
An Introduction to Systems and Control Theory
for Computer Scientists and Engineers

[Tutorial paper]

Alberto Leva
Politecnico di Milano

Dipartimento di Elettronica, Informazione e Bioingegneria
Piazza Leonardo da Vinci 32

20133 Milano, Italy
alberto.leva@polimi.it

ABSTRACT
This paper accompanies a tutorial aimed at introducing the
basics of system and control theory so as to foster their util-
isation for the management, but most important for the de-
sign, of computing systems. The tutorial is divided into
three parts. The first one introduces the fundamental con-
cepts of dynamic system and feedback and gives an overview
of the properties that a control system has to enjoy, together
with the main techniques to prescribe and assess these prop-
erties formally. The second part discusses a few computer-
related application examples, revisiting the addressed prob-
lems from scratch with a system-centric viewpoint, and com-
paring the solutions - and most important, the way the sys-
tem is viewed and designed - with state-of-the-art alterna-
tives. This leads to envisage the potentialities of control-
based computing systems design, but at the same time to
identify open problems, both technological and methodolog-
ical: an overview of these aspects is the subject of the third
part. This companion paper motivates the tutorial, illus-
trates its rationale, and provides a commented outline.

CCS Concepts
•General and reference→Design; •Computing method-
ologies → Modeling and simulation; •Software and its
engineering → Software performance;

Keywords
Systems and control theory, control-based computing system
design.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPE’17, April 22-26, 2017, L’Aquila, Italy
c© 2017 ACM. ISBN 978-1-4503-4404-3/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3030207.3053677

1. WHY TEACH SYSTEMS AND CONTROL
TO COMPUTER SCIENTISTS AND EN-
GINEERS

Control theory has been applied since a long time to man-
age computing systems for best performance [Abdelzaher
et al. 2003]. This has given rise to a wealth of works on“com-
puting systems control”—see e.g. the two books [Hellerstein
et al. 2004] and [Janert 2013], spanning almost a decade,
and their bibliographies.

The main rationale of computing systems control is to
close feedback loops around a system, dynamically acting
on some tuning parameters in such a way to optimise some
measured metrics. Note that in doing so one implicitly as-
sumes that in the absence of those control loops the system
can operate, albeit not optimally. In a nutshell, therefore,
the role of control theory in this setting is to provide a math-
ematical foundation to complement or replace heuristics in
frameworks like the MAPE(-K) [IBM 2003].

The scenario just sketched is very well summarised in [Diao
et al. 2005]. This paper, originating from an IBM research
report, aims at exploring “the extent to which control the-
ory can provide an architectural and analytic [notice the
first adjective] foundation for building [notice the verb] self-
managing systems” and showing the usefulness of establish-
ing a “correspondence between the elements of autonomic
systems and those in control systems”, because “control the-
ory provides a rich set of methodologies for building au-
tomated self-diagnosis and self-repair systems with prop-
erties such as stability, short settling times, and accurate
regulation”—in one word, to ensure good and guaranteed
performance.

If this viewpoint is taken, the main control skills required
to use the control theory in computing systems are

1. model an existing and functional system, most fre-
quently based on input/output measurements given
the internal complexity of computing systems, and

2. design a control law to enforce the required properties.

Both these skills can be achieved with a quite basic and
partial comprehension of the underlying theory – signifi-
cantly more basic and partial than this proposal, to be ex-
plicit – and since the theory is well established and widely
used in other domains, its application should be straightfor-
ward and successful.

433

As a literature and technology review too long to fit therein
would reveal, however, things seldom go this way, and heuris-
tics still plays a dominant role in the management of com-
puting systems.

Heuristics is not evil by itself, of course, but if not prop-
erly confined, it can easily turn into “local problem by local
problem” design, contrary to the systemic view that is typi-
cal of control theory. Sometimes, the complexity of systems
designed by superimposing heuristic layers, reveals detri-
mental effects that a lack of systemic analysis allowed to
stay concealed for a long time—a recent, impressing such
story can be found in [Lozi et al. 2016]. Apparently, there-
fore, something is preventing control from fully unleashing
its potential.

