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ABSTRACT
Although methods and tools for unit testing of performance
exist for over a decade, anecdotal evidence suggests unit test-
ing of performance is not nearly as common as unit testing
of functionality. We examine this situation in a study of
GitHub projects written in Java, looking for occurrences of
performance evaluation code in common performance testing
frameworks. We quantify the use of such frameworks, identi-
fying the most relevant performance testing approaches, and
describe how we adjust the design of our SPL performance
testing framework to follow these conclusions.
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1. INTRODUCTION
This paper is motivated by two observations, one related

to performance testing and one to software testing activities
in general:

– Software performance testing is widely recognized as
an essential software quality assurance tool. Reports
of major companies practicing systematic performance
testing [11], as well as analyses of project failures asso-
ciated with insufficient performance testing [4], make
performance testing a common wisdom activity.

– Another common wisdom argument in software testing
activities, associated especially with test driven devel-
opment, is that the earlier a test is done, the cheaper
it is to remove the discovered defects [24].

Combining the two points naturally leads to work on early
performance testing, such as performance evaluation through
architectural performance models [1]. Here, we focus on unit
testing of performance, which is situated roughly between
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architectural performance modeling and system performance
testing.

Much of the existing work on unit testing of performance is
situated in the Java ecosystem. Java is a major software plat-
form for performance sensitive applications, including server
side containers such as Glassfish or Tomcat or distributed
computing frameworks such as Flink or Hadoop, but also
a software platform whose performance related behavior is
often more complex than that of traditional languages like C.

The Java ecosystem offers multiple frameworks poten-
tially suitable for unit testing of performance, including
Caliper [19], ContiPerf [2], Japex [28], JMH [27], or JUnit-
Perf [7]. Some of these frameworks exist for over a decade,
however, anecdotal evidence suggests that unit testing of
performance is still not as established as unit testing of func-
tionality or system performance testing. In this paper, we
replace the anecdotal evidence with more rigorous data on
the actual practice of unit testing of performance, and pro-
pose modifications to our performance testing framework,
SPL [6], to reflect this data.

The main contributions of this paper are:

– We analyze 99019 open source software projects on
GitHub, totaling nearly 3 TB of data, and provide
both current and historical statistics on the use of
performance testing frameworks in these projects.

– We collect and summarize positions on unit testing of
performance from 111 open source software developers
who use the JMH performance testing framework, and
use these to supplement the GitHub analysis results.

– We identify those projects that implement performance
tests potentially suitable for unit testing of performance,
and provide statistics on the test time and measurement
accuracy.

– We explain how we adjust the design of our SPL per-
formance testing framework to reflect these results.

The paper is structured as follows. In Section 2, we point
to the motivating context and introduce the performance
testing frameworks whose use is analyzed in later sections.
Section 3 formulates the research questions for our survey and
discusses threats to internal validity. Section 4 presents and
discusses measurements that answer the research questions.
Section 5 focuses on the adjustments of our own performance
testing framework. Finally, Section 6 concludes the paper.
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2. RELATED WORK
Taken separately, both unit testing and performance test-

ing are well established quality control activities. At the unit
testing side, studies such as [12] and [25] report successful
defect reduction in industrial settings. At the performance
testing side, studies such as [35] provide an early summary of
the issues, and papers such as [36] contain a broader overview
of the software performance engineering challenges.

Moving beyond the established principles of unit testing,
multiple studies summarize developer opinions on the testing
practice and identify open research issues. Runeson [29]
remarks that multiple companies report issues with the effort
of testing automation, Engstrom and Runeson [10] repeat
the same concern in the context of regression testing. Greiler
et al. [14] examine unit testing in the context of component
systems, pointing out both a strong developer preference for
testing automation and a need for reasonable setup effort
and test time. Our work contributes to the existing unit
testing studies by focusing specifically on unit testing of per-
formance – where, interestingly, some of the listed concerns
are emphasized due to more demanding test automation and
more expensive test execution.

