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ABSTRACT

Elastic scaling of event stream processing systems has gained sig-
nificant attention recently due to the prevalence of cloud comput-
ing technologies. We investigate on the complexities associated
with elastic scaling of an event processing system in a private/pub-
lic cloud scenario. We develop an Elastic Switching Mechanism
(ESM) which reduces the overall average latency of event process-
ing jobs by significant amount considering the cost of operating the
system. ESM is augmented with adaptive compressing of upstream
data. The ESM conducts one of the two types of switching where
either part of the data is sent to the public cloud (data switching)
or a selected query is sent to the public cloud (query switching)
based on the characteristics of the query. We model the operation
of the ESM as the function of two binary switching functions. We
show that our elastic switching mechanism with compression is ca-
pable of handling out-of-order events more efficiently compared
to techniques which does not involve compression. We used two
application benchmarks called EmailProcessor and a Social Net-
working Benchmark (SNB2016) to conduct multiple experiments
to evaluate the effectiveness of our approach. In a single query
deployment with EmailProcessor benchmark we observed that our
elastic switching mechanism provides 1.24 seconds average latency
improvement per processed event which is 16.70% improvement
compared to private cloud only deployment. When presented the
option of scaling EmailProcessor with four public cloud VMs ESM
further reduced the average latency by 37.55% compared to the
single public cloud VM. In a multi-query deployment with both
EmailProcessor and SNB2016 we obtained a reduction of average
latency of both the queries by 39.61 seconds which is a decrease
of 7% of overall latency. These performance figures indicate that
our elastic switching mechanism with compressed data streams can
effectively reduce the average elapsed time of stream processing
happening in private/public clouds.

CCS Concepts

eInformation systems — Data stream mining; Computing plat-
forms; eNetworks — Cloud computing;
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1. INTRODUCTION

Data stream processing is a paradigm where streams of data are
processed to extract useful insights of real world events. Multiple
different recent applications of stream processing could be found in
the areas of health informatics [1], telecommunications [26], elec-
tric grids [12], transportation [15][16], etc. A number of stream
processing systems have been introduced in recent times to oper-
ate in a variety of software/hardware environments. Most of them
are intended to operate in single cloud environments while others
operate in multiple clouds. WSO2 CEP [28] server is an example
stream processing engine which is designed to operate in multiple
clouds.

Infrastructure as a Service (IaaS) service model provides physi-
cal and virtual hardware which can be provisioned and decommis-
sioned via a self-service interface [9]. This includes resources such
as servers, storage, and networking infrastructure. laaS provides
an environment which is very similar to resources which IT depart-
ments within organizations handle.

Data stream processing applications which usually get deployed
in private clouds (i.e., private compute clusters) often face resource
limitation while their operation due to unexpected loads [2][7].
Multiple approaches exist for mitigating resource limitation issues
such as elastically scaling into an external cluster, load shedding,
approximate query processing, etc. However, most of them have
multiple limitations such as not considering the possible optimiza-
tions of the use of network resources, low accuracy of the results
produced, and the cost associated with such approaches. Efficient
use of compression techniques for optimizing the use of network
connection between private and public clouds (IaaS) is one such
area which has not been investigated in detail yet.

In this paper we discuss about elastic scaling in a private/public
cloud scenario with compressed data streams. We design and im-
plement an Elastic Switching Mechanism (ESM) over private/pub-
lic cloud system. We use data field compression technique on top
of this switching mechanism for compressing the data sent from
private cloud to public cloud. We discuss the importance of data
switching (sending part of data to public cloud) vs query switching
(sending entire query) in the context of ESM. We use two real world
data stream processing benchmarks called EmailProcessor and So-
cial Network Benchmark (SNB2016) during the evaluation of the
proposed approach. Using multiple experiments on real-world sys-
tem setup with the two stream processing benchmarks we demon-



strate the effectiveness of our approach for elastic switching-based
stream processing using compressed data streams. In a single query
deployment with EmailProcessor benchmark we observed that our
elastic scaling technique provides 1.24 seconds average latency im-
provement per processed event which is 16.70% improvement com-
pared to private cloud only deployment. When presented the option
of scaling EmailProcessor with four public cloud VMs ESM fur-
ther reduced the average latency by 37.55% compared to the single
public cloud VM. In a multi-query deployment with both Email-
Processor and SNB2016 we obtained a reduction of average latency
of both the queries by 39.61 seconds which is a decrease of 7% of
overall latency. Specifically the contributions of our work can be
listed as follows.

o FElastic Switching Mechanism (ESM) - We design and de-
velop a mechanism for conducting elastic scaling of stream
processing queries over private/public cloud.

e Switching at Different Granularities - We describe means
of conducting adaptive switching at different granularities
based on the semantics of stream processing queries. Specif-
ically we describe the scenarios of data switching and query
switching.

o Compression with Out-of-order - We handle out-of-order in-
troduced due to switching with the public cloud. We show
our compression technique improved the quality of out-of-
order event handling.

e Evaluation - We evaluate the proposed approaches by imple-
menting them on real world systems.

The paper is organized as follows. Next, we provide related work
in Section 2. An overview for the stream processing software and
the benchmarks used in this study are given in Section 3. We pro-
vide the details of system design and implementation of the ESM
in Section 4. We discuss about the use of data stream compres-
sion in ESM in Section 5. Furthermore, we discuss techniques for
handling out-of-order introduced by elastic switching in Section 6.
The evaluation details are provided in Section 7. We provide the
conclusions in Section 8.