The main problem with the approach described so far is
that first the system is designed, and then control moves
in—this is another way to say that control loops are closed
around functional systems, or from a slightly different stand-
point, that design is not control-aware.

Indeed, if design is not carried out having control in mind,
as is most frequently the case according to the story men-
tioned above and many others, or if the system is obtained
by combining components designed previously with no aware-
ness of their possible role in a control system, then a num-
ber of problems can – and do – arise: the available tuning
knobs may be adequate for a human administrator sizing the
system but not for controlling the required metrics online,
components may reveal inadequate – if not unpredictably
variable – timing properties, compounds can behave in ways
unexpected by observing their components one by one, and
so forth.

It has been recognised years ago that “software engineers
need to use control concepts to master the ever-increasing
complexity of computing systems” [Sanz and Årzen 2003, p.
14]. The author believes that this must also mean designing
systems, or at least their critical parts, with control in mind,
making the systems and control theory a means not only to
manage complexity, but also and most important, to not
create it unduly.

In this respect, recall the adjective “architectural” and
the verb “building” evidenced in the quote from [Diao et al.
2005] above. Taking them in their full significance calls for
much more than the mainstream “control of computing sys-
tems”: it naturally leads to control-based computing sys-
tem design [Leva et al. 2013]—an idea that has numerous
declinations and can be applied to different depths, from
instrumenting the system to make it easier to control with
quite mainstream methods [Brun et al. 2009, Maggio et al.
2011, Patikirikorala et al. 2012], through the insertion of
control-based specific active components [Hoffmann et al.
2013, Arcelli et al. 2015], down to a complete re-design of
parts identified as critical [Terraneo et al. 2014, Al-Areqi
et al. 2015].

Summing up, the author believes that the real potential
of systems and control theory in the computing systems do-
main, is to formalise and set up management layers and
loops, but also to help designing systems that are easily and
well governed by those layers and loops.

In process control, the community has been talking for
decades about “process/control co-design”, see e.g. the his-
torical paper [Ziegler and Nichols 1943], which is basically
the same idea of building process and cotnrol together. Of
course realising this in “industrial” domains in the strictest

and somehow old sense of the term can be extremely diffi-
cult, because there the “process” can be something as heavy
as a chemical plant. But in computers, where most ob-
jects to be controlled are software themselves, the idea of
co-design should find a domain of election.

It has to be noted, however, that control-based design
requires a deeper knowledge of systems and control than the
basic one sketched above: in particular, it requires to master
the subject not just as “yet another source of algorithms”,
but rather as a theoretical corpus to induce a forma mentis
in analysing and designing the addressed systems. In the
opinion of the author, for a proper use of control and an
effective cooperation with control specialists when needed,
computer scientists and engineers should be taught systems
and control with the objective just outlined.

The problem is how so ambitious an objective can be
achieved, and in the following a proposal is formulated. In
detail, Section 2 talks basically about principles without nec-
essarily thinking of a specific didactic form, while Section 3
specialises to the tutorial that this paper accompanies.

2. HOW TO TEACH (SOME IDEAS ON)
When teaching a subject new to a community, and that

can affect their design habits significantly, quite often the
best way to go is top down.

Specialising to the subject at hand, first one has to mas-
ter the key ideas of dynamic system and feedback without
thinking of any specific computer-related application. Oth-
erwise, the temptation of classifying the presented control-
based solutions against one’s previous ideas – i.e., against
a taxonomy that is inherently unfit to comprehend them –
is irresistible, and if this temptation prevails, the pernicious
idea of “control theory as a source of algorithms” is sowed.

On the contrary, first one has to be led to view dynamic
systems as a formalism to describe the world, and perceive
the generality of this description independently of its various
flavours (continuous-time, discrete-time, event-based, and so
forth); then, and in some sense as a consequence, one has to
realise that feedback is already present in nature, simply as
the way for systems to govern themselves and operate.

Once these two ideas are mastered, a conclusion quite nat-
urally arises to guide the use of control in computers. In
nature, systems start out with their feedback loops already
installed—or, better, as a primary ingredient of their design.
In computing systems one “creates one’s physics”, and wher-
ever possible has to view feedback control as an ingredient
of that physics, not a subsequent add-on.

