
An Empirical Analysis of Amazon EC2 Spot Instance
Features Affecting Cost-effective Resource Procurement

Cheng Wang, Qianlin Liang, Bhuvan Urgaonkar
Pennsylvania State University

{cxw967,qxl5068,bhuvan}@cse.psu.edu

ABSTRACT

Many cost-conscious public cloud workloads (“tenants”) are turn-
ing to Amazon EC2’s spot instances because, on average, these
instances offer significantly lower prices (up to 10 times lower)
than on-demand and reserved instances of comparable advertized
resource capacities. To use spot instances effectively, a tenant must
carefully weigh the lower costs of these instances against their poorer
availability. Towards this, we empirically study four features of
EC2 spot instance operation that a cost-conscious tenant may find
useful to model. Using extensive evaluation based on both histor-
ical and current spot instance data, we show shortcomings in the
state-of-the-art modeling of these features that we overcome. Our
analysis reveals many novel properties of spot instance operation
some of which offer predictive value while others do not. Using
these insights, we design predictors for our features that offer a
balance between computational efficiency (allowing for online re-
source procurement) and cost-efficacy. We explore “case studies”
wherein we implement prototypes of dynamic spot instance pro-
curement advised by our predictors for two types of workloads.
Compared to the state-of-the-art, our approach achieves (i) compa-
rable cost but much better performance (fewer bid failures) for a
latency-sensitive in-memory Memcached cache, and (ii) an addi-
tional 18% cost-savings with comparable (if not better than) per-
formance for a delay-tolerant batch workload.

Keywords

Spot instance features, resource procurement

1. INTRODUCTION
Amazon EC2 has been offering spot instances [5] since 2009

and a large segment of its “tenant” workloads has come to embrace
these [22]. The appeal of spot instances lies in their low prices
- up to 1/10 that of on-demand instances of equivalent capacities.
Unlike an on-demand instance, whose price changes slowly (over
months or years), a spot instance has a highly dynamic price that
may change as frequently as once every few minutes1.

1Although it may seem surprising to some, spot prices are known

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPE’17, April 22-26, 2017, L’Aquila, Italy

c© 2017 ACM. ISBN 978-1-4503-4404-3/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3030207.3030210

From a tenant’s point of view, an EC2 spot instance is a virtual
machine (VM) that is cheaper than its on-demand or reserved coun-
terpart but appears to have poorer availability. In order to use spot
instances effectively, a tenant must be able to model well relevant
aspects of their operation: After submitting a bid, how long does
it take for an instance to be ready for use? What is the expected
lifetime of an instance? What would the costs be during its life-
time? What is the probability of simultaneous bid failures if the
tenant places bids across spot markets? Finally, the tenant must
combine these predictions with its application-specific trade-offs
to devise online instance procurement algorithms2. Whereas such
online procurement (“control”) algorithms have been extensively
researched recently (see Section 2.2), we find significant shortcom-
ings in modeling and prediction of key features of spot operation
that these algorithms rely upon. Overcoming these shortcomings is
the goal of this study.
Research Contributions:

• We consider four key features that we think a tenant should model:
(i) lifetime of an instance, (ii) average spot price during life-
time, (iii) simultaneous revocations, and (iv) startup delay. In
particular, for (i) and (ii), we show that the most commonly
used prediction approach (based on cumulative distribution of
spot prices) fails to capture the tenant’s service contiguity, and
design quantitative models and computationally efficient predic-
tors (Section 3.1). For (iii), we find that the existing approach
(based on correlations of spot price traces from different mar-
kets) overlooks the tenant’s bids in its prediction and thus may
fail to reflect the actual likelihood of simultaneous revocations,
which our technique captures well (Section 3.2). Finally, our
study provides valuable first-hand data and insightful results for
evaluating the predictability of (iv) (Section 3.3), which is usu-
ally ignored by prior work, and the predictive power of “effective
capacity” for spot prices (Section 3.4).

• We evaluate the efficacy of our modeling and prediction in two
ways. First, by using extensive real-world data, we demonstrate
that our proposed models and predictors outperform the base-
line approaches which are commonly used in prior work (Sec-
tion 3). Second, we take two real-world case studies and adapt
resource procurement algorithms from related work to demon-

to exceed on-demand prices, sometimes significantly - see several
examples in Figure 2. We surmise that this may be part of mecha-
nisms employed by EC2 to shed increasing load on its servers host-
ing spot instances. Others have also reported that EC2 spot pricing
seems to have elements beyond simply reflecting supply-demand
relationships [1].
2These trade-offs would be between costs, on the one hand, and
overheads of possible revocations (either in the form of fault-
tolerance mechanisms or loss of performance/correctness), on the
other.

63

Time

Spot
price

Bids
submitted

Bid 1

Pending:
bid too low

Pending:
Cap. not available

Cap. oversubscribed

Ready-
to-use

Terminated:
out of bid

Terminated:
No capacity

Cap. oversubscribedRequest
fulfilled

Initialization

Bid 2

Figure 1: Illustration of spot instance operation using two hypo-
thetical bids (Bid 1 and Bid 2).

strate how the tenants could leverage our models and predic-
tors for cost-effective operations, as well as the improvements in
performance and/or costs3 (Section 4). Our approach offers (i)
comparable cost but much better performance (fewer bid failures
and lower tail latency) for a latency-sensitive in-memory Mem-
cached workload, and (ii) an additional 18% cost-savings with
comparable performance for a delay-tolerant batch workload.

• Our study reveals several novel insights about spot operation
with implications for tenant control. Amongst our salient find-
ings are: (i) Whereas raw spot prices are best considered non-
stationary, most of our features exhibit short-term temporal lo-

cality (borrowing a phrase from caching and memory manage-
ment) that can be leveraged for prediction. (ii) Exploiting spatial
locality simply via cross-correlation of spot prices across mar-
kets could be misleading; it is important that the modeling of
simultaneous revocations be conditioned on specific bid values.
(iii) We do not find significant statistical correlation between ef-
fective capacity measurements and spot price, indicating the evo-
lution of spot price likely depends on a spatially coarse (e.g., data
center or availability zone wide) load metric.

Outline: In Section 2, we discuss the lifecycle of a spot instance
and related work. In Section 3, we identify the key features and
present our models and predictions. In Section 4, we provide real-
world case studies to show the efficacy of our approaches. We con-
clude in Section 5.

2. BACKGROUND

2.1 Life of a Spot Instance
We show the key events in the life of a spot instance in Figure 1;

more details can be found in [24]. We assume that Bid 1 and Bid 2
(with the former being higher) are placed at the time shown. After
a tenant submits a bid, there can be a period during which its bid is
strictly less than the spot price. It is quite well-known that during
such a period, the tenant’s request for an instance is not granted
(EC2 shows the status of the tenant’s request as “pending: bid too
low.”) It is less well-known, however, that there may sometimes be
an additional delay 4 with the request status being “pending: capac-

3All our code and data is available at [18]. Our code includes both
trace analysis and control implementation of tenant-side instance
procurement on EC2.
4There may in fact be even more reasons of delay. We discount
these since these are mostly due to issues with the tenant’s configu-
ration. E.g., the tenant may tell EC2 to launch a set of spot instance
only if it can launch them all (a.k.a. launch group); the bid status

ity not available” or “pending: capacity oversubscribed” even after

the spot price has fallen below the bid. According to EC2, this hap-
pens if the spot market does not have available capacity or capacity
is oversubscribed. After the request is “fulfilled,” EC2 launches a
spot instance and “initializes” it with the tenant-specified configu-
ration, after which the instance is “ready to use.”

In Fig. 1, both the bids are fulfilled at the same time resulting in
the two instances becoming ready to use at the same time. The fol-
lowing two ways for an instance to terminate are well-known: (i)
the tenant may use the instance till its needs are met and then volun-
tarily terminate the instance, or (ii) the bid may fall below the spot
price that would cause EC2 to revoke the instance (shown for Bid 1
with a status of “terminated: out of bid”). A third less well-known
way for an instance to terminate, however, is one shown occurring
for Bid 2 wherein the instance is reclaimed by EC2 allegedly due to
capacity scarcity (with a status of “terminated: out of capacity” or
“terminated: oversubscribed”). Startup delays or involuntary termi-
nations due to alleged capacity scarcity are aspects of spot instance
operation that bring additional complexity into their usage but have
not been considered in related work.

When an instance is revoked by EC2, the tenant loses all its lo-
cal state (contents of main memory and local disks of the instance).
EC2 does issue a warning to the tenant before revoking a spot in-
stance (2 minutes prior to revocation). The tenant may choose to
use this warning period to save some or all of that instance’s local
state. Finally, it must be noted the tenant is billed based on the spot
price during the instance’s lifetime (and not based on its bid).