A unit testing survey by Daka and Fraser [8] observes that
some developer responses are not necessarily accurate. As
an alternative to surveying developers, source code reposi-
tories are mined in an open source software testing study
by Kochhar et al. [20]. Our work provides more detailed
information by combining repository mining with surveying
developers for supplementary information. Also, our focus
on the Java ecosystem permits us to process the repository
content much more accurately – for example we identify tests
by searching for specific code constructs rather than for file
name patterns.

A related line of research surveys the performance testing
practices. Nistor et al. [26] look at the difference between
performance bugs and functional bugs. The authors point out
that compared to reasoning about functionality, developers
have little support for reasoning about performance. From
the testing perspective, better oracles for evaluating test
conditions are called for.

Jit et al. [17] and Liu et al. [23] focus on characterizing real
world performance bugs, as opposed to performance bugs
discovered in possibly artificial testing conditions. Their
work, one experimenting with Linux and one with Android,
identifies typical features of existing performance bugs and
applies this knowledge to look for new bugs. Again, the need
for automated evaluation of measurement data is listed as
one open issue.

Linares-Vásquez et al. [22] investigate the current practices
of locating and fixing performance issues in mobile appli-
cations. Among other results, the conclusions of the study
most related to testing show that 73 % of developers rely on
manual testing and 51 % on user feedback to locate perfor-
mance issues, expressing preference for observation based
analysis rather than automation.

Overall, the conclusions of the existing studies reveal defi-
nite gap between testing of functionality and performance.
In functional testing, automation at unit test level works
reasonably well, even if the setup effort and test time are
not necessarily trivial. In performance testing, manual ap-
proaches appear dominant and automation is asked for. Our
study investigates this gap.

Combined together, unit testing and performance testing
are also particularly close to the increasingly popular DevOps
movement. Acceptance of DevOps principles can not only
lead to increased performance awareness [13, 21, 34], but
also provide direct software process benefits – for example a
retroactive case study by Waller et al. [33] shows how inte-
grating Kieker (performance monitoring tool) with Jenkins
(continuous integration tool) can lead to earlier detection of
performance regressions.

On the technical side, both unit testing and performance
testing rely on established tool support. Among tools relevant
to the platform context and testing scale of this work, we
have:

– unit testing tools such as JUnit [18] or TestNG [31],
which simplify unit test implementation by providing
standard constructs for marking test methods, express-
ing test conditions and managing test fixtures, together
with an environment that automatically executes the
tests and reports the results, and

– performance testing tools such as JMH [27], which pro-
vide constructs for marking measured workload, defin-
ing measurement conditions and controlling potentially
disruptive optimizations, together with an environment
that automatically executes the measurements and col-
lects the results.

For the purpose of this work, we are interested in tools that
support unit testing of performance. Table 1 provides a list
of the relevant frameworks. While common unit testing tools
have no performance testing support, special purpose exten-
sions exist. The table includes ContiPerf [2] and JUnitPerf [7]
as two extensions of JUnit, both support specifying absolute
limits on test execution time as the test condition. For per-
formance testing tools, the table lists Caliper [19], Japex [28]
and JMH [27], three frameworks that target microbenchmark
implementation.

Somewhat separately, Table 1 also lists SPL [6]. SPL is our
performance testing framework and formalism for specifying
test conditions. Although SPL can be used in real open
source projects [16], the framework is still subject to frequent

Framework Metrics Asserts Output Maintained

SPL Time Yes CSV, chartsa 2012 –
JMH perfb No Textc, JSON 2013 –
Caliper Time No Textc 2008 –
JUnitPerf Timed Yes Textc 2009 – 2010
ContiPerf Timed Yes CSV, chartsa 2010 – 2014
Japex Timed No XML, chartsa 2005 – 2011

Table 1: Comparison summary of Java benchmark-
ing frameworks. SPL is a research project on perfor-
mance unit testing; JMH, Caliper and Japex are mi-
crobenchmarking frameworks; JUnitPerf and ContiPerf
are performance related extensions of the JUnit testing
framework.

a Charts embedded in an HTML report.
b Linux perf counters and throughput available.
c For human reader, machine processing possible.
d Throughput also available.
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large scale modifications and therefore not a part of our usage
survey – instead, we use the survey to collect feedback that
motivates modifications described in Section 5.