More specifically, in computing systems one designs a“vir-
tual physics” – think for example of the way jobs are cre-
ated, accumulated and served in a queue network – employ-
ing resources from “real physics” like CPUs, disks, network
transceivers, power supplies, and the like. The dynamic
model of such a system entails unmodifiable parts – the laws
of real physics – plus modifiable ones (referring again to the
queue network case, all the queues’, routers’ and servers’
management layers).

If the latter parts are designed in such a way to be well de-
scribed by dynamic system, which is certainly and somehow
naturally true for the former, then control moves in straight-
forwardly and successfully. If on the contrary the created
physics is not keen to be modelled that way, for example
because it was conceived directly as algorithms instead of
dynamic systems generating algorithms, then control may

434

find so hard an obstacle that the only feasible solution is to
close loops around the system as is—with the known and
already mentioned limitations.

Indeed, and of course once again in the opinion of the
author, teaching systems and control to computer people is
primarily attaining the goals above. One may object that
in so doing hardly any recipe to solve a problem is taught,
but the author bears to state that attempting to proceed by
recipes is exactly the reason why introducing control in the
computer community seems so difficult (when seen from the
control side, at least).

In fact, a computer scientist or engineer is not required
to learn and apply the huge variety of control techniques –
control people are there to do that – but rather and most im-
portant, to help create control-friendly systems (analogous,
in some sense symmetrical considerations hold about teach-
ing computer concepts to control people, but the matter is
outside the scope of this paper).

Of course, once the cultural result just sketched out is
gained, one can also illustrate some recipes for specific prob-
lems of if this is deemed convenient and interesting for the
audience, but at this point the said specific applications can-
not blur the mastered general ideas.

3. THE TUTORIAL – A MOTIVATED STRUC-
TURE OVERVIEW

As anticipated, the tutorial is divided into three main
parts, that are briefly described in this final section.

The first part introduces dynamic systems as a mathe-
matical object, defines their properties, and provides some
engineering interpretations, avoiding the computer domain
for the reasons outlined above in Section 2.

Then, the fundamental idea of feedback is introduced, con-
centrating on its role as a means to prescribe relevant prop-
erties like stability and performance, and some examples
are worked out. Only at this point parallels are introduced
with analogous ideas in computer-related works, such as the
SASO properties [Hellerstein et al. 2004]. This first part of
the tutorial hence provides the tools—but most important,
the concepts and the viewpoint.

The second part works out a few design examples. The
addressed problems are revisited from scratch, compatibly
with the available time, so as to to show that the key point
is not to apply another type of algorithm, but to change the
design perspective.

In this part, the occasion is taken on one hand to structure
the treatise distinguishing problem, model, solution and al-
gorithm, and on the other hand also to organise the system
design along the control-theoretical structuring into sensor,
controller and actuator. Besides streamlining the matter,
this facilitates future interactions of the audience with con-
trol people. In particular, for example, the focus is set on
when a system is control-friendly and when it is not.

The second part also stresses the importance of system-
level simulation, with synthetic models that not only pro-
vide the (model of) the controller, but at the same time
can be suitable to assess formal properties without requir-
ing too much detail on the system, nor information that
should strictly pertain to downstream design phases.

The third and final part re-visits the previous two in a
view to generalising and abstracting the proposed ideas, and

foster a discussion on the audience concerning their interest,
expectations, and impressions.

On one hand, the purpose is here to point out the poten-
tial benefits yielded by control-based computing systems de-
sign, as proven by the shown examples and as perceivable by
the sketched problem characterisation in control terms. On
the other hand, a number of open problems, from both the
technological and the methodological standpoints. To date,
systems appear far less control-friendly than they could and
should be, and to fill this gap, both new theoretical elabora-
tions and design practices are needed. The ultimate hope of
the author is that the tutorial can give a contribution to the
establishment of collaborations toward this important goal.

4. REFERENCES
[Abdelzaher et al. 2003] T.F. Abdelzaher, J.A. Stankovic,

C. Lu, R. Zhang, and Y. Lu. 2003. Feedback
performance control in software services. IEEE
Control Systems Magazine 23, 3 (2003), 74–90.

