
Application Performance Management:
State of the Art and Challenges for the Future

Christoph Heger,1 André van Hoorn,2 Mario Mann,1 Dušan Okanović2

1NovaTec Consulting GmbH, Competence Area APM, Leinfelden-Echterdingen, Germany
2University of Stuttgart, Institute of Software Technology, Stuttgart, Germany

ABSTRACT
The performance of application systems has a direct impact
on business metrics. For example, companies lose customers
and revenue in case of poor performance such as high re-
sponse times. Application performance management (APM)
aims to provide the required processes and tools to have a
continuous and up-to-date picture of relevant performance
measures during operations, as well as to support the detec-
tion and resolution of performance-related incidents.

In this tutorial paper, we provide an overview of the state
of the art in APM in industrial practice and academic re-
search, highlight current challenges, and outline future re-
search directions.

1. INTRODUCTION
Business success is directly influenced by the performance

of the enterprise application systems that support it. Any
performance issue that may arise during the production use
of such applications may bring losses in revenue, and even
cause customers to turn away. Examples of these losses and
their impact are well documented. Google loses 20% traffic if
their web sites respond 500 ms slower [9]. Amazon loses 1%
of revenue for every 100 ms in latency [8]. Mozilla’s study
showed that if the page is not loaded within one to five
seconds, users will leave the web site [4].

Application performance management (APM), as a core
IT operations discipline, aims to achieve an adequate level
of performance during operations. To achieve this, APM
comprises methods, techniques, and tools for i) continuously
monitoring the state of an applications system and its us-
age, as well as for ii) detecting, diagnosing, and resolving
performance-related problems using the monitored data.

In this paper, we provide a state-of-the-art overview of the
common APM activities (Section 2) and tools (Section 3),
and highlight selected challenges and future directions (Sec-
tion 4).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPE’17, April 22-26, 2017, L’Aquila, Italy
c© 2017 ACM. ISBN 978-1-4503-4404-3/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3030207.3053674

Data
Presentation

Data
Interpretation

and Use

Data
Collection

Data
Storage and
Processing

APM

Figure 1: Continuous APM activities

2. APM ACTIVITIES
Regardless of the actual technical realization, APM in-

volves the following four—concurrently conducted and inter-
related—activities (Figure 1):

1. Data collection. Performance measures are collected
from the different system tiers, layers, and locations
by a combination of complementary techniques and
technologies.

2. Data storage and processing. The collected data is
combined into higher-level data structures, such as time
series or execution traces.

3. Data presentation. Data is made available for visual
inspection on different levels of abstraction and detail.

4. Data interpretation and use. The data is used to man-
ually or automatically reason about and act upon the
current state.

The remainder of this section details these activities.

2.1 Data Collection
Various types of performance-relevant measures can and

need to be collected from a system and its clients. A core de-
cision of APM regarding data collection is where, what, and
how to collect, as detailed in the remainder of this section
and depicted in Figure 2.

2.1.1 Where to Collect Data?
Modern application systems are multi-tiered, highly dis-

tributed, multi-layered, and accessed via different types of
clients and devices (e.g., third-party systems and humans
using desktop or mobile devices).

429

http://dx.doi.org/10.1145/3030207.3053674

Business

User

Application

Middleware

Operating
system

Sales data, conversion and bounce rate

User interactions: length of stay, load times,
errors; number of resources on HTML pages

Component interactions, method response
times, trace data

Queuing statistics, pooling, garbage collection

File handling statistics, virtualization, thread
statistics

CPU load, memory consumption, I/O statisticsHardware

Use of monitors to
periodically query
resources in order to
obtain their state

Active Passive

Where? What? How?

Some technologies on lower levels
provide standard interfaces for data
collection, e.g., Nagios, JMX

Collection of data is
triggered upon certain
events and is
performed using
injected code, network
traffic measuring, or
log analysis

Figure 2: Example measures and techniques for data collection on different system levels

Most application systems are implemented in a way that,
in addition to the application logic executed at the provider’s
site (referred to as the back-end), parts of the application
are executed at the client’s site. The client site usually con-
stitutes a system tier accessing the back-end via (graphi-
cal) interfaces such as fat-clients, thin clients realized in web
browsers, or native apps on mobile devices. Communication
between clients and the back-end may be conducted by net-
worked, wireless, and/or cellular connections. The back-end
involves multiple tiers, for instance concerned with function-
ality regarding presentation, business, and persistence. The
different application tiers and services are usually deployed
to a heterogeneous infrastructure of distributed physical and
virtual computing resources, each involving stacked layers
from hardware to the application.

To provide an end-to-end view on application performance,
APM requires the collection of relevant performance mea-
sures from all of the mentioned locations.