2.2 Related Work
Spot Price Modeling/Prediction: Prior work on spot price mod-
eling/prediction ranges from relatively simple ones (in terms of the
amount of historical data employed as well as the computational
complexity of the model), e.g., auto-regressive models [1, 30, 36]
or empirically measured cumulative distributions of key parame-
ters [6,10,15,19,20,26,27], to more complex ones, e.g., employing
Markovian models [14, 17, 21, 35], including adapting model pa-
rameters over time. Simple regressive models might fail to provide
insights on how the spot price might evolve in the long run since it
could change at a minute’s granularity. Models based on empirical
distributions, although offering an improved treatment of longer
term properties than regressive models, usually discard valuable
temporal information about the continuity of the spot price staying
below different bid values. Therefore, they may fail to capture well
the continuity of service availability, which is of great concern par-
ticularly for long-lived and “stateful” applications. We refer to such
approaches as “CDF-based” (short for cumulative density function
based) and discuss the details of their limitations in Section 3.1. To
our knowledge, one exception to the above models is [21] wherein
the “sojourn time” of a spot instance procured via a particular bid is
modeled and predicted via a Semi-Markov chain. However, tenant
control based on such multidimensional models would likely suffer
scalability limitations when considering multiple spot markets with
multiple bids for better availability and profitability.

Prior work models concerns arising from simultaneous revoca-
tion of spot instances across markets via cross-correlations or cor-
relation coefficients of raw spot price traces [26,27]. In Section 3.2,
we argue why this can be misleading and why it is important to con-
sider simultaneous revocations conditioned on specific bid values.
Finally, related work has ignored the startup delay of spot instances
(which can be longer than that of on-demand instances) and its im-
plications for control design and operation. The only one exception

would be “launch-group-constraints” if EC2 cannot launch all at
the same time.

64

is [13]. Even this, however, focuses on the boot time of instances
which is only part of the overall startup delay.
Cost-effective resource procurement with spot instances. A large
body of related work provides cost-effective solutions for tenant-
side procurement (“control”) of spot instances, combined with on-
demand and/or reserved instances, for different workloads or ap-
plications, e.g., delay-tolerance batch jobs [6, 12, 14, 17, 21, 26, 28,
35], video streaming [8], data caching [34]. On the one hand, for
tractability reasons, the prior work usually resorts to the aforemen-
tioned simple spot price prediction techniques in their resource pro-
curement, which do not capture well the key feature we identify in
our work, e.g., the continuity of service availability and simultane-
ous revocations across spot markets. Several fault-tolerance mech-
anisms have been explored to deal with bid failures, e.g., check-
pointing, live-migration, replication, which are complementary to
our work and can be incorporated with the key features we iden-
tify to provide better performance. EC2 itself provides a facility
called Spot Fleet [23] for tenant procurement. However, the default
bidding strategies are either evenly spread the spot requests across
pools, which may not be cost-effective, or only choose the pool
with the lowest spot price which may suffer from simultaneous bid
failures.

3. USEFUL SPOT FEATURES
We describe four spot instance features that we think a tenant

should focus on. For each, we present a quantitative representa-
tion (a “model”) and offer intuition for why it might be useful in
online resource procurement (“control”). A key idea cross-cutting
our models is to express our features as quantities that are condi-

tioned on specific bids chosen out of a small set of pre-selected
values. For each feature, we explore one or more of the following
properties that might be intuitively appealing for their potential in
offering predictive value:

• Temporal Locality: Does historical data offer useful hints about
future evolution of this feature? If so, what is the right amount
of historical data to consider?

• Spatial Locality: How does the evolution of this feature in a mar-
ket relate to that in others in the same vs. different availability
zones or geographic regions?

• Capacity Measurements: Do effective capacity measurements [32]
have any predictive value? That is, do such measurements serve
as faithful indicators of changes in spot prices or availability ca-
pacity in the concerned marketplace?

Using lessons learnt from this exercise, we design computation-
ally efficient predictors for our features. Finally, we evaluate our
predictors on a large set of spot price marketplaces. Figure 2 shows
90-day long spot price timeseries for 16 marketplaces for which
we present such evaluation in this paper. We also plot the mov-
ing average and standard deviation of spot prices over a two-day
sliding window in the same figures. These measurements show
high variations especially in spot markets with frequent spikes, e.g.,
c3.2xlarge in us-west-1a and suggest that raw spot prices are best
considered (highly) non-stationarity making questionable the effi-
cacy of approaches in existing work (e.g., [1, 30, 36]) that rely on
modeling them directly (i.e., implicitly assuming temporal locality
in raw prices). A key finding of our work (elaborated upon through-
out the rest of this section) is that while assuming temporal locality
in raw spot prices may not be reasonable, the features we identify
(and which we find useful for control) do indeed show short-term
temporal locality.

3.1 Features 1 & 2: Lifetime and Average Price
during Lifetime

We present our first two features together due to significant con-
nections between their modeling and prediction.

A tenant would like a spot instance to be available for long enough
to serve its needs. That is, it would be interested in the following
question: how long is a successful bid going to last? To answer
this, our first feature is concerned with the lifetime of a spot in-
stance, which we define as the duration between when it becomes
ready to use till its termination5. An effective model for this fea-
ture should not overestimate this quantity - doing so may render
a control scheme overly optimistic in its estimation of the cost vs.
performance trade-off. On the other hand, underestimating it may
lead to higher than desired costs. Based on Section 2.1, a spot in-
stance could be terminated due to either bid failure (“terminated:
out of bid”) or non-bid failure (“terminated: not enough capacity”
or “terminated: capacity oversubscribed”). We find the latter to be a
rare event in today’s EC2 spot markets. Therefore, in what follows,
we ignore time to non-bid failure and only focus on time to bid
failure in our analysis. It should be pointed out that in an alternate
spot market (e.g., in a future cloud with higher data center utiliza-
tion and/or one using alternate resource management policies [11]),
such terminations may not be non-negligible. Modeling of spot
instance lifetime in such environments would be made especially
complex because these two types of terminations may themselves
not be independent (due to possible dependence through load on
the data center).

Our second feature is the average spot price during an instance’s

lifetime. Since spot prices tend to be significantly smaller than on-
demand prices (of equally-sized instances) during periods when a
bid is successful, and since EC2 charges a tenant based on the spot
price during such periods (but not the bid), attempting to predict
spot prices accurately is of little value. A visual inspection of the
90-day spot prices in Figure 2 and how these prices compare with a
bid that equals to the on-demand price clarifies this6. In particular,
it suffices that we predict the average spot price during such peri-
ods with reasonable accuracy (since that is what will determine our
costs).

0

0.5

1

P
ri

c
e

Availability = 0.7

0

0.5

1

P
ri

c
e

5 10 15 20
0

0.5

1

P
ri

c
e

Time (hour)

Bid

Figure 3: Pitfalls of CDF-based ap-
proaches used in prior work.

Limitation of Prior Work:

As discussed in Sec-
tion 2.2, prior studies
that rely on CDF-based
modeling (even if dy-
namically updated) of
spot price to predict in-
stance lifetime may not
be able to capture well
service contiguity. We il-
lustrate their pitfalls us-
ing Figure 3 via three

5Clearly, the lifetime defined in this manner could depend inti-
mately on the time when a bid is placed. We do not consider this
complexity in our work because it is conceptually simple to extend
our characterization for this. E.g., we could carry out our analy-
sis separately for each hour of the day (or another appropriate time
duration).
6Although it may seem surprising to some, spot prices are known
to exceed on-demand prices, sometimes significantly - see several
examples in Figure 2. We surmise that this may be part of mecha-
nisms employed by EC2 to shed increasing load on its servers host-
ing spot instances. Others have also reported that EC2 spot pricing
seems to have elements beyond simply reflecting supply-demand
relationships [1].

65

Time(day)
0 30 60 90

p
ri

c
e
($

/h
o

u
r)

0

0.5

1

1.5

2

2.5
m3.large us-east-1c

spot price
on-demand price

Time(day)
0 30 60 90

p
ri

c
e
($

/h
o

u
r)

0

0.5

1

1.5

2

2.5
m3.large us-east-1d

spot price
on-demand price

Time(day)
0 30 60 90

p
ri

c
e
($

/h
o

u
r)

0

0.5

1

1.5

2

2.5
m3.large us-west-1a

spot price
on-demand price

Time(day)
0 30 60 90

p
ri

c
e
($

/h
o

u
r)

0

0.5

1

1.5

2

2.5
m3.large us-west-1c

spot price
on-demand price

Time(day)
0 30 60 90

p
ri

c
e
($

/h
o

u
r)

0

0.5

1

1.5

2

2.5
m3.xlarge us-east-1c

spot price
on-demand price

Time(day)
0 30 60 90

p
ri

c
e
($

/h
o

u
r)

0

0.5

1

1.5

2

2.5
m3.xlarge us-east-1d

spot price
on-demand price

Time(day)
0 30 60 90

p
ri

c
e
($

/h
o

u
r)

0

0.5

1

1.5

2

2.5
m3.xlarge us-west-1a

spot price
on-demand price

Time(day)
0 30 60 90

p
ri

c
e
($

/h
o

u
r)

0

0.5

1

1.5

2

2.5
m3.xlarge us-west-1c

spot price
on-demand price

Time(day)
0 30 60 90

p
ri

c
e
($

/h
o

u
r)