2. RELATED WORK

There have been multiple previous work on elastic scaling of
event processing systems in cloud environments.

Kleiminger et al. studied on implementing a distributed stream
processor system based on MapReduce on top of a cloud IaaS to al-
low it to scale up/down elastically [19]. The main use case of their
work was to implement financial algorithms on their framework.
They explored how a local stream processor can be deployed in
cloud infrastructure to scale to keep up with the expected latency
constraints. They mainly talk about two load balancing strategies
to achieve this. First one is always-on (load balanced between lo-
cal and cloud) and second one is adaptive load balancing (move to
cloud when the capacity is not enough in local node).

Cloud computing allows for realizing an elastic stream comput-
ing service, by dynamically adjusting used resources to the cur-
rent conditions. Waldemar et al. discussed how elastic computing
of data streams can be achieved on top of Cloud computing [14].
Features particularly interesting for elastic stream processing in the
Cloud includes handling of stream imperfections, guaranteed data
safety and delivery, and automatic partitioning and scaling of appli-
cations. Load shedding is a well-studied mechanism for reducing
the system load by dropping certain events from the stream. De-
ferred processing of data that cannot be immediately handled are
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stored for later processing. The assumption of deferred processing
is that the overload is limited in time. They mentioned that the most
obvious form of elasticity is to scale with the input data rate and the
complexity of operations (acquiring new resources when needed,
and releasing resources when possible). However, most operators
in stream computing are stateful and cannot be easily split up or
migrated (e.g., window queries need to store the past sequence of
events). In ESM we handle this type of queries by query switching.

Stormy is a system developed to evaluate the “stream processing
as service” concept [21]. The idea was to build a distributed stream
processing service using techniques used in cloud data storage sys-
tems. Stormy is built with scalability, elasticity and multi-tenancy
in mind to fit in the cloud environment. They have used distributed
hash tables (DHT) to build their solution. They have used DHTs
to distribute the queries among multiple nodes and to route events
from one query to another. Stormy intent to build a public stream-
ing service where users can add new streams on demand; that is,
register and share queries, and instantly run their stream for as long
as they want. One of the main limitations in Stormy is it assumes
that a query can be completely executed on one node. Stormy is
unable to deal with streams for which the incoming event rate ex-
ceeds the capacity of a node which is an issue which we address in
our work.

Cervino et al. tries to solve the problem of providing a resource
provisioning mechanism to overcome inherent deficiencies of cloud
infrastructure [2]. They have conducted some experiments on Ama-
zon EC2 to investigate the problems that might affect badly on a
stream processing system. They have come up with an algorithm to
scale up/down the number of VMs(or EC2 instances) based solely
on input stream rate. The goal is to keep the system with a given
latency and throughput for varying loads by adaptively provision-
ing VMs for streaming system to scale up/down. In contrast to [21]
Cervino et al.’s work is focused on running a big query efficiently
which is decomposed to smaller quarries which can run on different
VMs. However, none of the above mentioned works have investi-
gated on reducing the amount of data sent to public clouds in such
elastic scheduling scenarios. In this work we address this issue.

Data stream compression has been studied in the field of data
mining. Cuzzocrea et al. has conducted a research on a lossy com-
pression method for efficient OLAP [4] over data streams. Their
compression method exploits semantics of the reference applica-
tion and drives the compression process by means of the "degree of
interestingness". The goal of this work was to develop a methodol-
ogy and required data structures to enable summarization of the
incoming data stream in order to finally make the usage of ad-
vanced analysis/mining tools over data streams more effective and
efficient. However, the proposed methodology trades off accuracy
and precision for the reduced size.

Jeffery et al. has tried to address shortcomings of RFID (Radio-
frequency identification) data streams by cleaning the data streams
using smoothing filters, they have proposed a middleware layer be-
tween the sensors and the application which process data streams.
This middleware is responsible for making physical device issues
transparent to the higher level application by correcting them at the
middleware. The layer/middleware is referred to as “Metaphysical
data independenc”’(MDI) in their work [18].

Work done in [18] is utilized in [8] to clean and compress data
generated by RFID tags deployed in a book store. In this work
the data stream is compressed by removing redundant data. They
have taken application and deployment semantics into account to
develop an efficient data compression method for that specific do-
main. The MDI layer presented in [18] is customized by adding
application specific compression algorithms and they claim that



results in better performance than employing the generic method
suggested in [18]. Yanming Nie et al. have done a research on
inference and compression over RFID data streams [3][24]. They
have developed online compression method. The compression of
the data stream is mainly achieved by identifying and discarding
redundant data.

Multiple work have recently been conducted on privacy preserv-
ing data stream mining. Privacy of patient health information has
been serious issue in recent times [25]. Fully Homomorphic En-
cryption (FHE) has been introduced as a solution [10]. FHE is an
advanced encryption techniques that allows data to be stored and
processed in encrypted form. This provides cloud service providers
the opportunity for hosting and processing data without even know-
ing what the data is. However, current FHE techniques are compu-
tationally expensive needing excessive space for keys and cypher
texts. However, it has been shown with some experiments done
with HEIib [11] (an FHE library) that it is practical to implement
some basic applications such as streaming sensor data to the cloud
and comparing the values to a threshold. We plan to extend this
work to the domain of FHE in future.

3. OVERVIEW OF STREAM PROCESSING
SOFTWARE

In this section we provide brief description of WSO2 CEP which
is the stream processing engine used for implementing the elastic
switching mechanism. Furthermore, we provide a short introduc-
tions to the EmailProcessor and SNB2016 benchmarks used for the
experiments.