2.1.2 What Data to Collect?
The types of measures that can and should be collected

depends on the previously mentioned locations, but also on
the architectural style used by the application system.

As mentioned previously, the primary goal of any appli-
cation system is to provide support for business processes.
Hence, following a top-down perspective of APM, measures
related to business and end-user experience are of primary
interest. On a business level, these measures include data
about completed and uncompleted conversions (e.g., statis-
tics about client sessions with and without buy transac-
tions). Measures about the end-user experience obtained on
the client site include end-to-end response times of interac-
tions, (page) load times, errors, and data about the UI usage.
On the application level, measures about the application-
internal behavior can be collected, including executions of
methods, occurrences of exceptions, calls to remote services
or databases, etc. On the system level, i.e., middleware,
operating system, and hardware, measures about the state
of hardware and software resources are collected in particu-
lar. Additional example measures for the different levels are
included in Figure 2.

2.1.3 How to Collect Data?
There are many approaches for collecting the data, which

can be categorized into two main groups: active and passive.
Active data collection is performed by periodic sampling

of system services or resources. This includes the emulation
of customers using synthetic requests. Passive data collec-
tion, on the other hand, is performed by collecting the data
when certain events, such as method executions, occur. The
data can be gathered by, e.g., injecting the measurement
logic into the application source or byte code, stack trace
sampling, capturing application logs, or mirroring network
traffic. Additionally, for some system levels, there are stan-
dard interfaces that allow accessing and collecting data.

2.2 Data Storage and Processing
In order to have a central view on the collected data, it

is usually transferred by the agents to a data storage for
further processing and analysis. Proprietary or standard
technologies (e.g., database management systems) can be
and are being used. APM usually results in very large data
sets that need to be handled efficiently [14].

Two data representations are commonly used: time se-
ries and execution traces. While time series represent sum-
mary statistics (e.g., counts, percentile, etc.) over time, ex-
ecution traces [3] provide a detailed representation of the
application-internal control flow that results from individual
system requests. From this data, architectural information,
including logical and physical deployments and interactions
(topology), can be extracted.

2.3 Data Presentation
Due to the high quantity, APM information needs to be

presented in a meaningful and comprehensible way using dif-
ferent interrelated and navigable views. These views can be
categorized using two dimensions: the scope (business vs.
technology) and the level of abstraction. Views can con-
tain detailed business information such as the status of user
devices, geolocations, as well as the health of the available
services. On the other hand, data can be presented in the
form of traces, time series, page flows, underlying topologies,
server health, etc. These views vary from more abstract to
more detailed, depending on what is required to answer the
respective concern.

430

 B

us
in

es
s

Te
ch

n
ic

al

Status Service

Catalog

Purchase

Trace Time series Page flow Topology Server health

User device Geolocation Service status

Level of abstraction

▼ •doFilter(…)
▼ •doFilter(…)

▼ •list(…)
n executeQuery()
n executeQuery()

- +

Figure 3: Example views on APM data with different scope and level of abstraction

An example use of the different views is as follows. A ser-
vice status view shows that all services are healthy. As soon
as a service is indicated not to be healthy any more, the in-
cident needs to be analyzed. This is achieved by navigating
to the other, more detailed views.

2.4 Data Interpretation and Use
The available data—comprising time series, execution

traces, and topology information—can be interpreted and
used with different goals, e.g.:

• Problem detection and alerting. Statistical techniques
can be applied to the data to detect anomalies, which
can indicate problems. Particularly time series data
is used to detect violations of thresholds, which are
either specified manually (e.g., based on service level
agreement—SLAs) or learned from the historic data
(baselines). In case an anomaly is detected, alerts can
be sent out to system operators. To retain trust in the
automatic detection and alerting, a high classification
quality (e.g., in terms of precision, recall, and related
measures) is desired.

• Problem diagnosis and root cause isolation. In case a
problem occurred, the goal is to isolate its root cause
during problem diagnosis—again manually or auto-
matically. Manual analysis is usually conducted by em-
ploying the previously mentioned data representations,
e.g., by navigating from status lights, via application
topologies, to component drill downs, execution traces,
and time series. There are also approaches to au-
tomatically detect root causes of typical performance
problems, also known as performance antipatterns [15].
These approaches usually use trace data [6], but may
also add other information, e.g., configuration data [12].

• System refactoring and adaptation. Other approaches
use the data for automatic reaction in order to min-
imize the impact of performance issues. In cloud en-
vironments, auto-scaling approaches [10] can compare
the data with SLAs [7], to determine further actions.

The aforementioned approaches can be conducted in a reac-
tive or proactive manner, i.e., after a problem occurred or
to predict that a problem will occur [13].