0

0.5

1

1.5

2

2.5
c3.large us-east-1c

spot price
on-demand price

Time(day)
0 30 60 90

p
ri

c
e
($

/h
o

u
r)

0

0.5

1

1.5

2

2.5
c3.large us-east-1d

spot price
on-demand price

Time(day)
0 30 60 90

p
ri

c
e
($

/h
o

u
r)

0

0.5

1

1.5

2

2.5
c3.large us-west-1a

spot price
on-demand price

Time(day)
0 30 60 90

p
ri

c
e
($

/h
o

u
r)

0

0.5

1

1.5

2

2.5
c3.large us-west-1c

spot price
on-demand price

Time(day)
0 30 60 90

p
ri

c
e
($

/h
o

u
r)

0

0.5

1

1.5

2

2.5
c3.2xlarge us-east-1c

spot price
on-demand price

Time(day)
0 30 60 90

p
ri

c
e
($

/h
o

u
r)

0

0.5

1

1.5

2

2.5
c3.2xlarge us-east-1d

spot price
on-demand price

Time(day)
0 30 60 90

p
ri

c
e
($

/h
o

u
r)

0

0.5

1

1.5

2

2.5
c3.2xlarge us-west-1a

spot price
on-demand price

Time(day)
0 30 60 90

p
ri

c
e
($

/h
o

u
r)

0

0.5

1

1.5

2

2.5
c3.2xlarge us-west-1c

spot price
on-demand price

Figure 2: Sample spot price timeseries collected during the 90-day period (2015/07/08 to 2015/10/06) and are chosen due to their very
different properties. The green “*” and error bars represent moving average and standard deviations over 2-day interval.

synthetic traces. Although all traces have availability of 0.7 under
the same bid, the bottom trace is clearly much worse than the top
one since it incurs more frequent bid failures, which the CDF-based
approaches would fail to distinguish. With such a model a tenant
might be tempted to use spot instances more aggressively than he
should, which might cause performance degradation due to more
frequent than desired service interruption. On the other hand, more
complex statistical models usually result in control that suffer from
scalability limitations (the “curses of dimensionality” of Dynamic
Programming based approaches).
Models and Temporal Locality-based Prediction: For both these
features, we find that effective models are offered by viewing them
as random variables informed by empirically measured probability
distributions in the recent past. A key requirement for such mod-
eling to be effective lies in choosing the right amount of historical
data as we describe momentarily. First, we introduce the defini-
tions for the random variables we choose. We model as a random
variable L(b) the length of a contiguous period during which the
spot price is less than or equal to a bid b. In other words, L(b) cap-
tures the upper bound of the lifetime of a spot instance using bid b.
We denote as p̄(b) = E[pt|L(b)] a random variable for the average
spot price pt during a period when the bid b is successful 7, which

7We are overloading the term L(b) to mean a contiguous duration

serves to estimate the cost of a spot instance procured by placing
a bid b. We set L(b) and p̄(b) to 0 during the period when the bid
fails. Figure 4 illustrates L(b) and p̄(b).

Our prediction techniques assume temporal locality over a re-
cent sliding time window (H most recent time slots, e.g., days) for
making predictions of L(b) and p̄(b). H must be chosen such that
temporal locality8 indeed holds for these quantities. Large L(b)
and small p̄(b) imply long service continuity and low costs, thereby
encouraging the use of spot instances using bid b. We use a small
percentile (e.g., 5th) of the recently constructed distribution of L(b)

- denoted as L̂(b) - as our prediction in the ongoing horizon. The
reasoning behind this choice is that if the statistical properties of
L(b) do not change much over H , we expect that with a very high

probability, bid b would be successful for at least L̂(b) time units.
We use average of p̄(b) during the relevant H as its predictor (de-
noted as ˆ̄p(b)). Note that our approach would result in a control
formulation wherein the number of state/control variables grows

when bid b is successful as well as its length. We are avoiding
additional notational complexity since the distinction is very clear
based on context.
8By temporal locality, we mean that over relatively short time-
scales (a day to a few days), the key features tend to change lit-
tle, whereas over longer time-scales (weeks to months), they might
undergo more substantial changes.

66

linearly with the number of (market,bid) pairs, whereas the Semi-
Markov model-based approach discussed in Section 2.2 has to dis-
cretize all state and control variables including spot prices from
different markets, bids, sojourn time (from minutes to hours), and
other application-specific variables, which results in optimization
problems that suffer from scalability limitations.

Bid failures

Spot price

Time

Bid
b

�()

!"()

Figure 4: Illustration of features 1
and 2: lifetime of a spot instance
and average spot price during life-
time.

Evaluation of Our Pre-

dictors: To evaluate our
predictors, we introduce
the following assessment
metrics. We say that an
over-estimation of L(b)

has occurred when L̂(b) >
L(b). This represents
a scenario wherein the
tenant was likely overly
ambitious in using spot
instances. We further
define L(b) over-estimation

rate as the fraction of
L(b) predictions that re-
sult in over-estimation,
denoted as f(b). The assessment metric for ˆ̄p(b) should capture
the extent of its deviation from actual values. Therefore, we com-
pute ξ(b) = (p̄(b) − ˆ̄p(b))/p̄(b) and define as relative deviation

of p̄(b) the mean value of ξ(b) for all occurrences of p̄(b) in the
relevant H . Lower values are better for both f(b) and ξ(b). We fo-
cus on the right choice of history window size (for model training),
which turns out to be dependent on both the market and the bid.
None of the prior works (to our knowledge) have analyzed these
idiosyncracies.
Setup: We vary instance types, markets, bids, history window size
H and show the assessment metrics f (L(b) over-estimation rate)
and ξ (p̄(b) relative deviation) in Table 1. The 90-day spot price
traces are chosen from Figure 2, with bid b picked from {0.5d, d,
2d, 5d, 10d}, where d is the corresponding on-demand price9. As a
baseline approach, we also present the above metrics based on pre-
dictions of L(b) and p̄(b) by using the empirical cumulative density
function (CDF) of spot prices within H (updated dynamically), de-
noted as “CDF-based.” For this baseline, L̂(b) = H ·Prob(pt ≤ b)
and ˆ̄p(b) = E[pt|pt ≤ b]. This baseline represents approaches
commonly considered in related work.
Validation of Predictor Efficacy: Under most of (market, bid) pairs,
the best (lowest) f and ξ are below 10%, which we consider a rea-
sonable demonstration of the efficacy of our predictors. We do see
a small number of exceptions. E.g., for c3.large-c, even if we use
5th percentile as prediction for L(b), f and ξ are much higher than
those from other markets. It might be better not to use this market
temporarily until we observe better predictability.
The “Right Choice” for History Window Size: We find that (i) the
best choice of H varies across markets and bids, implying the ne-
cessity for considering different markets separately when determin-
ing history window size, instead of blindly choosing a single win-
dow size for all markets, and (ii) changing bid values may not affect
f and ξ much (e.g., m3.large-c), possibly due to the fact that the
L(b) and p̄(b) do not vary much when spot price exceeds bid.

More generally, we find that the evolution of L(b) is often not

9This is based on the discussions from [20, 26] and our observa-
tions that high spot price values are usually around multiples of
on-demand prices. Although spot price stays below the on-demand
price most of the time as shown in Figure 2, the tenants may still
bid at a price that is higher than the on-demand price, in order to
reduce bid failures and achieve better performance.

0 500 1000 1500
0

0.5

1

1.5

Time(minutes)

P
ri

c
e
($

)

(a) coef(mkt1,mkt2) = 0.24
mkt 1
mkt 2

Bid 1
Bid 2

0 500 1000 1500
0

0.2

0.4

0.6

0.8

Time(minutes)

P
ri

c
e

($
)

(b) coef(mkt1, mkt2) = 0.91

mkt 1

mkt 2

Bid 1

Bid 2

Figure 5: Synthetic examples with simultaneous revocations re-
lated to bids. “coef” is correlation coefficient.

smooth, and regression-based models (one natural alternative to our
approach) may not work well. Again, accurate prediction of L(b)
may not be necessary as discussed before. Our choice of prediction
with 5th percentile of L(b) tends to be conservative such that higher
probability of service contiguity can be achieved. If the application
can tolerate more frequent service interruptions, higher percentiles
or more aggressive prediction techniques could be used.
Insights and implications: (i) There exists short-term temporal
locality in L(b) and p̄(b) and the history window size can be lever-
aged to improve the quality of prediction, (ii) modeling of these fea-
tures should be conditioned on specific bids; (iii) our approach out-
performs CDF-based approaches by offering smaller over-estimation
rate of L(b) and less relative deviation from the actual p̄(b).