3.1 Overview of WSO2 CEP

WSO2 Complex Event Processor (WSO2 CEP) is a lightweight,
easy-to-use, stream processing engine. It is available as an open

source software under the Apache Software License v2.0 [28]. WSO2

CEP lets users provide queries using an SQL like query language
in order to get notifications on interesting realtime events, where it
will listen to incoming data streams and generate new events when
the conditions given in those queries are met by correlating the in-
coming data streams.

WSO2 CEP uses a SQL like Event Query language to describe
queries. For example, the following query detects the number of
taxis dropped-off in each cell in the last 15 minutes [16].

from Trip#window.time (15 min)
select count(medallion) as count
group by cellld

insert into OutputStream

Listing 1: Example CEP query.

When WSO2 CEP receives a query, it builds a graph of pro-
cessors to represent the query where each processor is an operator
like filter, join, pattern, etc. Input events are injected to the graph,
where they propagate through the graph and generate results at the
leaf nodes. Processing can be done using a single thread or using
multiple threads, where in the latter case we use LMAX Disrup-
tor [27] to exchange events between threads. More details of the
WSO2 CEP is available from [28].

3.2 EmailProcessor Benchmark

EmailProcessor is an application benchmark originally designed
by Nabi et al. [23]. The benchmark is designed around the canon-
ical Enron email data set which is described in [20]. The data set
consisted of 517,417 emails with a mean body size of 1.8KB, the
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largest being 1.92MB. The dataset we used had undergone an of-
fline cleaning and staging phase where all the emails were serial-
ized and stored within a single file with the help of Apache Avro. In
our benchmark implementation' the data injector read emails from
the Avro file, deserialized them and sent to Q1 for filtering. Q1
dropped emails that did not originate from an address ending with
@enron.com. Furthermore, it removed all email addresses that
did not end with @enron. com from To, CC, and BCC fields. Q2
modified each and every email by obfuscating the names of three
individuals:Kenneth Lay, Jeffrey Skilling, and Andrew Fastow in
the email body by replacing their names with Personl, Person2,
and Person3 respectively. Q3 operator gathered metrics of each
email such as number of characters, words, and paragraphs in the
email body. This information is sent to Q5 which aggregated such
metrics from multiple Q3 operators in a running window. The pro-
cessed emails were sent from Q3 to Q4, which were compressed in
Avro format and written to /dev/null which effectively get dis-
carded. The correct benchmark implementation filters out 89,230
unwanted emails and outputs 42,8187 emails. The architecture of
the EmailProcessor benchmark is shown in Figure 1. The choice
of EmailProcessor for the experiments was mainly because it does
not involve any shared state and it introduced the workload spikes
we wanted during the experiments providing good example of real
world work load.
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Email metrics log file
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Figure 1: Email Processor

3.3 Social Network Benchmark (SNB2016)

The second application benchmark we used is a version of the
DEBS 2016 Grand Challenge which we name as SNB2016 [17]
(See Figure 2). SNB2016 is focused on conducting real time stream-
ing analytics on an evolving social network graph. There are four
different input streams for SNB2016 Posts, Comments, Friend-
ships, and Likes. The modified version of the benchmark > we
used in this paper conducts identification of the posts that currently
trigger the most activity.

outputStream1

/dev/mull

postCommentsStream

Figure 2: Social Network Benchmark 2016 (SNB2016)

The benchmark calculates the top-3 scoring active posts. An ac-
tive post P’s total score is computed as the sum of its own score and

"https://github.com/miyurud/EmailProcessor_Siddhi
Zhttps://github.com/miyurud/debs2016



the score of all of its related comments. New posts and new com-
ments each has an initial score of 10 which decreases by 1 each time
another 24 hours passes since the post’s/comment’s creation. The
data set used in our experiments consisted of 8,585,497 posts with
an average event size of 0.018 Bytes while there were 24,485,315
comments each of 82.09 Bytes. The application logic involved in
calculating the top-3 active posts is described in Algorithm 1.

Algorithm 1 Ranker: Find Top 3 Posts
1: postMap < {}

2: commentPostMap < {}

3: timeWindow <+ {}

4: postScoreMap <+ {}

5: for all event in stream do

6: if event.isPost then
7: postMap.add(event, postScoreMap)
8: timeWindow.update(event.time, postScoreM ap)
9: timeWindow.add Post(event, postScore M ap)
10: if postScore M ap.topT hreeChanged then
11: print(postScoreMap.topT hree)
12: end if
13: else
14: if event.isCommentT oPost then
15: commentPost M ap.update(event)
16: else
17: commentPost M ap.get Parent(event).update()
18: end if
19: timeWindow.update(event.time, postScore M ap)
20: timeWindow.addComment(event, postScoreMap)
21: if postScore M ap.topThreeChanged then
22: print(postScoreMap.topT hree)
23: end if
24: end if
25: end for

As shown in Algorithm 1, the Ranker component of the SNB2016
involves accessing a shared time window as well as accessing a
shared map data structure called commentPostMap. This is an ex-
ample scenario for a stream processing application which involves
shared state. It requires all the events to be sent via the Ranker
component.

4. ELASTIC SWITCHING MECHANISM

In this work we present a mechanism for latency aware elastic
scaling in private/public cloud scenario. The proposed approach
has been implemented on a mechanism called Elastic Switching
Mechanism (ESM). The ESM system architecture and two of its
application scenarios are shown in Figures 3 and 5.

