
Dynamic Memory Partitioning for Cloud Caches
with Heterogeneous Backends

Cristina L. Abad, Andres G. Abad and Luis E. Lucio
Escuela Superior Politecnica del Litoral, ESPOL. Guayaquil, Ecuador.

{cabadr,agabad,lelucio}@espol.edu.ec

ABSTRACT
Software caches, implemented with in-memory key-value stores,
are important components of cloud architectures. In a com-
mon scenario, one server may serve requests from several
applications with different workloads, each supported by a
different backend (database or storage system); these appli-
cations compete for an allocation of the total memory. We
present a model for dynamic memory partitioning for cloud
caches with heterogeneous backends. Our work differs from
recent work for cloud caches in that we consider: (1) the ef-
fect of having backends with different performance profiles,
and (2) the cost of re-partitioning the memory. We dis-
cuss implementation issues that must be addressed, includ-
ing the need for on-line and lightweight mechanisms for es-
timating the miss rate curves (MRCs) and ways to solve the
non-convex optimization problem; specifically, we propose a
probabilistic adaptive search algorithm that can be used for
discontinuous, non-differentiable, or non-convex MRCs.

1. INTRODUCTION
Providers use caches to reduce latency and serve content

faster, which in turn leads to increased sales and user engage-
ment. For example, a 100ms latency penalty can lead to a
1% sales loss for Amazon, and an additional 400ms delay in
search responses can reduce search volume by 0.74% [6]. For
this reason, software caches—implemented with in-memory
key-value stores like Redis and Memcached—have become
important components of cloud architectures.

Software caches are simple, built to serve requests at a
high-throughput, with minimum latency. Beyond their evic-
tion policies, like Least Recently Used (LRU), they do not
have any additional intelligence, making them unable to
adapt to workload changes or application demands [3].

In this paper, we consider the case of a single organization
that has multiple application workloads to cache. For exam-
ple, consider a dynamic website that has four workloads to
cache: SQL results, dynamic HTML pages, user profiles and
user avatars. Each of these workloads can be served by a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPE’17, April 22-26, 2017, L’Aquila, Italy
c© 2017 ACM. ISBN 978-1-4503-4404-3/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3030207.3030237

Figure 1: Multi-instance vs. multi-tenant cloud
cache deployments; Redis favors the architecture on
the left while Memcached, the one on the right.

different Redis instance—in a multi-instance architecture—
or by a single Memcached instance—in a multi-tenant ar-
chitecture. Figure 1 illustrates these architectures. In this
scenario, a challenge is how to efficiently share the limited
memory resource between the applications. This is currently
done statically [3], relying on empirical human expertise and
offline workload analysis.

We propose a model that can be used to dynamically con-
figure memory allocations based on the observed workloads
so that the overall system utility is maximized. Our work
differs from recent work in memory partitioning for cloud
caches [2, 3, 7, 5] in that we consider: (1) the effect of hav-
ing backends with different performance profiles, and (2) the
cost of re-partitioning the memory between applications.

Unlike recent work that has used the cache hit rate as the
utility function to maximize [2, 3, 7, 5], we seek to minimize
the overall expected access time of objects in the system;
this includes the time to access the cache on a hit, and the
time to access the backend on a miss. In addition, and
given that different backends may be able to support dif-
ferent throughput, we include restrictions for the maximum
throughput supported by each backend.

The cache re-partitioning cost, measured in increased la-
tency while the memory is being reassigned, has not been
considered by recent work either. The reason for this is that
these solutions [2, 3, 7, 5] have been tailored for the multi-
tenant architecture, encouraged by Memcached, for which
the re-partitioning cost is negligible compared to the cost of
re-assigning memory between different software instances1.

We model these requirements and constraints as an op-
timization problem, whose utility function could be non-
convex (as has been observed in real deployments [3]). We
propose a probabilistic adaptive search algorithm that can
be used for discontinuous, non-differentiable, or non-convex

1We ran experiments and confirmed our hypothesis that
reassigning memory between instances incurred in a non-
negligible cost; our results are reported in Section 3.