3.2 Feature 3: Simultaneous Revocations
Limitations of Prior Work: When placing bids for multiple
instances, a tenant may wish to avoid picking spot markets with
“high” likelihood of simultaneous revocations (the spot instances
may be terminated simultaneously due to coincident bid failures).
Prior works, e.g., [20, 26], suggest bidding across markets where
there are no significant statistical correlations among the “raw” his-
torical spot price traces (referred to as the correlation coefficient-,
or coef-based approach). However, such raw correlations might be
misleading. To appreciate this, let us consider illustrative examples
in Figure 5. We generate synthetic spot prices for two markets: (a)
the cross-correlation between the two markets’ spot prices is low
and (b) the cross-correlation is high. In (a) the tenant might be
tempted to use both markets whereas in (b) it may not want to use
the two markets together at all, if its decision is only based on the
raw correlation. However, it is obvious that the bid failures from
the two markets are highly correlated under bid 1 but not under bid
2. Therefore, it may be imprudent for the tenants to make decisions
solely based on the raw correlations without considering the actual
bids. More specifically, what the tenant really needs are measure-
ments of simultaneous revocations conditioned on bids. Further-
more, the statistical correlation of bid failures across markets may
not be very informative for decision-making regarding bid place-
ment. Instead, a tenant might find it more beneficial to learn the
absolute time durations of simultaneous revocations, i.e., the total
amount of time that a bid fails in two markets within the history
window.
Model and Temporal Locality-based Prediction: Based on these
insights, a more informative metric that we propose is based on
characterizing simultaneous revocations conditioned on pre-specified
bids. Under a given bid, we denote as A and B the sets of time
periods when the bid fails in two spot markets under compari-
son10, respectively. Denote as T (A) and T (B) the corresponding
lengths/sizes of A and B. T (A ∩ B) and T (A ∪ B) represent

10Our analysis can be easily generalized to compare more than two
markets.

67

Bid f(b) ξ(b) f(b) CDF-based ξ(b) CDF-based
H 7 14 21 28 7 14 21 28 7 14 21 28 7 14 21 28

m
3
.l

ar
g
e-

c 0.5d 0.12 0.12 0.13 0.14 0.08 0.08 0.08 0.09 0.29 0.28 0.28 0.30 0.14 0.14 0.15 0.16
1d 0.07 0.08 0.08 0.09 0.07 0.07 0.10 0.11 0.09 0.09 0.08 0.09 0.11 0.12 0.12 0.14
2d 0.02 0.03 0.03 0.03 0.09 0.10 0.10 0.11 0.02 0.03 0.01 0.02 0.11 0.12 0.13 0.14
5d 0.02 0.03 0.03 0.03 0.09 0.10 0.10 0.11 0.02 0.03 0.01 0.02 0.11 0.12 0.13 0.14

10d 0.02 0.03 0.03 0.03 0.09 0.10 0.10 0.11 0.02 0.03 0.01 0.02 0.11 0.12 0.13 0.14

m
3
.l

ar
g
e-

d 0.5d 0.10 0.07 0.07 0.08 0.06 0.06 0.08 0.07 0.62 0.60 0.61 0.65 0.23 0.23 0.24 0.25
1d 0.10 0.06 0.07 0.07 0.07 0.07 0.09 0.09 0.50 0.50 0.53 0.56 0.22 0.23 0.23 0.24
2d 0.10 0.08 0.09 0.10 0.10 0.10 0.11 0.12 0.45 0.44 0.47 0.51 0.22 0.22 0.23 0.24
5d 0.13 0.12 0.14 0.16 0.09 0.12 0.12 0.13 0.40 0.39 0.42 0.45 0.23 0.23 0.24 0.25

10d 0.07 0.08 0.08 0.09 0.19 0.19 0.17 0.17 0.34 0.32 0.34 0.37 0.25 0.25 0.25 0.27

c3
.l

ar
g
e-

c 0.5d 0.10 0.09 0.08 0.08 0.06 0.07 0.13 0.00 0.56 0.52 0.49 0.52 0.21 0.21 0.22 0.22
1d 0.12 0.17 0.19 0.20 0.11 0.16 0.19 0.21 0.33 0.32 0.32 0.33 0.25 0.25 0.26 0.26
2d 0.14 0.18 0.19 0.21 0.11 0.16 0.19 0.21 0.31 0.30 0.29 0.30 0.25 0.26 0.26 0.26
5d 0.14 0.17 0.18 0.20 0.13 0.16 0.18 0.19 0.30 0.29 0.28 0.30 0.26 0.26 0.27 0.27

10d 0.00 0.00 0.00 0.00 0.87 0.76 0.73 0.70 0.00 0.00 0.00 0.00 0.84 0.72 0.68 0.63

c3
.l

ar
g
e-

d 0.5d 0.10 0.08 0.09 0.10 0.06 0.06 0.07 0.07 0.16 0.15 0.17 0.19 0.11 0.11 0.12 0.13
1d 0.06 0.06 0.07 0.09 0.07 0.11 0.11 0.10 0.08 0.09 0.10 0.11 0.10 0.10 0.10 0.11
2d 0.06 0.06 0.07 0.08 0.07 0.10 0.10 0.10 0.06 0.06 0.08 0.09 0.10 0.10 0.10 0.11
5d 0.06 0.06 0.07 0.08 0.07 0.10 0.10 0.10 0.06 0.06 0.08 0.09 0.10 0.10 0.10 0.11

10d 0.00 0.00 0.00 0.00 0.34 0.22 0.18 0.16 0.00 0.00 0.00 0.00 0.40 0.26 0.22 0.20

Table 1: The assessment metrics f(b) and ξ(b) under different bid values and history window sizes (H in days). The shaded cells represent
the best window size that minimizes f(b) and ξ(b). “-c” and “-d” represent the markets. We round up the results and only show two digits
after the decimal point due to space limit. “CDF-based” f(b) and ξ(b) are computed based on predictions of L(b) and p̄(b) using CDF of
spot prices.

H 3 7 14 21 28

c3
.2

x
l 0.5d 0.1778 0.1563 0.1286 0.1426 0.1270

d 0.1353 0.1129 0.0894 0.1008 0.0971
5d 0.0789 0.0799 0.0842 0.0952 0.0892

c3
.l

0.5d 0.0242 0.0126 0.0000 0.0000 0.0000
d 0.0141 0.0000 0.0000 0.0000 0.0000
5d 0.0000 0.0000 0.0000 0.0000 0.0000

Table 2: Under-estimation rate of simultaneous revocations. We
vary the history window H (days) and only show a subset of results
here; the simultaneous revocation is computed for (us-west-1a,
us-west-1c) for each instance type. The shaded cells represent the
best H .

the time durations of coincident bid failures and total bid failures,
respectively.

T (A∩B)
T (A∪B)

reflects the probability that the bid fails in

both markets when the bid already fails at one market. It is in-
formative to look at both the durations of bid failures (e.g., T (A))

and
T (A∩B)
T (A∪B)

when comparing markets. E.g., even if T (A) and/or

T (B) are relatively small compared with the history window size,

if
T (A∩B)
T (A∪B)

is high, which implies markets (A,B) almost always fail

together under the given bid, it may be better not to place bids in
markets (A,B) simultaneously. On the other hand, even if both
T (A∩B)
T (A∪B)

and T (A ∩ B) are small, we may use neither A nor B

if L(b) is also small in both markets. Tenants can combine such
metrics with predicted L(b) and p̄(b) to get a better understanding
of simultaneous revocations for cost analysis.

Again, we find temporal locality useful for predicting simulta-
neous revocations. Similar to prediction of average price during
lifetime, we use the measured simultaneous revocations from a his-
tory window H as prediction for the near future. We vary the his-
tory window and explore the temporal locality. Our assessment
metric is the rate of under-estimation to the actual simultaneous

revocations: the fraction of simultaneous revocation predictions
that result in under-estimation. From Table 2, we find that (i) the
under-estimation rate is low in general, implying good temporal lo-

cality for prediction, (ii) history window size matters for different
spot markets under different bids and (iii) the under-estimation rate
could be 0, implying few bid failures in such markets under the par-
ticular bid. A tenant can use such information to de-correlate bid
failures in his dynamic resource procurement.
Spatial Locality: Since EC2 regions and availability zones are
geo-distributed, some naturally appealing ideas for improving the
(market,bid) selection are: Is there any spatial locality in spot prices?
Are markets spread across regions/availability zones un-correlated?
Are such effects affected by bids? We show our measurements
on simultaneous revocations across multiple regions, availability
zones and instance types in Table 3. We have several observa-
tions: (i) Increasing bid may de-correlate bid failures: even if spot
prices of two markets always jump simultaneously, they don’t usu-
ally reach the same high spot price. When the bid increases, one of
the markets may experience less bid failures whereas the other re-
mains unaffected (possibly because the bid is not high enough). (ii)
Increasing bid may also increase the extent to which simultaneous
revocation occurs, e.g., as the total failure time T (A∪B) decreases
in markets (c,d) of c3.large (highlighted in Table 3), the fraction of
time that concurrent bid failure occurs becomes less. (iii) Since the
properties of simultaneous revocations highly depend on markets
and bids (and possibly also history window size), simply compar-
ing the raw statistical correlations of multiple markets’ spot prices
may not suffice and might even lead to faulty decision making. It
is crucially important to take into account the impact of bid values.
(iv) Although the EC2 regions and availability zones are created for
other types of failures, e.g., infrastructure failure, they unintention-
ally also amount to similar effects for spot bid failures.