The ESM is designed to operate between the boundaries of the
private and the public clouds. Copies of the same stream processing
engine is run in the public cloud when needed. Profiler component
gathers the system performance statistics. Scheduler implements
the elastic scheduling functions based on the performance infor-
mation provided by the Receiver. The OOH (Out-of-order han-
dler) component does the reordering when Out-of-order handling
has been enforced for a particular stream application. The oper-
ations of the ESM is dependent on the Quality of Service (QoS)
specification provided by the user.

In our current implementation we use a predefined average la-
tency value as the QoS parameter. Latency is the time spent by an
event within the data stream processing system. We use average la-
tency per event as the performance metric since additional latency
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gets introduced in the case of switching to public cloud. Further-
more, we use the average value rather than 95th percentile value
because we want to account for the entire data set sent to public
cloud. We had measured 95th percentile average latencies in sev-
eral performance experiments of ESM and found that 95th latencies
obtained from elastic scaling leads to better latency numbers than
what is reported in this paper. However, to consider the 5% of the
events which are outliers as well as to maintain the simplicity of the
presentation we use average latency rather than percentiles. Note
that we conduct full processing of stream processing data rather
than conducting approximate processing by neglecting high latency
events.

Publisher is the component which emits the data stream to public
cloud. Data stream compression logic is implemented in the Com-
presser component. When the data stream sent to the public cloud
with compression is enabled it is intercepted by a compression han-
dler component deployed in the public cloud. Compression handler
decompresses certain compressed fields as indicated by the precon-
figured settings.

The normal mode of operation where the ESM operates within
the specified QoS constraints is shown in Figure 3 (a). In this mode
the amount of resources in the private cloud is sufficient to main-
tain user specified QoS. Hence the Stream processing job(s) exe-
cutes only in the stream processing engine running in the private
cloud. Note that at a particular time several stream processing jobs
can run in parallel within the stream processing engine (denoted by
Q1...Qr, in Figures 3 and 5).

An example for the elastic mode of operation of the ESM is
shown in Figure 3 (b). When the scheduler decides that private
cloud’s resources are insufficient to maintain the QoS specifica-
tions, it starts a VM and instantiates a stream processing engine in
public cloud. The decision of moving part of the data (data switch-
ing) or the entire input data stream (query switching) is dependent
on the semantics of the stream processing application. It is indi-
cated to the scheduler via a preconfigured settings. The scheduler
starts/migrates the stream processing job which needs to be run in
the public cloud based on this preconfigured settings.

~
@ "o Inputevent g Input event
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°v v Full event stream has
@ U v been directed to public
cloud with/without
5 § ESM 5 ESM compression
2
LLIE|l£| g L 13| £ & ® )
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Figure 3: The proposed approach for elastic compressed com-
plex event processing. System operation with single query
switched to public cloud with data switching. (a) The private
cloud only mode of operation. (b) The hybrid cloud mode of
operation with data switching and compression.

The ESM ranks the stream processing jobs/data to be moved to
the public cloud based on the difference of their current average



latency and the user specified QoS. The ESM switches these jobs
one after the other based on the assigned rank until the results of
such switching provides QoS gains. Note that the Figures 3 and 5
indicate different input streams and output streams using different
symbols for the sake of clarity of the presentation. Furthermore,
the notation used in our paper is explained in Table 1.

4.1 Switching Functions

During the operation of the ESM there are three key switching
decisions to be made. First, the public cloud needs to be initialized.
The required number of VMs needs to be started and the corre-
sponding stream processing engine needs to be instantiated. In our
approach the decision of starting VMs in public cloud in time pe-
riod ¢ is made considering the average latency threshold observed
at the Publisher in the previous time slot ¢t — 1 (i.e., Lt—1 > Ly).
Instantiating VM is the costliest decision to be made during the
system’s operation. If N number of VMs each having cost C billed
hourly basis are instantiated, irrespective of whether VMs are used
for 10 minutes or 50 minutes, a total cost of NC' will be incurred.
Hence in ESM we start VMs one after the other systematically in
such a way that the total cost of VMs can be kept at minimum.

Second, once the VMs get instantiated in the public cloud the
decision of when to switch the incoming data stream and which
portion to switch is another important decision. As mentioned pre-
viously which portion of the data to switch only matters in the case
of data switching. In such occasion ESM starts sending data to pub-
lic cloud when the average latency of the output stream exceeds L.
When the average latency plummets less than L we keep sending
data only to private cloud. It should be noted that we maintain
the invariant L, > L4 since L, is the threshold which makes the
costliest operation. After making the decision at the L latency
level, since the VM is already running in public cloud, sending
data to public cloud can be conducted even at a lower latency such
as L4 since sending data does not incur a significant cost as with
the switching decision taken at L. The elastic switching process of
data switching of a single stream processing job can be expressed
as two binary functions ¢v ar(t) and Paata (t),

1,Li—1 > Ls, 7 has elapsed.

dvm(t) = :
0,Di-1 < Ds,Li—1 < Ly Otherwise,
(D
Lovm(t—1)=1,L1 > L4, Ls > Lg
¢data (t) = )
0, Otherwise,
2

where ¢v s is the function for a single VM and @gqtq is the
function for transferring data from private cloud to public cloud.
t is the time period for which the values of the binary functions
needs to be calculated. A time period of 7 has to be elapsed in
order for the VM startup process to trigger. D; is the threshold
for total amount of data received by the VM from private cloud.
Once the data switching process starts, the QoS value of the stream
processing job is measured via latency of the private cloud. The
same binary switching function ¢v ys is used for spawning multiple
other VMs in the public cloud until the desired QoS latency (Lqos)
is achieved for that particular stream processing job.