3. TOOLING SUPPORT
Tooling support is at the core of realizing the previously

described APM activities. An ever increasing number of
APM-supporting tools exist, ranging from fully-fledged APM
tool suites covering the whole process, to specialized tools fo-
cusing on specific smaller problems, e.g., collection of certain
measures, tailored database management systems, analytics,
and visualization.

Most APM tools provide some basic functions, such as re-
source monitoring, architecture discovery, component deep-
dive, end-user experience monitoring. In addition, they can
provide data visualization and some form of analytics, e.g.,
baseline calculation and anomaly detection. Modern APM
tools usually support monitoring in complex environments,
that can consist of different platforms, different program-
ming languages, etc. Tools usually consist of two compo-
nents: i) a monitoring agent that collects the data, and ii) a
storage and analysis component. Depending on the require-
ments, the analysis component can be further divided. Two
usual modes of installation are available [2], on-premise and
SaaS-based (software as a service).

The most mature and feature-rich APM tools are commer-
cial products such as AppDynamics, CA APM, Dynatrace,
and New Relic, regularly reviewed by Gartner [5]. As an
alternative to commercial solutions, open-source tools are
often used to implement the technical APM infrastructure.
Mature open-source tools for monitoring on system-level
have been around for many years (e.g., Nagios1). Open-
source application-level monitoring tools (e.g., Kieker [17]
and inspectIT2) are available. Other tools are available for
collecting distributed execution traces (e.g., Zipkin3) and
are being used together with emerging technologies for data
storage and analytics (e.g., logging infrastructure, NoSQL
databases, big data).

4. CHALLENGES AND DIRECTIONS
In this section, we share our view on what selected chal-

lenges and promising future research directions are.

1http://www.nagios.org/
2http://www.inspectit.eu/
3http://zipkin.io/

431

Automation of Supporting Activities. APM prac-
tice requires expertise and effort. For instance, expertise is
required for setting up and maintaining APM configurations
(e.g., deciding which parts of the software to instrument),
as well as for the analysis and visualization of the data.
Even for experts, manual tasks can be error-prone, costly,
and frustrating because various tasks and problems are re-
curring. Automation of these tasks could be performed by
formalizing the expert knowledge, and using it to solve these
tasks.

Problem Detection, Diagnosis, and Prediction. Re-
garding the root cause analysis of performance problems,
today’s tools give little or no support. They are usually
limited to alerting and visualization, but the diagnosis and
root-cause analysis of performance issues, still has to be per-
formed manually. Systematization of expert knowledge and
machine learning approaches could provide key support here.

Interoperability. Currently, all of the tools store the
data in their own format. As a consequence, it is a com-
mon practice that the same analysis approach has to be
re-implemented for different APM tools. Some tools allow
export of data in some machine readable format, such as
XML, and this data can than be parsed with more or less
effort [11]. However there are ongoing works on developing
APIs and formats for APM tool interoperability [1, 11].

Development Paradigms and Architectural Styles.
Modern development paradigms such as DevOps aim for fre-
quent releases— posing additional APM challenges, e.g. how
to calculate new baselines when the time span between new
releases is extremely short. On the other hand, in these kind
of environments, APM data from production can be made
available to developers, e.g., for use in IDEs and extracted
performance models. Emerging architectural styles and new
cloud-based delivery models, e.g., microservice and server-
less architectures, further extend the task of cross-platform
monitoring and require the tools to cope with new measures
and uncertainty in results.

5. CONCLUSIONS
APM allows to provide deep insights into the run-time

behavior of application systems, supporting the detection,
diagnosis, and resolution of incidents. In this paper, we
covered the core APM activities and tooling support, and
identified current limitations.

Modern development paradigms and architectural styles
provide challenges to which APM practice and research will
have to provide solutions. APM is not a purely technical
topic anymore, as there is also a need for support of busi-
ness activities and vice versa. We see promising future re-
search directions in automation of supporting activities and
analysis of data. In our current research, we try to tackle
selected challenges by including expert knowledge and an-
alyzing performance concerns by a declarative approach [6,
18]. Technology transfer of new APM approaches developed
in research would benefit from the availability of real-world
APM data for the evaluation of the approaches.

6. ACKNOWLEDGMENTS
This work is being supported by the German Federal Min-

istry of Education and Research (grant no. 01IS15004, di-
agnoseIT). The authors and this paper have benefited from
frequent discussions with Stefan Siegl—including joint work
on our APM poster [16] that served as a basis for this paper.

7. REFERENCES
[1] OpenTracing: A vendor-neutral open standard for

distributed tracing. http://opentracing.io/, 2016.