Additionally, if we look at the simultaneous revocations across
instance types but fix the availability zone (Table 4), we observe
that in general the spot prices across different instance types are not
highly correlated; even for the pair (c3.large, c3.2xlarge) that has

the highest “coef”,
T (A∩B)
T (A∪B)

is still quite low under all bids. Such

observation encourages the tenant to spread its bids across different
instance types. However, although both T (A) and T (B) decrease

68

Bid 0.5d d 5d
coef A B A ∩B A∩B

A∪B
A B A ∩B A∩B

A∪B
A B A ∩B A∩B

A∪B
m

3
.l

ar
g
e

b,c 0.0968 2590 1347 607 0.1823 1386 35 6 0.0042 900 6 6 0.0067
c,d 0.1102 1347 2391 58 0.0158 35 1730 24 0.0138 6 1489 0 0
d,e 0.0594 2391 10204 727 0.0613 1730 4517 329 0.0556 1489 0 0 0
b,c’ 0.0748 2590 0 0 0 1386 0 0 0 900 0 0 0
c,a’ -0.0120 1347 7 0 0 35 0 0 0 6 0 0 0
a’,c’ -0.0846 0 0 0 0 0 0 0 0 0 0 0 0

m
3
.x

la
rg

e

b,c 0.2268 13314 103 54 0.0040 7050 0 0 0 376 0 0 0
c,d 0.2109 103 3408 32 0.0092 0 1070 0 0 0 774 0 0
d,e 0.0859 3408 279 5 0.0014 1070 9 0 0 774 9 0 0
b,c’ 0.0027 13314 84 0 0 7050 50 0 0 376 4 0 0
c,a’ 0.2001 103 5 0 0 0 0 0 0 0 0 0 0
a’,c’ 0.1462 5 84 0 0 0 50 0 0 0 4 0 0

c3
.l

ar
g
e

b,c 0.6614 1459 3725 1121 0.2759 1103 2340 976 0.3956 1059 2274 921 0.3818
c,d 0.7728 3725 1408 1211 0.3088 2340 1200 1189 0.5057 2274 1194 1184 0.5184
d,e 0.4177 1408 298 251 0.1725 1200 284 238 0.1910 1194 279 233 0.1879
b,c’ -0.0766 1459 2487 60 0.0154 1103 470 0 0 1059 0 0 0
c,a’ -0.0158 3725 565 51 0.0120 2340 470 0 0 2274 0 0 0
a’,c’ 0.3268 565 2487 335 0.1233 470 124 22 0.0385 0 0 0 0

c3
.2

x
la

rg
e

b,c 0.1456 6291 22998 5036 0.2076 1589 3917 946 0.2075 511 1152 18 0.0109
c,d 0.3704 22998 8039 6272 0.2533 3917 14 0 0 1152 0 0 0
d,e 0.3315 8039 7115 2350 0.1935 14 756 0 0 0 0 0 0
b,c’ -0.0238 6291 7593 144 0.0105 1589 4011 8 0.0014 511 2899 0 0
c,a’ 0.0125 22998 9727 1915 0.0622 3917 7233 301 0.0277 1152 5047 20 0.0032
a’,c’ 0.3680 9727 7593 4407 0.3413 7233 4011 2609 0.3021 5047 2899 1504 0.2335

Table 3: Simultaneous revocations across different pairs of markets (b,c,d,e) from region us-east and (a’,c’) from region us-west under
different bids. The measurements are in minutes. The T (.) operator is omitted for space. “coef” is the coefficient of variation of two price

traces. We set A∩B
A∪B

= 0 when A ∪B = 0, which we interpret as no bid failures.

as we increase the bid from 0.5d to d for (m3.large,m3.xlarge),

we notice that
T (A∩B)
T (A∪B)

increases from 0.0044 to 0.1304, which re-

emphasizes our key finding that analysis of simultaneous revoca-
tions should take into account the bids instead of blindly looking at
the “coef” as done by the prior work.
Heuristic for Efficiently Finding Marketplaces with Low Like-

lihood of Simultaneous Bid Failures: One possible way to exploit
the observed spatial locality is through clustering of candidates
formed by (market, bid) pairs. For example, similar to the k-means
clustering [7], we can interpret our model of simultaneous revoca-

tions (
T (A∩B)
T (A∪B)

) as the distance between two candidates. Then stan-

dard clustering algorithms can be applied to create clusters of can-
didates wherein candidates in the same cluster have higher prob-
ability of simultaneous bid failures. A tenant can simply spread
its choice of (market, bid) across clusters to reduce correlated bid
failures11.
Insights and implications: (i) Temporal locality can be employed
for predicting simultaneous revocations. (ii) Modeling and pre-
diction of simultaneous revocations should take into account bids;
only looking at the raw cross-correlation may lead to faulty under-
standing/prediction of simultaneous bid failures. (iii) There is spa-
tial locality of spot bid failures across regions, availability zones
and different instance types, which can better help the tenant de-
correlate bid failures.

3.3 Feature 4: Time to Start
Time to start is an important feature for tenant’s resource pro-

curement. For example, during unexpected flash crowds, if the ten-

11Picking instances from multiple marketplaces (especially those
geographically distributed) is of course more complex. E.g., there
may be concerns related to communication between instances over
a WAN or issues of proximity to tenants that we can not consider in
our work [33]. An actual decision-making would need to consider
these against the issues that we do model here.

ant wants to allocate new spot instance but finds that the spot bid
status is still pending after a long waiting time, the application per-
formance might be severely degraded. EC2’s official documenta-
tion only provides rough estimates of maximum instance boot times
(corresponding to the duration labeled “Initialization” in Figure 1)
which range from 1 to 5 min [4]. However, recall from Figure 1
that there can be additional contributors to spot instance startup de-
lay of two types: (i) a period when the bid is lower than the spot
price and (ii) a period (even after the spot price has become lower
than the bid) during which EC2 makes the tenant wait (allegedly)
due to a lack of capacity at its end.
Limitations of Prior Work: To the best of our knowledge, this fea-
ture has been ignored by related work. The only research work that
explores a limited aspect of this issue is [13], which focuses only
on instance boot up times. For spot instance, they observe no sig-
nificant correlation between spot price and time-to-start; however,
they do not explore/report the temporal locality and the predictive
property of time-to-start.
Model and Temporal Locality-based Prediction: Of course, (i)
depends on the bid placed by the tenant - a higher bid will exceed
the spot price sooner than a lower bid. We find that for relatively
high bids (greater than or equal to the price of the comparable on-
demand instance), this type of delay can be ignored for all practical
purposes. However, for lower bids (that certain cost-conscious ten-
ants may prefer), we do not find any patterns that can be generalized
readily for useful prediction.

To see the predictability of (ii), we choose instance types and
several spot markets across different time zones and bid spot in-
stances every 5 min over two days. The bids are uniformly cho-
sen from { 1

4
d, 1

2
d, 3

4
d, d, 2d, 5d, 10d,max}, wherein d is the on-

demand price and max is the maximum bid allowed. We report a
subset of our results in Figure 6. In some cases (top and middle
traces shown in Figure 6(a)) we find time-of-day like behavior or
small variance around a fixed value. This seems to depend very
much on the market with no other obvious predictive indicators

69

0

500

(a)Spot instance time−to−start (sec)
m3.m us−east−1e

0

500 m3.m eu−west−1a

05/18 16:00 05/19 16:00 05/20 16:00
0

500 c3.l us−east−1e

1/4d1/2d3/4d d 2d 5d 10d max
0

100

200

300

400

500
(b) Time−to−start vs. bid

Bid

T
im

e
−

to
−

s
ta

rt
 (

s
e

c
)

Figure 6: (a) Spot instance time-to-start. (b) Spot instance time-to-
start vs. bids. We request one instance every 5 min across two days
from 2016/05/18 16:00 to 2016/05/20 16:00 with bids uniformly
chosen from { 1

4
d, 1

2
d, 3

4
d, d, 2d, 5d, 10d,max}, wherein d is the

on-demand price and max is the maximum bid allowed. The time-
to-start is set to 0 if bid is less than spot price. The largest two
values in the bottom trace of (a) are 2800+ seconds.

(e.g., more in a particular region or availability zone or instance
type, etc.) In such marketplaces, a tenant may be able to exploit
such predictability. In others, however, a tenant may have to re-
sort to working with worst-case values. For example, in the bottom
trace in Figure 6(a), the largest two samples are greater than 2800
seconds.

We also explore the relationship between time-to-start vs. bid.
Intuitively, higher bids should give the tenant higher priority for
resource procurement, thus shorter time-to-start, since EC2 might
make more profit by serving higher bids first. However, we do not
observe a statistically significant correlation between time-to-start
and different bid values (Figure 6(b)).
Insights and implications: It is important to model this feature,
which has not been addressed in related work. However, we do
not find generally useful evidence for temporal locality like we do
for our features 1-3. Therefore, tenants may be forced to work
conservatively with this feature, e.g., allowing for a large delay just
to be safe based on high percentiles of previous observations.