Finally, once the VMs are instantiated, they need to be checked
whether to continue or not once their rental period ends. In the
above example, if the VMs are not shutdown before the one hour
period elapses another NC' amount will be billed by the public
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Figure 4: State transition diagram depicting the process of op-
erating a single VM in the public cloud.

cloud. On the otherhand if the need of starting the VM in the pub-
lic cloud arises just after the VM being shutdown it also incurs
considerable time and cost to bring the VM back online. Hence
deciding when to shutdown is as important as starting a VM. In our
elastic stream processing model we make the decision of when not
to continue use of a VM by tracking the amount of data received
by the VM (D;_1 = Dy) during the last operating window ¢ — 1
and the average latency value recorded by the Publisher running in
the private cloud (L;) during ¢ — 1. At least D, amount of data
has to be sent to public cloud in order to keep the VM for the next
billing session without shutting it down. When the billing period
reaches, the switching model evaluates if still the latency is higher
than L,,. If the current latency is less than L,, then switching model
checks if the number of events sent to public cloud is greater than
D;. The L, and D, parameters help the switching model to shut-
down underutilized VMs and to retain well utilized VM for next
session.

The state-transition diagram in Figure 4 describes the process of



Table 1: Notation.

Notation | Description

t Unit time slot

L Average latency measured at the Receiver component of the ESM during the time slot ¢

Ly VM Startup threshold latency. When the average latency exceeds this value the ESM decides to initiate the VM start
up process.

Lg Data switching threshold latency. When L > L, the ESM starts sending data to public cloud.

T Tolerance period. After the unit timeslot (¢) elapses, the ESM waits additional 7 period before it initiates the VM
startup process. In the current implementation of the ESM 7 is set equal to ¢.

L, Private cloud threshold latency. At least L, amount of latency needs to be present in the private cloud for a VM to be
kept running in the next unit time slot.

Dy Total amount of data received by the VM from private cloud during the time slot ¢

D, Threshold for total amount of data received by the VM from private cloud during the time slot ¢

Lgos User specified QoS Latency for a single specific stream job.

operating a VM in the public cloud. The rectangle marked as “Uti-
lize Public Cloud for Billing period” indicates the entire process of
data/query switching happening in that time frame.

4.2 Data Switching vs Query Switching

An important aspect of our elastic switching mechanism is decid-
ing what type of switching to be conducted when the binary switch-
ing function triggers. There are mainly two types of switching as
data switching and query switching.

In data switching a portion of the data is switched to the public
cloud. This is feasible only if the queries used in stream processing
application allows for split-merge (fission) of data items [6]. If the
query operators need to access a shared state (i.e., a shared memory
location) such data switching is not possible. The EmailProcessor
benchmark is an example for such stream processing application
which allows for fission. Elastic switching into the public cloud in-
troduces a significant latency to the events sent to the public cloud.
Hence in the context of data switching we send only R percent-
age of the input data stream to public cloud to avoid unnecessary
latency overheads. In the experiments conducted in this paper we
selected to use 2 = 10 after conducting multiple experiments with
different R values with all the other parameters fixed. For exam-
ple, we run the same experiment multiple times in each round with
different R values such as 1,2,4,8,10,12,14,20, etc.

On the otherhand there are certain queries which require the en-
tire set of input events to be passed through the operators to pro-
duce correct results (i.e., need to access shared state). For example,
for the correct operation of SNB2016 benchmark, the entire event
stream needs to be passed through the query operators of its Ranker
component. Aggregation of results is another example. Hence in
such situations data switching cannot be performed. Instead the
whole stream processing application needs to be migrated to the
public cloud. As indicated by the bent arrow, Q)_i has been com-
pletely transferred from the private cloud to public cloud.

5. EVENT STREAM COMPRESSION

Several key techniques exist for compressing event streams be-
fore they are sent to the public cloud. First technique is Compres-
sion by Field Trimming (i.e., query parameter tuning) where the
input queries are adjusted and tuned in such away that only the
required set of fields are sent to the public cloud. The second tech-
nique is by field compression where large data items of an event
gets compressed using a compression algorithm. In this paper we
implement only the former technique while we discuss the field
compression for the sake of completeness of the discussion.
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Figure 5: System operation with single query switched to pub-
lic cloud with query switching. (a) The private cloud only mode
of operation. (b) The hybrid cloud mode of operation with
query switching without compression.

5.1 Compression by Field Trimming

Query transformation is a technique which converts a given stream
processing query into another form which effectively gives the same
results when executed by the event processor engine [6].

The query transformation technique involves static analysis of
the query and deciding which fields can be omitted by looking at
the query. If a certain field is not used in the query we can drop
that particular event from the data stream, and thereby reduce the
amount of data sent through the wire. For example, lets consider
the example in Figure 6. In the query shown on top only 3 fields
out of 8 fields available in the data stream is included in the output.
Therefore, by looking at the output it can be concluded it is safe to
omit sending non-used fields that are not in the output. In this par-
ticular example we can omit sending iij_timestamp, fromAddress,
bccAddresses, subject, and regexstr fields.