[2] T. M. Ahmed, C.-P. Bezemer, T.-H. Chen, A. E. Hassan,
and W. Shang. Studying the effectiveness of application
performance management (APM) tools for detecting
performance regressions for web applications: An
experience report. In Proc. 13th Int. Conf. on Mining
Software Repositories (MSR ’16), pages 1–12, 2016.

[3] G. Ammons, T. Ball, and J. R. Larus. Exploiting hardware
performance counters with flow and context sensitive
profiling. In Proc. ACM SIGPLAN ’97 Conf. on
Programming Language Design and Implementation
(PLDI ’97), pages 85–96, 1997.

[4] B. Cutler. Firefox and page load speed (part I).
https://blog.mozilla.org/metrics/2010/03/31/
firefox-page-load-speed-part-i/, 2010.

[5] C. Haight and F. D. Silva. Gartner’s magic quadrant for
application performance monitoring suites, 2016.

[6] C. Heger, A. van Hoorn, D. Okanović, S. Siegl, and
A. Wert. Expert-guided automatic diagnosis of performance
problems in enterprise applications. In Proc. 12th Europ.
Dependable Computing Conf. (EDCC ’16). IEEE, 2016.

[7] Y. Kouki and T. Ledoux. CSLA: A Language for
improving Cloud SLA Management. In Proc. Int. Conf. on
Cloud Computing and Services Science (CLOSER 2012),
pages 586–591, 2012.

[8] J. Liddle. Amazon Found Every 100ms of Latency Cost
Them 1% in sales. http://blog.gigaspaces.com/
amazon-found-every-100ms-of-latency-cost-them-1-in-sales/,
2008.

[9] G. Linden. Marissa Mayer at Web 2.0. http://glinden.
blogspot.de/2006/11/marissa-mayer-at-web-20.html, 2006.

[10] T. Lorido-Botran, J. Miguel-Alonso, and J. A. Lozano. A
review of auto-scaling techniques for elastic applications in
cloud environments. Journal of Grid Computing,
12(4):559–592, 2014.

[11] D. Okanovic, A. van Hoorn, C. Heger, A. Wert, and
S. Siegl. Towards performance tooling interoperability: An
open format for representing execution traces. In Proc.
13th Europ. Workshop on Computer Performance
Engineering EPEW ’16, pages 94–108, 2016.

[12] T. Parsons and J. Murphy. Detecting performance
antipatterns in component based enterprise systems.
Journal of Object Technology, 7(3):55–91, 2008.

[13] T. Pitakrat, D. Okanovic, A. van Hoorn, and L. Grunske.
An architecture-aware approach to hierarchical online
failure prediction. In 12th Int. ACM SIGSOFT Conf. on
Quality of Soft. Architectures, pages 60–69, 2016.

[14] T. Rabl, S. Gómez-Villamor, M. Sadoghi,
V. Muntés-Mulero, H.-A. Jacobsen, and S. Mankovskii.
Solving big data challenges for enterprise application
performance management. Proc. VLDB Endow.,
5(12):1724–1735, 2012.

[15] C. U. Smith and L. G. Williams. Software performance
antipatterns. In Proc. 2nd Int. Workshop on Software and
Performance (WOSP ’00), pages 127–136, 2000.

[16] A. van Hoorn and S. Siegl. Application performance
management (APM): Continuous monitoring of application
performance (OBJEKTspektrum poster, in german).
https://www.sigs-datacom.de/wissen/fachposter/.

[17] A. van Hoorn, J. Waller, and W. Hasselbring. Kieker: A
framework for application performance monitoring and
dynamic software analysis. In Proc. 3rd ACM/SPEC Int.
Conf. on Perf. Eng. (ICPE ’12), pages 247–248, 2012.

[18] J. Walter, A. van Hoorn, H. Koziolek, D. Okanovic, and
S. Kounev. Asking ”what”?, automating the ”how”?: The
vision of declarative performance engineering. In Proc. 7th
ACM/SPEC on Int. Conf. on Perf. Eng., ICPE ’16, pages
91–94, 2016.

432

http://opentracing.io/
https://blog.mozilla.org/metrics/2010/03/31/firefox-page-load-speed-part-i/
https://blog.mozilla.org/metrics/2010/03/31/firefox-page-load-speed-part-i/
http://blog.gigaspaces.com/amazon-found-every-100ms-of-latency-cost-them-1-in-sales/
http://blog.gigaspaces.com/amazon-found-every-100ms-of-latency-cost-them-1-in-sales/
http://glinden.blogspot.de/2006/11/marissa-mayer-at-web-20.html
http://glinden.blogspot.de/2006/11/marissa-mayer-at-web-20.html
https://www.sigs-datacom.de/wissen/fachposter/