3.4 Do Effective Capacity Measurements Pro-
vide Predictive Power?

EC2 claims that the spot price is set based on its supply/demand
relationship [3]. Therefore, a natural thought is: Can we further im-
prove the predictability of spot prices if we can somehow infer the
current resource demand vs. capacity status in the spot pool? For
example, when there are too many tenants’ spot requests and the
spot pool becomes “congested,” it is highly possible that the “ef-
fective” capacity, as opposed to the advertized capacity, perceived
by the tenant could be lower or have higher variations (reflected
by degraded application performance) than when the spot pool has
enough unused capacity. In particular, we have the following hy-
potheses: (i) Is there any predictive power in effective capacity vs.
spot price? (ii) Is there any predictive power in effective capacity
vs. sudden revocations? Such relationships, if observed, can be ex-
ploited by the tenants to improve their prediction of spot prices (or
of features 1-3).

To test our hypotheses, we conduct experiments on several EC2
spot markets wherein we record effective capacity variations based
on application performance measurements from commonly-used
micro-benchmarks. Due to space limit, we only show a subset of
our measurement results in Figure 7. As illustrated by the scatter
plots of normalized performance vs. spot price, we do not observe
enough predictive power in dynamic effective capacity (reflected
by the varying performance measurements) for spot prices. We
further infer that the evolvement of spot prices may not be reflected
by local congestion signals, or that even when there is not enough

capacity (implied by the peak price periods) EC2 would rather kick
off spot instances by raising the spot prices instead of sacrificing
capacity/performance.

We do not see significant performance/capacity difference across
on-demand and spot instances with the same resource configura-
tion. Our interpretation is that EC2 might have provided the same
guarantee of performance and capacity isolations for both on-demand
and spot instances. However, when the on-demand resource pool
lacks capacity, EC2 might revoke spot instances to make room for
the more profitable on-demand instances. We leave more compre-
hensive and extensive comparison studies of on-demand vs. spot
instance to our future work.

4. CASE STUDIES
The goal of our case studies is not to devise fundamentally novel

resource procurement (i.e., “control”) algorithms. Recall from Sec-
tion 2 that such control algorithms have received a lot of attention
recently for a variety of workload types. Instead, we are interested
in evaluating the cost/performance improvements that our model-
ing and prediction techniques can offer to this existing body of
work. Given this, we adapt control algorithms in related work to
use our modeling and prediction for two real-world applications: (i)
an in-memory Memcached-based data store, and (ii) a homegrown
synthetic batch processing workload. Both these workloads possess
the following property making the use of spot instances suitable
for them: the failure of an instance may only degrade their per-

formance but does not affect their correctness. In both cases, our
control formulations attempt to minimize operational costs while
maintaining specified application-level performance guarantees us-
ing a combination of spot and on-demand instances.

4.1 Case Study I: In-memory Data Store
We consider the problem of cost-effective operation for a Memcached-

based (a popular in-memory key-value data store [16]) caching tier
within a larger data storage application. As a typical mode of oper-
ation for such an application, we assume that the entire working set
needs to be kept in memory for satisfactory performance. When a
spot instance assigned to the caching tier is lost due to a bid failure,
the back-end database serves misses. When servicing misses, the
requested data be inserted into caching tier and stale data is evicted
based on an LRU policy when there is not enough memory capac-
ity.
Control Design: We formulate an online optimization problem
that exploits predictability within the workload (request arrival rate

λ̂t and working set size M̂t) and spot price features (L(b) and
p̄(b))) to determine: (i) how many and which on-demand and spot
instances to procure/de-allocate and (ii) how to partition the overall
working set (itself dynamic) among on-demand and spot instances.
Implicit in this decision-making are the markets from which to pick
spot instances and the bids to place. Alternative approaches, such
as data replication across multiple markets [34], are complemen-
tary to our work.

We view on-demand instances as special spot markets with L(b) =
∞ and p̄(b) equal to the corresponding on-demand price. This al-
lows us to conveniently represent all different markets in a unified
way. Denote as s ∈ S a spot market, as b a bid picked from Bs

(a set of pre-selected bid values depending on the market s). De-
note as Nsb

t and Ñsb
t the existing number of instances and extra

instances to procure/de-allocate from market s under bid b at the
beginning of time-slot t, respectively. Denote as xsb

t the fraction of
working set kept in market s under bid b. Denote as ms and cs the
amount of RAM and number of vCPUs for instance in market s.

70

Bid 0.5d d 5d
coef A B A ∩B A∩B

A∪B
A B A ∩B A∩B

A∪B
A B A ∩B A∩B

A∪B
m3.l, m3.xl 0.1357 1046 328 6 0.0044 24 28 6 0.1304 6 0 0 0
m3.l, c3.l 0.0146 1566 3631 11 0.0021 987 2335 3 0.0009 6 2274 0 0

m3.l, c3.2xl 0.1939 35 41898 29 0.0007 6 17538 0 0 6 1167 0 0
m3.xl, c3.l 0.1153 431 3348 0 0 28 2317 0 0 0 1552 0 0

m3.xl, c3.2xl 0.2870 60 29769 56 0.0019 0 15715 0 0 0 1158 0 0
c3.l, c3.2xl 0.3214 2327 45478 1987 0.0434 2306 18261 1492 0.0782 0 1167 0 0

Table 4: Simultaneous revocations across different instance types in us-east-1c.

0 1 2 3 4
1

1.02

1.04

1.06

1.08

1.1
CPU (avrora)

Spot price ($)

N
o

rm
.

p
e

rf
o

rm
a

n
c

e

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1
Memory B/W (stream)

Spot price ($)

N
o

rm
.

p
e

rf
o

rm
a

n
c

e

0 1 2 3 4

0.7

0.8

0.9

1
Network B/W (iperf)

Spot price ($)

N
o

rm
.

p
e

rf
o

rm
a

n
c

e

0 1 2 3 4
0.7

0.8

0.9

1
Disk B/W (fio read)

Spot price ($)

N
o

rm
.

p
e

rf
o

rm
a

n
c

e

Figure 7: Scatter plots of 24-hour micro-benchmark performance measurements on a single r3.xlarge instance vs. spot price from us-east-1d.
avrora is a CPU-intensive benchmark [2]; STREAM [25], iperf [9] and fio [9] are commonly used benchmarks that measure the bandwidths
of memory, network and disk I/O. The performance measurements are normalized w.r.t. the best performance samples in the experiments.
The spot price varies from 1

7
to 10 times the on-demand price.

We present our optimization formulation as follows:

min
Ñsb

t
,xsb

t

∑

s∈S

∑

b∈Bs

[ˆ̄pst (b)(N
sb
t + Ñsb

t)T +
αxsb

t M̂t

L̂s(b)
T

+ βmax{0,−Ñsb
t }]

s.t.
∑

s∈S

∑

b∈Bs

xsb
t = 1

∑

s∈S′

xsb
t ≥ ξ, S′ = {OD}

xsb
t M̂t ≤ (Nsb

t + Ñsb
t)ms, ∀s ∈ S, b ∈ Bs

φ(λ̂tx
sb
t , (Nsb

t + Ñsb
t)cs) ≤ lTGT ∀s ∈ S, b ∈ Bs

where {OD} is the set of on-demand instance types. In the ob-
jective function, the first term represents the resource costs which
depend on the predicted average spot price ˆ̄pst (b) during the opti-
mization window T ; the second term is the bid failure penalty, a
decreasing function of the predicted L(b) in a spot market, imply-
ing a certain “loss rate;” the last term reflects the resource deallo-
cation penalty that depresses performance oscillation due to overly
frequent workload re-balancing among markets. α, β reflect the
weights of each term in the objective. The first constraint leads to a
full partition of the working set and the second constraint forces at
least ξ percent of the working set should be placed on on-demand
instances to ensure service availability if all spot markets fail. We
use the third constraint to guarantee enough RAM capacity in each
market to hold its portion of the working set. Finally, the last con-
straint enforces an application-specific latency target lTGT wherein

φ(λ̂tx
sb
t , (Nsb

t + Ñsb
t)cs) is a function capturing the relationship

between latency, arrival rates and the number of vCPUs. φ(.) can
be obtained by various techniques, e.g., regression using empirical
measurements.

We update the predictions of L(b) and p̄(b) with history window
H identified to be appropriate for the chosen markets in Section 3,
and solve our optimization problem once every hour. In case of
bid failures, we start new on-demand instances with the same ca-

0 50 100 150
0

0.5

1
(a) Norm. working set size

Time (hour)
0 50 100 150

0

0.5

1
(b) Norm. arrival rate

Time (hour)

Figure 8: Normalized working set size and request arrival rates
from Wikipedia access trace [29]. Normalization is done against
the maximum value in each trace.

pacity as the failed instances and redirect the requests accordingly.
More details about our control design can be found in our technical
report [31].
Experiment Design: We assume that our tenant uses a single spot
instance type across two availability zones with bids of b = d, 5d
(denoted as b1, b2 respectively) in each zone where d is the on-
demand price. We evaluate our approach using a variety of 90-day
spot price traces taken from Figure 2. We generate our workload by
scaling the dynamic arrival rates λt and working set size Mt from
Wikipedia access trace [29] (Figure 8). We find that both λt and
Mt can be well captured via AR(2) models with R-Squared equal
to 0.99 and 0.94, respectively.