87

Figure 2: Motivating architecture: multi-instance
caching layer with heterogeneous backends. Our
model also works for a multi-tenant architecture.

utility functions. We are implementing the solver as a service
that can be used by many clients to periodically calculate
their optimal partitioning. The miss rate curves (MRCs)—
the variable component of our utility functions—will be pro-
filed by our service to determine the best way to solve the
problem (LP-solver, hill climbing or our algorithm).

Finally, we discuss the implementation issues that should
be addressed to implement our model, including the need
for on-line mechanisms for estimating the MRCs, how to do
so without adding latency to cache requests, among others.

2. THE CACHE PARTITIONING PROBLEM
We consider a system where a single virtual or physical

machine hosts n instances of a software cache like Redis,
each serving a different application workload (see Figure 2).
These applications compete for the allocation of the total
memory M . Our model also works for a multi-tenant ar-
chitecture, as long as the different applications sharing the
cache belong to the same organization (as discussed later
in this section). For a solution that considers competing
applications possibly trying to game the system, see [5].

In case of a cache miss, each application i is served by a
backend with a maximum request throughput Ti. For ex-
ample, a database server used to construct user profiles may
have a lower throughput than a server that generates user
identity avatars based on client IP (like Github’s identicon).

Our model considers memory as the only shared resource,
ignoring the sharing of CPU. In-memory key-value stores
are memory- and not CPU-bound. This has been reported
by Redis, and observed in caching-as-a-service providers as
well as in large Memcached deployments [3].

The goal is Pareto efficiency : Fully utilize the memory,
compute the ideal memory allocation m = [m1, . . . ,mn] and
achieve the highest overall utility, given individual utility
functions Ui’s and total memory constraint M . This can be
expressed as optimization problem:

maximize
m

F(m) =

n∑
i=1

wiUi(mi)

subject to

n∑
i=1

mi ≤M,

mi ≥ mi, i = 1, ..., n,

(1)

where Ui(mi) is the utility function of application i as a
function of its assigned memory mi, and wi is the weight
assigned to i; this lets us indicate that one application is
more (or less) important. If all the weights are equal, then
all applications are equally important. mi is the minimum
memory assignment for application i.

We assume a non-adversarial model in which the appli-
cations are not trying to game the system. This is a rea-
sonable assumption when all the applications belong to the
same cloud client. Given that we consider a non-adversarial
model, we do not seek strategy proofness [5]. Some applica-
tion could be able to issue workloads that lead to a higher
memory assignment to said application, but this would be
at the cost of reduced overall system performance.

2.1 Backend-agnostic utility function
If we ignore the differences between the performance pro-

files of the backends, then the utility function can be ex-
pressed as the product of the application hit rate and the
frequency of requests issued during some period:

Ui(mi) = fi × hi(mi), (2)

where hi(mi) is the hit rate of application i as a function of
assignment mi, and fi is the frequency of requests of i.

Recent work on on-line and lightweight miss rate curve
(MRC) estimation [10, 9, 4] can be used to estimate the hit
rate curve of each application, hi, at a low cost. In Section 3
we discuss the overhead associated with these methods.

2.2 Backend performance
A limitation of the utility function described in (2) is that

it optimizes the hit rate, regardless of whether an application
may require a higher hit rate or tolerate a lower one. In
practice, improving the hit rate of one application may not
be as equally useful as improving the hit rate of another
application, due to differences in the performance profiles of
the corresponding backends. For example, all other things
being equal, if one of the applications has a slow backend
(e.g., if it processes complex SQL queries), increasing the
hit rate of the cache serving that application is more useful
than increasing the hit rate of a cache in front of a faster
backend (e.g., a NoSQL database storing user profiles).