5.2 Data Field Compression

In the data field compression technique, the contents of pre-
selected set of data fields are compressed using Gzip compression
algorithm. The selection of the fields to be compressed is done via
offline profiling. Once the fields to be compressed are selected,



(iij_timestamp long, fromAddress string, toAddresses string,
ccAddresses string, bccAddresses string, subject string,
body string, regexstr string);

select toAddresses, ccAddresses, body

insert inta outputEmailEventStream;

Key
mmm———— '
—/ Output from the public cloud

Input to the public cloud

define stream inputEmailsStream

(iij_timestamp long, fromAddress string, toAddresses string,
ccAddresses string, bccAddresses string, subject string,
body string, regexstr string);

from inputEmailsStream
select toAddresses, ccAddresses, body, regexstr

select toAddresses, ccAddresses, body

insert into outputEmailEventStream;

Figure 6: An example of query transformation based event
stream compression.

they are configured in the elastic switching mechanism through a
configuration file. While one could argue that involvement of an
additional step of compression may increase average latency per
event, our experiments in real world environment has shown this is
not the case.

6. OUT-OF-ORDER EVENTS HANDLING

Certain stream processing applications are sensitive for out-of-
order events [22]. There are two ways in which out-of-order events
could get introduced to the output stream from elastic stream pro-
cessing system. First, due to the switching activity with public
cloud which is unavoidable in an stream processing system. Sec-
ond, out-of-order events can already be present in the input stream
for the stream processing system. From multiple experiments con-
ducted on the above two scenarios we observed that the out-of-
ordering introduced by switching into public cloud far outperforms
the out-of-ordering which could occur naturally in the input stream.
For example, the effect of out-of-ordering introduced by the input
stream to become a significant factor compared to the out-of-order
introduced due to switching to the public cloud, we found that at
least about 60% of the events in the input stream needs to be ar-
riving out-of-order. This is uncommon in many stream processing
scenarios. Hence in this paper we ignore the out-of-order which is
naturally present in the input streams.

There are four main techniques of disorder handling: Buffer-
based, Punctuation-based, Speculation-based, and Approximation-
based. In this paper we discuss the use of a buffer for reordering
out-of-order events which are gathered from both the private and
public clouds. We allow user to specify as a parameter whether the
event stream output from the stream processing system needs to
handle out-of-order events or not. We use buffer-based technique
called reordering which essentially reorders events at the output
and periodically flushes the reordered events to the output stream.

We implement out-of-order event handling at the receiver of the
stream processing system. We detect whether there are any out-
of-order event in the input stream. If found we send those out-of-
order events to private cloud to avoid further delays of processing
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the events. We have found that this technique gives higher quality
output compared to a scenario of buffer-based reordering which
does not send events to public cloud at all.

7. EVALUATION

The evaluations described in this paper were conducted on 2
physical computers and on 4 Virtual Machines deployed in a com-
pute cluster of WSO2. Two physical computers were used in all the
experiments described in Sections 7.1 to 7.4. One of the computers
was used as the public cloud and the other computer as the private
cloud. The public cloud computer was running on Intel® Core
i5® M560, 2.67 GHz. Each VM had 4 cores, 3072KB L2 cache
and 32KB L1(d/i) caches. The public cloud computer had 4GB
RAM. The private cloud computer was a 64-bit Genuine Intel®

CoreTM 17-4800MQ CPU which operates at 2.70GHz, 8 cores, 8
hardware threads. The sizes of the L1(d/i), L2, and L3 caches of
this computer were 32KB, 256KB, and 6144KB respectively. We
used Oracle JDK 1.8.0_101 and WSO2 CEP Server 4.0.0 during
the experiments. The private and public clouds were connected
via a wireless network. We used NetEm network emulator [13] to
simulate 70ms latency which is present between two data centers
operating in the East and the West coasts of the United States [5].

Each VM out of the 4 VMs were running 64-bit Intel® Xeon
E312xx (Sandy Bridge) which operate at 2.70GHz. Each VM had
one CPU socket, with 2 cores. The sizes of the L1(d/i), L2, and
L3 caches were 32KB, 32KB, and 4096KB respectively. Each VM
had 4GB RAM with one 40GB hard disk. Each VM was installed
with Linux Ubuntu (kernel 3.13.0-36-generic).

Note that the ESM’s source code has been released under open-
source license™”.

7.1 Elastic Switching Without Event Stream
Compression

In the first round of the experiments we evaluated the perfor-
mance benefits of our elastic scaling mechanism. We used Email-
Processor benchmark for this purpose and one computer was used
as the public cloud while the private cloud was running in another
computer. We conducted performance experiments to measure how
effective would our stream processing system be in reducing the
overall average latency of processing P number of input events.
We use average latency as the performance metric because in an
elastic scaling system event processing latency acts as an indica-
tor of system performance. The results present in this paper are
taken single round experiments. The input data rate variation of
the EmailProcessor benchmark during the experiments is shown in
Figure 7. This indicates that the workload distribution had signifi-
cant variations. VM rental period was set to 1 minute to reduce the
time taken during the experiments while VM setup period was set
to 10 seconds. In our current implementation we do initiate the full
stream processing job in the public cloud during an elastic scaling
operation. The latency thresholds Ls and L4 were set as 12,000
and 10,000 milliseconds respectively.