From the broader context of automated performance test-
ing, we want to mention the performance monitoring frame-
works that collect data through instrumentation, such as
Kieker [32]. With performance monitoring, unit test execu-
tion time can be observed and possibly used for performance
testing, however, such practice is complicated by the need for
repeated test execution with stable test fixtures and other
issues.

Also related is the issue of robust measurement environ-
ment. For performance testing to deliver meaningful results,
the measurement environment must be sufficiently represen-
tative. In performance sensitive applications, unit test exe-
cution may benefit from environments such as DataMill [9]
to guard against the accidental measurement bias due to
platform configuration and to provide platform variability.

3. SURVEY DESIGN
To assess whether unit testing of performance is as well

established as unit testing of functionality, we formulate
multiple research questions with measurable answers. We
aim for answers that can be measured by analyzing source
code repositories – such repositories are available for many
software projects and we can therefore achieve reasonable
project coverage. We start with the key question:

Q1: How much is unit testing of performance
used?
An answer to Q1 can be expressed as the share of software
projects that use unit testing of performance. To recognize
whether a software project uses unit testing of performance,
we look for statements that import packages or declare anno-
tations distinctive for particular performance testing frame-
works. This approach can be reasonably automated, however,
it requires careful discussion of threats to validity on two
levels – at the implementation level, it is not necessarily
true that recognizing packages or annotations equates to
using a performance testing framework, and, at the process
level, it is not necessarily true that using a performance
testing framework equates to practicing the unit testing of
performance.

At the implementation level, we detect usage patterns asso-
ciated with all the performance testing frameworks surveyed
in Section 2. In these frameworks, importing distinct pack-
ages or declaring distinct annotations are reliably established
usage patterns. Table 2 lists the base packages and the test
markers – we consider a reference to the base package any-
where in code as an indicator that the associated framework
is used, and we count the uses of test markers to determine
the number of tests. Our detection tool uses source code
parser to properly resolve imports and distinguish ambiguous
textual identifiers.

Although it is technically possible to avoid the listed usage
patterns and still invoke particular framework features, such
practice would be obscure. We therefore classify the threat
of failing to detect a framework that is actually used as low.

Inversely, we can detect a framework that is present but not
used. Performance testing frameworks implement packages
and annotations that software projects are unlikely to use

Framework
Base package

Test marker

Caliper
com.google.caliper

@Benchmark

ContiPerf
org.databene.contiperf

@PerfTest

Japex
com.sun.japex

JapexDriverBase

JMH
org.openjdk.jmh

@Benchmark, @GenerateMicroBenchmark

JUnitPerf
com.clarkware.junitperf

TimedTest, LoadTest

JUnit
org.junit

@Test

TestNG
org.testng

@Test

Table 2: Packages and annotations used to detect par-
ticular frameworks. Presence of any type from the base
package indicates framework use. One use of any test
marker counts as one test.

for purposes other than performance testing, the threat is
therefore most likely manifested with abandoned performance
testing attempts. Because we execute all the recognized
performance tests to answer some of the further research
questions, we avoid this threat entirely.

A software project can also implement performance tests
in a proprietary manner, not relying on any performance
testing framework. This threat needs to be considered espe-
cially because our initial premise is that performance testing
frameworks are not well established and proprietary test im-
plementations are therefore likely. To identify such software
projects, we rely on the assumption that a performance test
must query the clock to determine performance. Any code
that uses standard system interface to query the clock is
identified as a potential performance test, further manual
classification is used to determine the purpose for which the
clock is queried.

At the process level, an answer to Q1 requires making a dis-
tinction between projects whose code contains performance
tests and projects whose development process involves unit
testing of performance. The existence of performance tests
is a necessary but not sufficient condition for unit testing of
performance, which also requires that the tests execute with
unit granularity and that the test conditions are specified
and evaluated.