Baselines: Denote as “PROP” our proposed online approach.
We further create two baselines to compare against: (i) “BL-OD”:
all data are stored on on-demand instances (no bidding). (ii) “BL-
CDF”: Predicting L(b) and p̄(b) via the CDF-based approach (cf.
Section 3). In all baselines, the workload partition on spot instances
across markets under different bids is determined by the same on-
line optimizer.
Trace-driven Simulation: We conduct experiments with a variety
of spot price traces and show the cost-saving (against BL-OD) and
performance (reflected by data loss due to bid failures) under differ-
ent strategies in Table 5 and Figure 9. First, we observe that in the
region us-west where the spot prices are quite low and bid failures
are rare events, PROP and BL-CDF have almost the same cost-
savings (up to 72%) and same number of failures, which is because
the spot prices in these cases have good temporal locality. Second,

71

we find that in region us-east where the spot prices fluctuate a lot
and bid failures occur quite often, PROP offers less but still com-
parable cost-savings compared to BL-CDF. Recall our discussion
in Section 2.2 and Figure 3 that the CDF-based approach make the
tenant tempted to use spot instance more aggressively even if there
are short-lived but frequent spikes in spot prices, thereby achieving
lower costs than PROP. However, this comes at the expenses of
much more bid failures. Third, not only does PROP lead to less
bid failures, it also has much less data loss during each bid failure
than BL-CDF. As Figure 9 shows, BL-CDF has 13 and 22 times of
90% data loss (out of working set) in the two cases whereas PROP
only has 5 and 1 times at the same data loss level, respectively.
This is possibly because PROP’s prediction of the key features are
closer to the actual values, which further demonstrates better tem-
poral locality than the CDF-based approach.

m3.l m3.xl c3.l c3.2xl
e w e w e w e w

Cost savings (%)
BL-CDF 67 72 51 59 62 68 42 46

PROP 58 72 45 59 61 68 42 26
Number of bid failures

BL-CDF 23 0 28 1 3 0 9 49
PROP 13 0 10 0 4 0 2 6

Table 5: Cost savings of different strategies compared against BL-
OD. ‘e’ and ‘w’ represent experiments using all spot price traces
from us-east and us-west, respectively.

0

5

10

fr
e

q
u

e
n

c
y

Histogram of data loss m3.l us−east

BL−CDF

0 0.5 1
0

5

10

Norm. data loss

fr
e

q
u

e
n

c
y

PROP

0

10

20

fr
e
q

u
e
n

c
y

Histogram of data loss c3.2xl us−west

BL−CDF

0 0.5 1
0

10

20

Norm. data loss

fr
e
q

u
e
n

c
y

PROP

Figure 9: Histograms of data loss (norm. against actual working
set size) during bid failures.

Experiments with Prototype on EC2: To explore operation in
the real world (especially, application performance that may be af-
fected by factors that our simulations may not capture), we conduct
experiments with Memcached on our prototype system on EC2
using a 24-hour subset from the workload trace in Figure 8, and
24-hour spot price traces taken from m3.large in us-east (Fig-
ure 10(a)). Three bid failures occur under Bid 1 in us-east-1d.
For BL-CDF, the third failure is avoided after it updates prediction
of L(b) and p̄(b). PROP does not incur any bid failures.

0 500 1000
0

0.2

0.4

0.6

0.8

Time (min)

p
ri

c
e

 (
$

)

(a) spot price

us−east−1c
us−east−1d

Bid1
Bid2

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1

Latency (us)

(b) Empirical CDF

BL−OD

BL−CDF
PROP

Figure 10: (a) 24-hour spot price of m3.large from two markets
with Bid1= d and Bid2= 5d. (b) The CDF of latencies.

We show the application performance under different strategies

in Figure 10(b). We find that the three strategies offer comparable
performance up to 90%ile latencies. Below 90%ile, sometimes BL-
CDF and PROP could outperform BL-OD since they could use
more spot instances to serve the requests without incurring higher
costs than BL-OD. Beyond 90%ile, BL-OD offers the best perfor-
mance possibly because it does not spread working set among mul-
tiple markets which depresses the latency oscillation due to work-
ing set re-partition. Meanwhile, Prop is able to beat BL-CDF and
gets closer to BL-OD (however with much less costs) whereas BL-
CDF has worse performance due to bid failures.
Key Insights: PROP offers less but still comparable cost-savings
with BL-CDF. However, PROP is able to achieve much better
performance in terms of both less bid failures and less data loss
during bid failures, particularly in markets with higher variations.
Since in-memory data store is usually considered as a performance-
sensitive/latency-critical application, the tenant may desire “always-
on”/“service contiguity” more than cost saving and prefer PROP
to BL-CDF.

4.2 Case Study II: Batch Processing
We leverage a fault-tolerance mechanism, replicating computa-

tion, to optimize the cost vs. performance trade-off for a tenant
running delay-tolerant batch jobs.
Algorithm Design: When a batch job arrives, we put a “primary
copy” of it on a spot instance and a “backup copy” on an on-
demand instance. Jobs on the spot instances are guaranteed to
have enough resource capacity (regular capacity) for their normal
execution, whereas the on-demand instance capacities are over-
subscribed so that the backup copies only get a small portion out
of their own regular capacities. Therefore, primary copies would
finish sooner than backup copies. Since spot instances are in gen-
eral much cheaper than on-demand instances and the on-demand
capacities are over-subscribed, the expected costs would be much
lower than if we run the jobs only on on-demand instances and with
over-subscription. If the spot instance is not revoked by the time
when the primary copy finishes, we terminate the backup copy to
save costs and make more room for new jobs; otherwise, we boost
the performance of the backup copies whose primary copies have
failed by allowing them to use more resources temporarily.

By default, we place one primary copy per vCPU in the primary
pool (spot) but at most four backup copies per vCPU in the backup
pool (on-demand). As an initial step towards a more comprehen-
sive solution, we apply a simple yet effective strategy for primary

copy placement: Upon the arrival of a new job j, find all the valid

(market, bid) pairs that satisfy L̂(b) ≥ l̂j as candidates, wherein

l̂j is the predicted execution time of job j if given regular capacity;
then randomly choose a candidate with p̄(b) less than or equal to the
n-th smallest p̄(b) to execute the primary copy. For backup copy

placement, we compute an index for each instance in the backup
pool which is a function (e.g., summation) of the probability of
simultaneous revocations of each existing job on that instance vs.
the new job; then we choose the instance with the lowest index
value, which indicates less probability of simultaneous revocations
and probably offers more capacity headroom for the backup copy
of the new job for performance boosting when unexpected bid fail-
ure occurs. If the lowest index exceeds a certain threshold, a new
on-demand instance will be allocated. We leave more details and
advanced performance enhancements to our technical report [31].
Experimental Setup: We use m3.xlarge (4 vCPUs) across us-
east-1c (s1) and us-east-1d (s2) with bids b1 = d, b2 = 5d where
d is the on-demand price. We mark four markets: s1b1, s1b2, s2b1
and s2b2. The three-month price traces are shown in Figure 2. We
use an exponential distribution to generate the inter-arrival time of

72

jobs, with λ = 10 jobs per hour. The lengths of the jobs are uni-
formly selected from the range [30, 300] (minutes). The jobs are
CPU-intensive, with little memory I/O and no network traffic.

Our Baselines: We create BL-OD which does not use spot in-
stances and runs one job per vCPU on on-demand instances with-
out replication. To compute the index for a pair of jobs (existing vs.
new), we use the summation of probabilities of simultaneous revo-

cations, which is calculated via
T (A∩B)
T (A∪B)

for our approach PROP,

and via “coefficient of variation” for another baseline BL-COEF
(mimicking the approach used by prior work [20, 26]).
Trace-driven Simulation: We conduct trace-driven simulation
using the three-month spot price traces to demonstrate the long-
term benefit of our proposed approach. Figure 11 shows the cost
break-down and CDF of job execution time under different strate-
gies.

BL−OD BL−COEF PROP
0

0.2

0.4

0.6

0.8

1

1.2
(a) Norm. costs

s
1
b

1

s
1
b

2

s
2
b

1

s
2
b

2

OD
0.66

0.84

0 200 400 600
0

0.2

0.4

0.6

0.8

1

Job execution time (min)

(b) Empirical CDF

PROP

BL−COEF

BL−OD

Figure 11: (a) Cost break-down and (b) CDF of job execution time.
The CDFs of BL-CDF and PROP overlap.

