduction
	2 Background: Package caching with Pipsqueak
	3 Proposed Design
	3.1 System model and assumptions
	3.2 Conflicting goals
	3.3 Proposed scheduling algorithm
	3.4 Push-based model
	3.5 Distributed scheduler
	3.6 Affinity with multiple required packages
	3.7 Caching policy

	4 Preliminary evaluation
	5 Related work
	6 Conclusions and Future Work
	References