Instead of the hit rate, we use the effective access time
(EAT) of an application as its utility function. The EATi
is the time that it takes, on average, to access an object in
application i. If we define cdi as the time to access an object
in the caching system and bdi as the time to access an object
in the backend system (including the time to process a cache
miss), then the utility function to maximize is:

Ui(mi) = −fi × EATi(mi), where

EATi(mi) = hi(mi)× cdi + [1− hi(mi)]× bdi.
(3)

2.3 Solving the optimization problem
Consider optimization problem (1)2. If functions Ui’s are

all quasi-linear (as assumed in [2]) the resulting optimization
problem can be solved by solving a sequence of feasibility
problems, with a guaranteed precision of ε after dlog2R/εe
iterations, where R is the length of the search interval. If

2Our discussion henceforth applies to any of the utility func-
tions in this paper.

88

functions Ui’s are all concave, we have a convex optimiza-
tion problem easily solved with off-the-shelf solvers. When
functions Ui’s are: discontinuous, non-differentiable, or non-
convex, alternative approaches are required due to a lack of
gradient or the presence of local optima.

One alternative is to use probabilistic search approaches,
in which a generative model is used to generate candidate
points in the search of an optimum. An adaptive mecha-
nism may be added to the generative model to improve the
performance of the sequentially generated candidates.

Let x = [x1, . . . , xn] with xi = (mi −mi)/(M −
∑
imi),

satisfying
∑
i xi = 1 and 0 < xi < 1. We assume that the

variability of x can be well modeled by a Dirichlet3 distri-
bution Dir(x|α), with parameter vector α = [α1, . . . , αn].
Then, we define:

F̃(x) = F

(
(M −

∑
i

mi)x + mi

)
, (5)

where mi = [m1, . . . ,mn].
We propose the following general approach, inspired in

evolutionary strategies, for solving problem (1) in the case
of non-convex and non-quasi-linear functions Ui’s. We be-
gin by setting αi to 1/n, for all i. We then generate K
points x?k|α ∼ Dir(x|α) for k = 1, . . . ,K. Note that points
generated in this way satisfy all restrictions of problem (1).

Using points in set {x?k}Kk=1 we construct the following
prior mixture density for α:

g(α; {x?k}) =
1

Z

∑
x∈{x?

k
}

φx(α), (6)

where Z is a normalization constant and φx is a non-negative
function with finite mass concentrated around x (e.g., a ra-
dial basis function centered at x). We proceed by sampling
α from g and generating points x|αγ ∼ Dir(x|αγ), where
αγ is the vector with elements γαi for γ > 1. Note that,
while random variables x|α and x|αγ have the same ex-
pected value, γ has the effect of reducing the variance of
x|αγ by a factor of γ−1.

The above generative procedure corresponds to the fol-
lowing bayesian hierarchical structure:

α ∼ G(α; {x?k}) and

x|αγ ∼ Dir(x|αγ),
(7)

where G is the distribution function corresponding to mix-
ture density g.

Our method proceeds by alternatively generating param-
eters α—the exploration stage—and generating J points x’s
conditioned on αγ—the exploitation stage. The prior distri-
bution for α is then updated using the K best cumulatively-
observed points x?k’s and the procedure is repeated until a
satisfactory solution is found.

Algorithm 1 provides the details of the proposed proce-
dure. It rests to define how to choose γ(j) within the inner

3The Dirichlet distribution Dir(x|α) has a density function:

f(x|α) =
Γ(
∑n
i=1 αi)∏n

i=1 Γ(αi)

n∏
i=1

xαi−1
i , (4)

expected value E[xi] = αi/A and variance V[xi] = αi(A −
αi)/(A

2(A+ 1)), where A =
∑
i αi.

Algorithm 1: Probabilistic adaptive search

Input: Functions Ui’s; number K of points to use;
number J of rounds; function φx

Output: Best point x∗, such that F̃(x∗) ≥ x for every
point x generated

1 αi := 1/n for i = 1 . . . , n
2 Generate x?k|α ∼ Dir(x|α) for k = 1, . . . ,K
3 repeat
4 Generate α ∼ G(α; {x?k})
5 for j = 1, . . . , J do
6 Generate x|αγ(j) ∼ Dir(x|αγ(j))
7 if F̃(x) > mink {F̃(x?k)} then
8 {x?k} := x ∪ {x?k} \ arg minx∈{x?

k
} F̃(x)

9 until Satisfactory solution x? = arg maxx∈{x?
k
} F̃(x) is

found ;
10 return x?

loop. The idea is to increase its value at each iteration to
reduce the variance of αγ and guarantee its convergence.