To address the issue of granularity, we attempt to execute
all recognized performance tests. Tests that fail to run due to
missing external dependencies (network services to connect
to, external data to read, etc.) are not considered unit
tests (unit tests should mock or do without dependencies).
Similarly, tests that run too long are not considered unit
tests (unit tests should be small enough to execute during
regular builds). The remaining performance tests, which
execute without dependencies and within reasonable time,
are considered candidates for unit testing.

Given only project code, it is not possible to reliably
check whether the candidate tests specify and evaluate test
conditions. Simple assertion statements, typical for unit
testing of functionality, are not suitable for unit testing of
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performance, where performance measurements can seldom
be compared using classical test conditions [5, 6]. More
complex evaluation approaches can escape detection when
implemented in the build infrastructure rather than the
project code [15, 3]. In the answer to Q1, we therefore
include all the candidate tests, assuming they could be easily
used as unit tests of performance if they are not already.
Further research questions evaluate the accuracy of such
tests.

To interpret the answer to Q1, we also need a baseline.
We therefore measure the share of projects that implement
unit tests of functionality, and compare that to the share
of projects that implement unit tests of performance. The
technical implementation is similar, but we detect the use of
general testing frameworks rather than performance testing
frameworks.

Q2: How much does unit testing of performance
change with time?
Source code repositories permit examining not only the cur-
rent state of a software project, but also the development
history. By measuring the answers to Q1 at different points
in time, we therefore provide an answer to Q2. Again, we use
measurements for unit testing of functionality as a baseline to
interpret the measurements for unit testing of performance.

Q3: What kind of software projects are mea-
suring performance?
Unit testing of performance is likely to differ depending on
the kind of software project involved. This has important
repercussions – the general project domain may determine
what the unit tests need in terms of environment, configura-
tion, mock dependency injection and other features, while
parameters such as code size and commit frequency determine
requirements on the scalability of the testing infrastructure.

To provide an answer to Q3, we measure the project size
in lines of code both now and at the time a performance test
first appeared in the project. We also collect the average
commit frequency across the project. Finally, we manually
classify the general project domain.

Q4: How long does unit testing of performance
take?
Unit tests of functionality typically take a fixed amount of
time to arrive at the pass or fail decision. Due to the variabil-
ity inherent to performance measurements, this is not the
case with unit tests of performance – instead, the test can
collect measurements continuously and the longer it runs,
the higher confidence or sensitivity it provides. Furthermore,
modern execution environments need some minimum exe-
cution time to reach stable performance, making short test
runs less representative.

To answer Q4, we give the time needed to execute all the
candidate performance tests. However, this time depends
on factors such as measurement framework configuration
options, which are often set in the build infrastructure rather
than the project code. When the real options differ from the
defaults, so will the time reported. We therefore also report
the accuracy obtained after one hour of measurement, as a
metric that is connected with the test time and reflects what
results to expect when testing with one hour period (one
hour was picked to resemble testing after each commit).

Q5: Does unit testing of performance reveal ac-
tual performance changes?
With unit tests in place, the obvious remaining question is,
do their results reveal actual performance changes? To answer
Q5, we simply look at the differences in measured perfor-
mance at chosen points in project lifetime. Such differences
can arise due to real change in project performance, but also
due to changes in test code. To avoid mixing the two, we
compare current performance with performance measured
after last test code modification, thus excluding differences
due to changes in test code.

Developer Survey
Repository mining readily provides aggregate statistics but
does not explain the results. To avoid speculation when
discussing the results of the formulated research questions, we
have asked the developers who use the dominant performance
testing framework to answer a short survey on the following
topics:

– reasons for choosing a particular framework,
– degree of integration into the development process,
– degree of automation in processing the results,
– perceived usefulness of performance testing,
– perceived obstacles to performance testing.

We present selected results of the developer survey when
discussing answers to the research questions. Exact wording
of the survey questions and complete results are available
at [30].