Figure 8 indicates the latency distribution of running the Email-
Processor benchmark both without switching to public cloud and
with switching to public cloud. It can be observed that there are
two significant spikes in the workload distribution. Figure 8 shows
the average latency variation of the private cloud without switch-
ing and with switching scenarios. The four dotted vertical lines on
Figure 8 indicates the points in the timeline where VM start/VM

3https://github.com/sajithshn/event-publisher
“https://github.com/sajithshn/statistics-collector
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shutdown operations has been initiated. Elastic scaling system in-
stantiates the VM in the public cloud at 130" second. When wall
clock is 340 seconds, the VM is shutdown. The benchmark is run
only in the private cloud in the time range between 340 seconds and
890 seconds. At 890 seconds the VM instantiation process starts
again. The VM shutsdown when wall clock time is 950 seconds.
The results give notable results with an improvement of the aver-
age latency of 0.581 seconds in hybrid cloud (i.e., with switching)
which is 7.84% improvement compared to private cloud only de-
ployment. The 7.84% improvement of the average latency was cal-
culated by taking the average values of the data points correspond-
ing to the “Avg. Latency(ms) - Only Private Instance” and “Avg.
Latency(ms) - With Switching” curves. The difference of the two
averages was 0.581 seconds which was 7.84% improvement com-
pared to “Avg. Latency(ms) - Only Private Instance” case. Note
that we do not plot when actually the data stream gets switched
to/from the public cloud to maintain the simplicity of the charts.
Furthermore, the elastic switching reduces the load average of the
system operation. This can be observed from Figure 8.

7.2 Elastic Switching with Event Stream Com-
pression

Next, we applied event stream compression on top of the elastic
switching operations of the ESM. The results are shown in Fig-
ure 8. The four vertical continuous lines indicates where the VM
start/shutdown has been initiated with this round of experiments.
It can be observed a significant latency gain has been made with
use of event stream compression on the events sent to the public
cloud. ESM instantiates the VM in the public cloud at 140*" sec-
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ond. The VM is shutdown when the wall clock was 330 seconds.
Again the VM was started at 900th second and was shutdown at
960th second. The results obtained from event stream compression
was impressive compared to the naive private cloud only operation.
ESM provided 1.24 seconds per event average latency gain com-
pared to the private cloud only operation. This is a 16.70% latency
improvement. Furthermore, event stream compression provides us
8.86% more performance gain compared to elastic switching which
does not involve compression.

7.3 Elastic Switching in the Presence of Mul-
tiple Queries

Next, we run multiple queries simultaneously in the private cloud
and elastically scale one of the queries to the public cloud when the
load in the private cloud exceeds specified QoS constraints. An-
other objectives of this experiment was to investigate on the perfor-
mance variation happen when query switching has been conducted
with the ESM.

Figure 9 (a) indicates how average latency variation occurs in
both EmailProcessor and SNB2016 benchmarks when deployed
only in the private cloud. Figure 9 (b) shows how latency varia-
tion happens when only SNB2016 has been deployed in the public
cloud. Note that in this case we completely take SNB2016 out from
private cloud and deploy it in the public cloud while EmailProces-
sor continues to run as it is in the private cloud. Similar to the
previous experiment we have marked the switching points in Fig-
ure 9 (b). In this experiment ESM has started the VM in the public
cloud at 220" second while the VM was shutdown at 340" sec-
ond. Again the VM has been started at 960*" second and shutdown
at 980" second.

It can be observed that our elastic scaling mechanism success-
fully reduces the average latency of the SNB2016. Although mi-
gration of the SNB2016 to public cloud completely has resulted
in slight increase of average latency of SNB2016 by 34.89 sec-
onds (7.58% increase), the performance benefits of elastic scaling
far outweighs that drawback. Specifically the elastic scaling of
SNB2016 reduces the average latency of EmailProcessor by 74.47
seconds which is 15.75% improvement in average latency of the
EmailProcessor. Overall the elastic scaling reduces the average la-
tency of both the queries by 39.61 seconds which is a decrease of
the overall average latency by 7%. Note that we do not investigate
on load average variation in this experiment because we have only
one query compared to the non-switching scenario.

7.4 Effect of Elastic Switching with Reorder-
ing

Elastic scaling into a public cloud in general introduces disor-
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deployed in the public cloud.

der to an event stream. In this experiment we use a buffer in the
Receiver component of ESM to gather events sent from both public
and private clouds and sort them. A timer is used to flush events pe-
riodically. The results of running EmailProcessor benchmark with
data switching with/without compression is shown in Figure 10.

Average Latecny Variation With Buffer Based Re-ordering

400

—— Avg. Latency(s) - without Compression  —— Avg. Latency(s) - With Compression

300
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200 400 600 800 1000

Time Elapsed (s)

Figure 10: Effect of reordering on the average latency of the
event streams output by ESM.

The experiment results on Figure 10 indicated that buffer-based
reordering with compression provides 16 seconds average latency
improvement compared to conducting the same reordering on a
scenario without compression. Use of data stream compression in-
troduced 19.44% latency improvement when compression has been
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used. Furthermore, we observed that out-of-order events percent-
age at the Receiver was 45.40% when reordering was conducted
on elastic data stream without compression. However, reordering
on the elastic data stream with compression reduced the percent-
age of out-of-order events further by 7% to 38.4%. These results
indicates that our data stream compression based ESM can better
handle out-of-order events which are produced in general on naive
elastic scaling mechanisms.

7.5 Elastic Switching with Multiple Public Cloud
VMs

Experiments described till this point were conducted only using
single VM instance in public cloud. In this experiment we demon-
strate the ability of conducting elastic scaling on multiple VMs.
Each VM was configured to run on separate computer. The scal-
ing experiments were conducted with maximum four VMs on four
physical computers running in the public cloud. We observed that
although we added more VMs (and physical computers) to the pub-
lic cloud the switching mechanism did not start more VMs other
than four due to the system conditions did not satisfy the condi-
tions of the binary switching function ¢v s (). The results of this
experiment are shown in Figure 11.