[Al-Areqi et al. 2015] S. Al-Areqi, D. Görges, and S. Liu.
2015. Event-based networked control and scheduling
codesign with guaranteed performance. Automatica
57, 7 (2015), 128–134.

[Arcelli et al. 2015] D. Arcelli, V. Cortellessa, A. Filieri,
and A. Leva. 2015. Control theory for model-based
performance-driven software adaptation. In Proc. 11th
International ACM SIGSOFT Conference on Quality
of Software Architectures. New York, NY, USA, 11–20.

[Brun et al. 2009] Y. Brun, G. Di Marzo Serugendo, C.
Gacek, H. Giese, H. Kienle, M. Litoiu, H. Müller, M.
Pezzè, and M. Shaw. 2009. Engineering self-adaptive
systems through feedback loops. In Software
engineering for self-adaptive systems, B.H.C. Cheng,
R. de Lemos, H. Giese, P. Inverardi, and J. Magee
(Eds.). Springer, Berlin, Germany, 48–70.

[Diao et al. 2005] Y. Diao, J.L. Hellerstein, S. Parekh, R.
Griffith, G.E. Kaiser, and D. Phung. 2005. A control
theory foundation for self-managing computing
systems. IEEE journal on selected areas in
communications 23, 12 (2005), 2213–2222.

[Hellerstein et al. 2004] J. Hellerstein, Y. Diao, S. Parekh,
and D.M. Tilbury. 2004. Feedback control of computing
systems. John Wiley & Sons, New York, NY, USA.

[Hoffmann et al. 2013] H. Hoffmann, M. Maggio, M.D.
Santambrogio, A. Leva, and A. Agarwal. 2013. A
generalized software framework for accurate and
efficient management of performance goals. In Proc.
2013 International Conference on Embedded Software.
Montréal, Canada, Article No. 6658597.

[IBM 2003] IBM. 2003. An architectural blueprint for
autonomic computing. IBM White paper (2003).

[Janert 2013] P.K. Janert. 2013. Feedback control for
computer systems. O’Reilly Media, Sebastopol, CA,
USA.

[Leva et al. 2013] A. Leva, M. Maggio, A.V. Papadopoulos,
and F. Terraneo. 2013. Control-based operating system
design. IET, London, UK.

[Lozi et al. 2016] J.P. Lozi, B. Lepers, J. Funston, F.
Gaud, V. Quéma, and A. Fedorova. 2016. The Linux
scheduler: a decade of wasted cores. In Proc. 11th
European Conference on Computer Systems. London,
UK, 1–16.

435

[Maggio et al. 2011] M. Maggio, H. Hoffmann, M.D.
Santambrogio, A. Agarwal, and A. Leva. 2011.
Decision making in autonomic computing systems:
Comparison of approaches and techniques. In Proc.
8th ACM International Conference on Autonomic
Computing. Karlsruhe, Germany, 201–204.

[Patikirikorala et al. 2012] T. Patikirikorala, A. Colman, J.
Han, and L. Wang. 2012. A systematic survey on the
design of self-adaptive software systems using control
engineering approaches. In Proc. 2012 ICSE Workshop
on Software Engineering for Adaptive and
Self-Managing Systems. Zürich, Switzerland, 33–42.

[Sanz and Årzen 2003] R. Sanz and K.E. Årzen. 2003.

Trends in software and control. IEEE Control Systems
Magazine 23, 3 (2003), 12–15.

[Terraneo et al. 2014] F. Terraneo, L. Rinaldi, M. Maggio,
A.V. Papadopoulos, and A. Leva. 2014.
FLOPSYNC-2: sub-microsecond, sub-µA clock
synchronisation for wireless sensor networks. In Proc.
IEEE Real-Time Systems Symposium RTSS 2014.
Roma, Italy, 11–20.

[Ziegler and Nichols 1943] J.G. Ziegler and N.B. Nichols.
1943. Process lags in automatic control circuits.

Transactions of the ASME 65, 5 (1943), 433–443.

436