4. SURVEY RESULTS
To answer the formulated research questions, we analyze

source code repositories from GitHub. GitHub is likely the
most popular open source software hosting facility, claiming
over 15 million users and 38 million projects1, compared for
example to SourceForge with 3.7 million users and 430 thou-
sand projects2 (these and other presented numbers on repos-
itory sizes and project counts were collected in the period
of August to October 2016). Our use of an open source
repository can naturally introduce bias, however, it is not
likely that we would succeed in getting information on a
similar number of closed source software projects and the
associated development processes from the software industry.

GitHub provides a code search API with functions essential
to our survey – in particular, we can list projects that meet
particular language criteria. As a complication, the API is
limited to returning at most 1000 entries matching a query,
plus an information on the total number of matching entries.
Also, answers to queries whose processing exceeds preset
timeout are incomplete. To sidestep these limitations, we
split each query that returns more than 1000 entries into
multiple smaller queries whose answers together form the
answer to the original query. This is done by adding interval
filters on attributes such as repository size and fork count
and recursively splitting the intervals until the queries are
satisfied. We note this approach can introduce races because
the individual queries observe GitHub at slightly different
moments in time (the processing time for the central query
that lists all surveyed projects was almost 7 hours), however,

1http://github.com/about
2http://sourceforge.net/about

404

http://github.com/about
http://sourceforge.net/about


we submit the individual queries in the order of growing
repository sizes and growing fork counts, making it less likely
that we miss a project (it would have to shrink in size or
fork count just between the relevant queries).

We use the API to identify Java projects, getting approx-
imately 2.4 million entries excluding forks. Because these
contain a high number of obviously invalid projects (for exam-
ple, we get approximately 314 thousand entries for projects
whose repository size is below 16 kB and over 94 thousand of
those are empty), we restrict our survey to projects that have
been forked at least twice (a non zero fork count is a liberal
filter for projects that receive some attention, established
projects collect up to thousands of forks). There are approx-
imately 100 thousand such projects, for our analysis we have
successfully cloned and processed exactly 99019 repositories
totaling almost 3 TB of data.

A1: How much is unit testing of performance
used . . .
Table 3 gives the share of projects whose source code uses
one of the surveyed performance testing frameworks (Caliper,
ContiPerf, Japex, JMH, JUnitPerf). As a baseline, the table
also gives the share of projects whose source code uses either
JUnit 4 or TestNG, two dominant unit testing frameworks.

The table indicates that unit testing of performance using
the surveyed performance testing frameworks is extremely
rare. The most used framework, JMH, is found on average
less than three times in thousand projects, the other frame-
works are used an order of magnitude less often. Because
subsequent analysis steps further reduce this number, we
will only consider projects that use JMH and refrain from
drawing conclusions on projects with other frameworks (gen-
eralizing from what are basically singular use cases is not
possible).

With JMH identified as the dominant framework, we have
also sent the developer survey to the developers who use
it – specifically, those developers who have updated any
performance test in any commit of the 278 relevant projects.
We have sent out a total of 483 invitations to fill in the survey
and received 111 completed forms (78 with permission to
publish results, 26 with permission to publish summary, 7
with no permission to publish).

The developer survey lists trust in results as the top reason
for choosing JMH at 72 %. Other reasons include active
maintenance at 60 % and good documentation at 40 %. Build
system integration is rated comparatively low at 33 %. These
results emphasize the difficulty of writing correct performance
tests and suggest few frameworks are considered mature.

Framework Repositories Relative usage

Caliper 12 0.012 %
ContiPerf 17 0.017 %
Japex 52 0.053 %
JMH 278 0.281 %
JUnitPerf 11 0.011 %

JUnit 4 30871 31.177 %
TestNG 2053 2.073 %

Total 99019 100 %

Table 3: Java test framework usage on GitHub.
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Figure 1: JMH versions used by projects. Versions
1.11, 1.12, 1.13 and 1.14 were released on January,
April, July and September 2016, respectively.
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Figure 2: JMH version adoption delay. Each project
is represented by one point, projects near the diagonal
use the most current JMH version, the further from the
diagonal, the more obsolete the JMH version used.