It can be observed from Figure 11 that overall average latency re-
duces significantly when two public cloud VMs were used than sin-
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gle VM. The naive private cloud only average latency was 129.32
seconds. When a single VM on public cloud was started by the
ESM the per event latency was further reduced by 53.33 seconds.
This was a 15.1% average latency improvement compared to pri-
vate cloud only deployment. However, when the ESM was con-
figured to use maximum 2 VMs the overall average latency was
reduced to 110.78 seconds which is a reduction of 18.54 seconds
(22.8%) compared to the private cloud only deployment. Introduc-
tion of 3rd and 4th public cloud VMs resulted in further reductions
in average latency by 36% and 47% compared to the private cloud
only mode. Compared to the single public cloud VM, the 4 public
cloud VMs further reduce the latency by 37.55%. These results in-
dicate that ESM is capable of elastically scaling to multiple public
cloud VMs and Scaling introduces significant performance gains.
Note that the results shown on Figure 11 does not include the sce-
narios of VM shutdown since the motivation of the experiment was
to indicate that the proposed ESM can reduce the overall latency
further to considerable extent when additional VMs were added in
the public cloud.

7.6 Discussion

The above five different experiments indicate the effectiveness
of our elastic stream processing mechanism in lowering the av-
erage latency of data stream processing. In this paper our focus
was on stream processing jobs which get deployed in public cloud
completely during such elastic scaling scenario. Elastic scaling of
a portion of the stream processing job is an important area. For ex-
ample, the last three query operators of the EmailProcessor bench-
mark (Q3, Q4, and Q5) can be transferred to public cloud while
the first two operators (@1 and ()2) could still remain in the private
cloud.

We have demonstrated how effective it is to use compression
along with elastic switching to handle out-of-order events which
gets produced due to the use of public cloud. However, a limitation
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of our current implementation is that out-of-order event handling
implementation could not turn off the VM once the switching to
public cloud happens. This is due to the added latency of the buffer
based re-ordering. We are working on to fix this issue.

We have used average latency as the user specified QoS met-
ric in the current implementation because latency is one of the
most important performance metrics in an elastic stream process-
ing mechanism. However, we plan to investigate on use of other
metrics such as throughput, system load average, etc. as param-
eters for switching process in future. We need to consider higher
percentiles when there are a large number of outlier values in a
dataset. We see two potential uses of higher percentile latencies in
relation to ESM. First, for the switching function where the deci-
sion for switching needs to be taken. Because there are less number
of events with outlier latencies in the private cloud mode of opera-
tion there is no significant difference in the use of average latency
or a percentile such as 95th percentile for taking the switching de-
cision. The switching decision is influenced only by the latency of
the private cloud. Hence we opt to use average latency to make
the switching decision. The second place where higher latencies
would matter is measuring the latency benefit of elastic scaling.
Switching to public cloud inherently introduces events with outlier
latencies to the event stream. However, the benefit of ESM realizes
when we consider the overall picture using the average latency. In
hybrid cloud (public+private cloud) operation, although there are
few outlier events with large latencies, their effect is subdued by
the overall average latency reduction achieved by elastic switch-
ing. Hence, for measuring the elastic scaling benefit of using ESM
we used the reduction of average latency but not the reduction of
higher percentiles such as 95th percentile.

It should be noted that the ESM presented in this paper reorders
events only at the output of the streaming pipeline. This assumes
that the operations conducted within the elastic stream processing
pipeline (i.e., the public cloud portion of the stream processing



pipeline) are not sensitive for the order of the events.

We used two application benchmarks which we believe are good
example applications for stream processing. However, there are
other different types of applications which involve complex opera-
tions which we plan to conduct in future. Event pattern matching,
event sequence matching, sliding window operations, etc. are some
examples for such applications.

8. CONCLUSIONS

In this paper we present an elastic switching mechanism (ESM)
for elastic scaling of data stream processing systems. ESM lever-
ages public cloud to augment a private cloud when the private cloud
is overloaded. We implement the proposed approach on WSO2
Complex Event Processsor (WSO2 CEP). We have tested the fea-
sibility of our approach by using two application benchmarks (i.e.,
queries) called EmailProcessor and SNB2016. We observe that in
both data switching and query switching elastic scaling scenarios
our elastic switching mechanism provides performance benefits in
terms of latency reductions. In the case of the data switching sce-
nario with single public cloud VM instance we obtained 16.7%
improvement of average latency compared to private cloud only
operation. The proposed compressed stream processing approach
achieves 8.86% performance gain compared to naive elastic switch-
ing. In another experiment which involves query switching we ob-
tained 7% improvement of overall average latency. Furthermore,
we demonstrated that our data field compression based ESM could
effectively produce lesser out-of-order events by 7% compared to
a scheme which does not involve data stream compression. More-
over, when presented the option of scaling EmailProcessor with
four public cloud VMs ESM further reduced the average latency
by 37.55% compared to the single public cloud VM. These per-
formance figures indicate that our elastic scaling mechanism can
effectively reduce the average elapsed time spent on stream data
processing.

Currently we do switch entire query to public cloud in the case
of query switching. In future we plan to migrate only portions of
the queries which will lead for better control of the elastic switch-
ing process. We also plan to investigate and implement Fully Ho-
momorphic Encryption based ESM which will be useful for im-
plementing stream processing applications which involve sensitive
data such as processing health records. Furthermore, we plan to add
microbenchmarks for different components in the ESM as well as
use more elaborate performance models which may consider mul-
tiple aspects such as immediate saturation of the latencies. While
a network emulator has been used to simulate latency between two
distant data centers, we plan to conduct experiments in real cloud
environments in future.
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