We have several observations. First, PROP saves as much as
33.7% and 17.7% costs compared to BL-OD and BL-COEF (Fig-
ure 11(a)), respectively. This is because BL-OD only uses on-
demand instances which are expensive and BL-COEF does not
compute probability of simultaneous revocations conditioned on
bids, thereby determining the backup placement conservatively and
using more on-demand instances. For example, if two jobs’ pri-
mary copies are in the same spot market but under different bids,
BL-COEF would consider them to fail simultaneously with prob-
ability of 1, which may not be true if spot price falls between the
two bids and only one of the jobs fails. Second, from Figure 11(b),
we find that BL-OD offers best performance since there is no bid
failure. BL-COEF and PROP has almost the same CDF of job
execution time, implying PROP captures the simultaneous revo-
cations well and provides similar capacity headroom for perfor-
mance boosting when failures occur compared to the conservative
BL-COEF.

0 500 1000 1500
0

0.5

1

1.5

Time(minutes)

P
ri

c
e
($

)

(a) Spot price

us−east−1c

us−east−1d

Bid1

Bid2

0 200 400 600 800
0

0.2

0.4

0.6

0.8

1

Job execution time (min)

(b) Empirical CDF

PROP

BL−OD

BL−COEF

Figure 12: (a) 24-hour spot price of m3.xlarge from two markets
with Bid1= d and Bid2= 5d (d: on-demand price). (b) The CDF
of job execution time under different strategies.

Experiments with Prototype on EC2: To demonstrate the ef-
ficacy of our proposed approach in a real-world setting, we de-
ploy a prototype system on EC2 with 24-hour spot price traces of
m3.xlarge (Figure 12(a)) and conduct realtime experiments. A bid

failure occurs at around 1100-th minute under Bid 1. Since the pre-
dicted L(b) is smaller for us-east-1c, two markets s1b1 and s1b2
(both in us-east-1c) are excluded by our algorithm in this experi-
ment.

We show the performance under different strategies in Figure 12(b).
We observe that the relative performance of all strategies are similar
from trace-driven simulation to the real-world experiment. How-
ever, we notice that the performance of PROP is better (though
not much) than BL-COEF for jobs that are affected by bid fail-
ures. This is possibly because BL-COEF is not only conservative
but may also be misleading: even if the “coef” is low for two spot
markets, the probability of simultaneous revocation could become
high depending on the specific bids.
Key insights: For batch jobs that can tolerate bid failure-induced
delay, our approach can save more costs by applying simultaneous
revocation features while still providing comparable (if not better
than) performance with the traditional approach which neglects the
impact of bids.

5. CONCLUSION
In this paper, we identified four key features of spot instance

operation that a tenant should model. Using extensive empirical
evaluation based on both historical and current spot instance data,
we showed shortcomings in the state-of-the-art that our model and
prediction overcome. We further demonstrated the efficacy of our
proposed approaches using two real-world case studies via both
trace-driven simulation and system prototyping on EC2.

6. ACKNOWLEDGEMENT
This research was supported, in part, by NSF CAREER 0953541

grant and an IBM faculty partnership award. We gratefully ac-
knowledge this support as well as the reviewers’ feedback.

7. REFERENCES
[1] O. A. Ben-Yehuda, M. Ben-Yehuda, A. Schuster, and

D. Tsafrir. Deconstructing amazon ec2 spot instance pricing.
In Proc. of CloudCom’11, 2011.

[2] Avrora, 2016. http://dacapobench.org/benchmarks.html.

[3] Building price-aware applications using ec2 spot instances,
2015. https:
//aws.amazon.com/blogs/aws/category/ec2-spot-instances/.

[4] Ec2 boot time, 2016. http://docs.aws.amazon.com/AWSEC2/
latest/UserGuide/ComponentsAMIs.html.

[5] EC2 spot, 2016. http://aws.amazon.com/ec2/spot-instances/.

[6] Y. Gong, B. He, and A. C. Zhou. Monetary cost
optimizations for mpi-based hpc applications on amazon
clouds: Checkpoints and replicated execution. In Proc. of the

SC’15, 2015.

[7] J. A. Hartigan and M. A. Wong. Algorithm as 136: A
k-means clustering algorithm. Journal of the Royal Statistical

Society. Series C (Applied Statistics), 28(1):100–108, 1979.

[8] J. He, Y. Wen, J. Huang, and D. Wu. On the cost–qoe
tradeoff for cloud-based video streaming under amazon ec2’s
pricing models. Circuits and Systems for Video Technology,

IEEE Transactions on, 2014.

[9] iPerf, 2016. https://iperf.fr/iperf-download.php.

[10] B. Javadi, R. Thulasiramy, and R. Buyya. Statistical
modeling of spot instance prices in public cloud
environments. In Proc. of UCC’11, 2011.

[11] G. Kesidis, B. Urgaonkar, N. Nasiriani, and C. Wang.
Neutrality in future public clouds: Implications and

73

challenges. In HotCloud’16, 2016.

[12] S. Khatua and N. Mukherjee. Application-centric resource
provisioning for amazon ec2 spot instances. In Euro-Par

2013 Parallel Processing. 2013.

[13] M. Mao and M. Humphrey. A performance study on the vm
startup time in the cloud. In Proc. of IEEE CLOUD’12, 2012.

[14] A. Marathe, R. Harris, D. Lowenthal, B. R. de Supinski,
B. Rountree, and M. Schulz. Exploiting redundancy for
cost-effective, time-constrained execution of hpc
applications on amazon ec2. In HPDC’14, 2014.

[15] M. Mattess, C. Vecchiola, and R. Buyya. Managing peak
loads by leasing cloud infrastructure services from a spot
market. In Proc. of HPCC’10, 2010.

[16] Memcached, 2016. https://memcached.org/.

[17] I. Menache, O. Shamir, and N. Jain. On-demand, spot, or
both: Dynamic resource allocation for executing batch jobs
in the cloud. In Proc. of ICAC’14, 2014.

[18] Spot characterization code and data, 2016.
https://github.com/patiner/spot_characterization.git.

[19] P. Sharma, D. Irwin, and P. Shenoy. How not to bid the
cloud. In Proc. of HotCloud’16, 2016.

[20] P. Sharma, S. Lee, T. Guo, D. Irwin, and P. Shenoy.
Spotcheck: Designing a derivative iaas cloud on the spot
market. In Proc. of EuroSys’15, 2015.

[21] Y. Song, M. Zafer, and K. Lee. Optimal bidding in spot
instance market. In INFOCOM’12, 2012.

[22] Spot instance: featured customer testimonials, 2015.
https://aws.amazon.com/ec2/spot/testimonials/.

[23] Spot fleet, 2016. http://docs.aws.amazon.com/AWSEC2/
latest/UserGuide/spot-fleet.html.

[24] Spot bid status, 2016. http://docs.aws.amazon.com/
AWSEC2/latest/UserGuide/spot-bid-status.html.

[25] STREAM, 2016. http://www.cs.virginia.edu/stream/.

[26] S. Subramanya, T. Guo, P. Sharma, D. Irwin, and P. Shenoy.
Spoton: A batch computing service for the spot market. In
Proc. of SoCC’15, 2015.

[27] S. Subramanya, A. Rizk, and D. Irwin. Cloud spot markets
are not sustainable: The case for transient guarantees. In
Proc. of HotCloud’16, 2016.

[28] S. Tang, J. Yuan, and X.-Y. Li. Towards optimal bidding
strategy for amazon ec2 cloud spot instance. In Proc. of

IEEE CLOUD’12, 2012.

[29] G. Urdaneta, G. Pierre, and M. Van Steen. Wikipedia
workload analysis for decentralized hosting. Elsevier

Computer Networks, 53(11), 2009.

[30] R. M. Wallace, V. Turchenko, M. Sheikhalishahi,
I. Turchenko, V. Shults, J. L. Vazquez-Poletti, and
L. Grandinetti. Applications of neural-based spot market
prediction for cloud computing. In IDAACS’13, 2013.

[31] C. Wang, Q. Liang, and B. Urgaonkar. An empirical analysis
of amazon ec2 spot instance features affecting cost-effective
resource procurement. Technical report, CSE TR-16-006,
Penn State University. http://www.cse.psu.edu/research/
publications/tech-reports/2016/CSE-16-006.pdf, 2016.

[32] C. Wang, B. Urganokar, A. Gupta, L. Chen, R. Birke, and
G. Kesidis. Effective capacity modulation as an explicit
control knob for public cloud profitability. In ICAC’16, 2016.

[33] Z. Wu, M. Butkiewicz, D. Perkins, E. Katz-Bassett, and
H. V. Madhyastha. Spanstore: Cost-effective geo-replicated
storage spanning multiple cloud services. In Proc. of

SOSP’13, 2013.

[34] Z. Xu, C. Stewart, N. Deng, and X. Wang. Blending
on-demand and spot instances to lower costs for in-memory
storage. In Proc. of IEEE Infocom’16, 2016.

[35] M. Zafer, Y. Song, and K.-W. Lee. Optimal bids for spot vms
in a cloud for deadline constrained jobs. In Cloud’12, 2012.

[36] H. Zhao, M. Pan, X. Liu, X. Li, and Y. Fang. Optimal
resource rental planning for elastic applications in cloud
market. In Proc. of IPDPS’12, 2012.

74