Subsequent analysis steps require building and executing
all the recognized performance tests. For this, we use Fedora
Linux 24 with OpenJDK 1.8.0 in the latest update, software
dependencies resolved through build configuration, running
on a dual Intel Xeon E5-2660 machine (20 MB cache, 2.2 GHz
clock, 8 cores) with 48 GB RAM. For measurements, we
disable hardware threads, frequency scaling and boosting,
and constrain the execution to single NUMA node for both
memory and processor allocation.

As a technical complication, JMH outputs only summary
measurement information but for accurate statistical process-
ing we need individual measurements. Before building the
projects, we therefore created a modified JMH version and
inserted it among project dependencies. For that, we need
projects with standard dependency specification – among
the projects that use JMH, these are 223 projects built with
Maven and 52 projects built with Gradle. Figure 1 lists
the JMH versions originally used in the projects, Figure 2
illustrates the JMH adoption speed by plotting the release
date of the used JMH version against the last commit date
for each project. We note that our modifications are included
in standard JMH starting with version 1.14.

After inserting the modified JMH version, we attempt
to build two versions of each project. One is the HEAD
commit, one is the last commit which modified any recognized
performance test. This yields 29 projects whose tests produce
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Figure 3: JMH and JUnit adoption rate comparison. The plots show how the number of projects that use JUnit 4 or
JMH (left) and the total number of test cases or benchmark methods in these projects (right) changes with time. The data
was collected for each day in the plot range.

measurements within 4 hours of execution, 9 projects whose
tests execute but do not produce measurements within 4
hours, 9 projects whose tests crash without output, and 235
projects that do not build in the two chosen versions. In the
following, the 29 projects whose tests produce measurements
within 4 hours are referred to as the measured projects and
the two versions as the measured versions.

To summarize the answer to Q1 where the use of perfor-
mance testing frameworks is concerned: use of the surveyed
performance testing frameworks is extremely rare, at most
0.37 % of the analyzed projects use any performance testing
framework and at least 62 % of those projects whose tests
readily build and execute produce measurements within 4
hours. Although the analysis suffers from high attrition rate,
these numbers should represent reasonable upper and lower
bounds.

To analyze projects that implement performance tests
without any performance testing framework, we look for the
use of three clock query functions available in Java – Sys-

tem.nanoTime(), System.currentTimeMillis() and Thread-

MXBean.get*Time(). Because manual classification of all
99019 projects is not practical, we pick 1000 projects at
random. Of those, 332 projects did query the clock, their
classification is in Table 4.

The classification is based on manual exploration of the call
site and the immediately surrounding code. To reduce clas-
sification error, the exploration was done independently by
two researchers and keywords were assigned to each project.
Afterwards, similar keywords were gradually merged into
clusters as in hierarchical clustering. To provide some esti-
mate of the classification error involved, we note that 70 %
of the time there was overlap between keywords assigned by
the two researchers to a project.

The classification contains several categories where unit
test use is not likely – timeout handling in caches and sockets,
calendar, scheduling, randomization. In some categories, unit

Usage Count 99 % CI

Timeout handling 125 99 – 154
Logging of durations 133 107 – 163
Querying calendar time 122 97 – 151
Event scheduling, GUI 89 67 – 115
Randomization, unique naming 65 47 – 88
Proprietary benchmarking 34 21 – 52
Custom timer infrastructure 29 17 – 46

Table 4: Usage of System.nanoTime and Sys-
tem.currentTimeMillis. Projects that span multiple cate-
gories are counted multiple times.

test use is possible – information from logs or benchmarks can
be used for testing, but the free form of the output and the
lack of established benchmark culture (warmup, repetitions,
randomization) often suggests otherwise. The custom timer
infrastructure category groups situations where the collected
time samples are wrapped and propagated beyond reach of
the immediately surrounding code with no hint on use.