2.4 Backend constraints
One may also want to add a backend’s maximum through-

put, Ti, to the problem formulation; increasing the hit rate
is a way to ensure that Ti is not exceeded. This can be
expressed as a non-linear constraint:

fi × [1− hi(mi)] ≤ Ti, i = 1, ..., n. (8)

However, adding this constraint complicates the proba-
bilistic search: We can reject solutions that do not satisfy the
constraint requirements, but this would increase the conver-
gence time. An alternative approach is to incorporate this
constraint in the EATi formula in (3): When a backend’s
constraint is exceeded, requests get queued up and the time
to access an object in the backend system, bdi, increases.

2.5 Dynamic partitioning
As the optimal allocation may change over time, the op-

timal assignment should be recalculated periodically. We
must consider the cost of re-partitioning the memory: While
the cache instance adapts to the new partition size (e.g., by
evicting keys if it is to use less memory than before), it may
incur in a penalty of a reduced throughput.

Let m(t) be a feasible solution to problem (1) at time t.

The cost of going from a solution m(t−1) to solution m(t) will
be represented by non-negative function C(m(t−1),m(t)).
We do not assume C to be symmetric in its arguments since
allocating and deallocating memory may have different op-
erational costs (our preliminary experiments confirm this to
be the case; results in Section 3). Cost function C is incor-
porated to the objective function of (1) at time t as:

F (t)(m) =

n(t)∑
i=1

w
(t)
i U

(t)
i (mi)− C(m?,(t−1),m), (9)

where m?,(t−1) is the chosen solution to (1) at time t− 1.
We propose the use of a cost function of the form:

C(m(t−1),m(t)) =

n∑
i=1

βi(m
(t−1)
i −m(t)

i), (10)

89

where:
βi =

{
β+
i if m

(t−1)
i ≤ m(t)

i ;
−β−i else.

(11)

Thus, we assume a cost (proportional to the memory size)
of β+

i for allocating and β−i for deallocating.
Objective function (9) can be directly handled by the

adaptive search approach described above. For solvers that
cannot handle the proposed cost function directly, we cast
the following equivalent optimization problem:

maximize
m,η+,η−

F (t)(m, η+, η−) =

n∑
i=1

wiU
(t)
i (mi)

−
n∑
i=1

β
+,(t)
i η+i −

n∑
i=1

β
−,(t)
i η−i

subject to m
?,(t−1)
i −mi ≤ η+i , for all i

−m?,(t−1)
i +mi ≤ η−i , for all i

n∑
i=1

mi ≤M,

mi −m(t)
i , η+i , η

−
i ≥ 0, for all i,

(12)

which preserves convexity and quasi-linearity from (1).

3. IMPLEMENTATION ISSUES
We are working on using our model to implement a dy-

namic memory partitioning tool for Redis. In the process,
we need to solve the following problems.

Workload monitoring and hit rate curve estimation: The
goal is to implement a very lightweight monitoring mecha-
nism to construct hit rate curves with very little space and
time overhead. For our Redis monitoring module we plan
on adapting SHARDS [9], a novel algorithm that can con-
struct approximate miss rate curves by sampling a small
percentage of requests and has a small memory footprint.
For example, it can process as much as 17 million requests
per second and build curves with < 2.6% error, with a con-
stant memory footprint (authors report excellent accuracy in
1 MB footprint for very large workloads [9]). To avoid slow-
ing down cache requests, we are implementing the workload
profiler as an asynchronous module with a lock-free buffer
using the Disruptor pattern, originally developed for a high-
performance financial exchange [8].