To summarize the answer to Q1 with proprietary perfor-
mance tests: no more than 33.2 % of the randomly selected
projects query clock using the most common function calls,
and no less than 3.4 % of the randomly selected projects
query clock in direct relation to testing or benchmarking.
The confidence intervals in Table 4 help extrapolate the ratios
to general project population.

A2: How much does unit testing of performance
change with time . . .
Figure 3 shows how the number of projects that use JMH and
the number of JMH benchmark methods in those projects
changed over time, contrasted with the number of projects
that use JUnit 4 and the number of JUnit 4 test cases in those
projects. The gradually rising shape is similar in both cases,
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from the initial commit to the HEAD commit of each
project, the test count (Y axis) ranges from zero to max-
imum number of test cases across the history of each
project. Outliers are not shown, whiskers are at 1.5 IQR.

the absolute numbers are naturally very different. Results
for other performance testing frameworks are not given due
to low use count, which makes it impossible to distinguish
stagnating trends reliably.

To provide individual project perspective, Figure 4 shows
how the number of benchmark methods or test cases changes
over time within each project. Project data is aggregated
by normalizing the time (X axis) to stretch from the initial
commit to the HEAD commit, and the count (Y axis) from
0 % to 100 % of the maximum count observed. Again, results
for other performance testing frameworks are not given due
to low use count.

Figure 4 suggests that although both the benchmark method
count and the test case count tend to increase across project
lifetime, the first benchmark methods tend to appear later
than the first test cases. There are several possible expla-
nations. For one, the test first approach to implementation
may be easier to do with functional testing than performance
testing, because the test conditions are more obvious. Perfor-
mance tests may also require more complete implementation
than functional tests. The developer survey provides another
insight – 64 % of developers touch performance test imple-
mentation only when addressing performance issues, only
28 % of developers maintains performance tests as often as
other code.

A3: What kind of software projects are mea-
suring performance . . .
Figures 5 and 6 show the size and commit frequency of
projects that use JMH, measured between the first commit
that introduced any recognized performance test and the
HEAD commit. We note that although some large projects
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Figure 5: Source code size for projects that use JMH.
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Figure 6: Commit frequency for projects that use JMH.
We show only projects with at least five commits and
history longer than two weeks. One project with over 30
commits per day was omitted to preserve readable scale.

are included, most projects that use JMH have less than
50 kLOC.

Table 5 provides rough classification for projects that use
JMH. The table was constructed by labeling each project
with information from the project documentation and then
clustering similar labels until reasonable granularity was
reached (each project is counted only once). Not listed are
66 analyzed projects whose clusters were smaller than 10
projects and 30 analyzed projects whose only purpose was
to compare other projects against each other. Complete
information is available in [30].

The developer survey provides additional information on
the use of performance tests across categories – 80 % of de-
velopers report measuring their own code, 37 % of developers
report measuring external code such as libraries. Also, 64 %
of developers measure performance to compare alternatives.
This can help explain the prominent position of tutorials and
examples – obviously, explorative performance measurements
provide important information during development.

Category Count

Database (ORM, SQL . . . ) 33
Tutorials and examples 30
Networking and distributed systems 29
Algorithms 27
Data structures 22
Object serialization, parsers (XML, JSON, . . . ) 22
Web frameworks or plugins 18

Table 5: JMH benchmark classification. Categories
created through hierarchical clustering, small categories
not shown, complete information in [30].
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Figure 7: Benchmark durations. Distribution of total
benchmark execution time for all projects, measured with
default settings.
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Figure 8: Benchmark accuracy. Distribution of the
worst relative confidence interval sizes of the mean for
all projects. Relative confidence intervals of the mean
were computed for each benchmark from one hour of
measurements, each project is represented by the widest
interval. The bottom graph is a zoom of the top one.