Cost of re-sizing the memory: We ran simple tests in
which we deallocated 350 MB from one Redis instance and
reassigned this RAM to another instance. We report the re-
sults averaged across 3 experimental runs: In our tests, deal-
locating memory from an instance took 28.6 seconds, while
adding RAM took 2.4 seconds. During this period, the Re-
dis instance stopped serving requests. Our model considers
this cost, which may vary from system to system. Our plan
is to implement a profiler that measures the re-sizing cost
and can be used to automatically configure our tool.

Solving the optimization problem: Miss rate curves (MRCs)
can have performance cliffs [3] which complicate the task of
solving the optimization problem. Optimal allocation is NP-
complete with non-convex MRCs [1] so no efficient solution
is known. In the past, others have tackled the problem as fol-
lows: (1) For concave or near concave MRCs, Dynacache [2]
applies convex piece-wise fitting and solves the problem with
an LP-solver; (2) Cliffhanger [3] modified Memcached’s LRU
so that up to one performance cliff is removed using shadow
queues, an approach inspired by Talus [1]; it then uses a

gradient-based algorithm (hill-climbing) to optimize the al-
location; since the full MRC curve is never built, the al-
location is iteratively optimized, an approach that makes
sense when reallocating memory is cheap, but inadequate
for the problem being solved in this paper; finally, (3) oth-
ers [7, 5] have simply proposed solutions that only work for
concave MRCs; however, real measurements have revealed
that this assumption may not hold [3]. We plan to imple-
ment the solver as a cloud service that could be used by
many cloud clients to periodically calculate their optimal
memory partitioning. The miss rate curves (MRCs) will be
profiled by our service to determine the best way to solve the
problem at hand: LP-solver, gradient-based method (with
or without convex hull elimination) or probabilistic adap-
tive search. We also plan to explore the option of iterating
between methods to speed up convergence.

4. CONCLUSIONS AND FUTURE WORK
We studied the problem of dynamic memory partitioning

of cloud caches and modeled it as an optimization prob-
lem. Our formulation considers the effect of having back-
ends with different performance profiles, as well as the cost
of re-partitioning the memory. We proposed a probabilistic
search algorithm that can be used when the utility functions
are non-convex (which may be the case in our problem).

We are currently working on implementing our proposed
approach as follows: (1) A miss rate curve profiling tool
for Redis, leveraging recent high-performance solutions like
SHARDS and LMAX’s Disruptor pattern; (2) a profiling
tool for Redis that can learn the cost of re-partitioning the
memory between Redis instances; and (3) a partitioner-as-a-
service tool that will implement several ways to solve the op-
timization problem and profile the utility function to choose
the most appropriate one depending on the actual workload.

Acknowledgements. This work was partly funded by a
Google Faculty Research Award.

5. REFERENCES
[1] Beckmann and Sanchez. Talus: A simple way to

remove cliffs in cache performance. In HPCA, 2015.

[2] Cidon, Eisenman, Alizadeh, and Katti. Dynacache:
Dynamic cloud caching. In HotCloud, 2015.

[3] Cidon, Eisenman, et al. Cliffhanger: Scaling perfor-
mance cliffs in web memory caches. In NSDI, 2016.

[4] Hu, Wang, Zhou, Luo, et al. Kinetic modeling of data
eviction in cache. In Usenix ATC, 2016.

[5] Pu, Li, Zaharia, Ghodsi, and Stoica. Fairride:
Near-optimal, fair cache sharing. In NSDI, 2016.

[6] Singla, Chandrasekaran, Godfrey, and Maggs. The
Internet at the speed of light. In HotNets, 2014.

[7] Stefanovici, Thereska, O’Shea, Schroeder, et al.
Software-defined caching: Managing caches in
multi-tenant data centers. In SOCC, 2015.

[8] Thompson et al. Disruptor: High performance
alternative to bounded queues for exchanging data
between concurrent threads. LMAX Tech. Rep., 2011.

[9] Waldspurger, Park, Garthwaite, and Ahmad. Efficient
MRC construction with SHARDS. In Usenix FAST,
2015.

[10] Wires, Ingram, Drudi, et al. Characterizing storage
workloads with counter stacks. In OSDI, 2014.

90