A4: How long does unit testing of performance
take . . .
Figure 7 shows the distribution of the time needed to execute
the performance tests with the default configuration for the
measured projects, with each project counted in two mea-
sured versions. We note that the default configuration uses
a small number of test executions (forks in JMH parlance),
here median 3 and maximum 10, but still only about one
third of the tests finishes within one hour, suggesting that
collecting enough measurements for sensitive performance
change detection can be an issue.

Figure 8 shows the accuracy obtained after one hour of
measurement, expressed as the distribution of the relative
confidence interval sizes for the mean. Specifically, we com-
pute the relative 99 % confidence interval width (99 % confi-
dence interval width divided by mean) for each benchmark
method in each project using a bootstrap procedure, and
then select the least accurate width to represent the project

in the figure. The mean computation in the bootstrap proce-
dure uses only as many samples as there are test executions
in one hour, to properly address variation between execu-
tions (for rationale and exact computation we refer to [6]).
We note that only about half of the projects have enough
measurements to estimate the mean time of all benchmark
methods with at most 20 % relative width, and about 20 %
of the projects provides the least accurate estimate with over
100 % relative width.

The importance of the time needed to execute the perfor-
mance tests becomes clear when considering the results of
the developer survey, where 47 % of developers want to run
performance tests on each commit, as opposed to 37 % of
developers who are content with testing only each release.
Additional comments also express the opinion that running
tests on every commit may be too expensive.

Other observations in the developer survey also support the
conclusion that regular performance testing on each commit
remains an open goal. Overall, only 42 % of developers report
running regular performance tests (although not necessarily
on each commit). The processing of the measurements is also
an issue – whole 77 % of developers report mostly manual
processing, only 13 % mention automated plotting and only
6 % further automated evaluation.

A5: Does unit testing of performance reveal ac-
tual performance changes . . .
Figure 9 shows the distribution of performance changes across
individual benchmark methods, expressed as the ratio of
the mean times from the two measured versions (new over
old). Due to the large relative confidence interval widths in
one hour of measurement, almost no change is statistically
significant (99 % confidence intervals overlap).
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Figure 9: Distribution of performance changes. A per-
formance change is a ratio of mean execution times of
each benchmark in the two measured versions. Logarith-
mic scale used for symmetry around 1. The bottom graph
is a zoom of the top one.
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The developer survey offers additional explanation to the
small changes in performance on Figure 9. Overall, 80 % of
developers report acting on performance testing results in
the past, however, less than one third of those report finding
performance improvements or regressions – the remaining
majority used the results to guide design decisions. Also, 13 %
of developers mention seeing interesting results only rarely.
This may suggest that performance testing is perceived as
more useful during initial development stages, where it helps
guide design.

To conclude, we summarize the remaining results of the
developer survey, which concerns perceived obstacles to per-
formance testing. These are in line with the previous findings
– 61 % of developers believe automated evaluation would en-
courage more performance testing, 50 % of developers also
want better build integration. Whole 31 % of developers feel
the environment for implementing performance tests should
be simpler, and 27 % mention budget issues.

4.1 Threats To Validity
Most threats to internal validity of our analysis were dis-

cussed together with the research questions. Where the recog-
nition of performance testing frameworks is concerned, we
classify the threat of false positives as low (we use source code
parsing rather than mere text pattern searching), the threat
of false negatives is limited to obscure usage patterns and
unknown performance testing frameworks. For proprietary
performance tests, the threats include possible classification
mistakes due to manual processing and no support for native
code implementation outside Java.

For building and executing the recognized performance
tests, we avoid attributing specific causes to failures. Some
projects may be broken from the very start, some projects
may be correct but fail due to mismatch in platform re-
quirements or dependencies. While some failures may be
amenable to manual correction, some may be beyond fixing.
Our survey does not have data to distinguish these cases.

Threats to external validity are tied to the high attrition
rate. While we believe it is connected mostly to the gen-
eral shape of open source projects and common backward
compatibility issues, it still prevents most generalizations.

5. SPL INTEGRATION DESIGN
We want to reflect the results of the survey from Section 4

in the design of our SPL performance testing framework. In
general, we strive to integrate SPL-based performance testing
into the software development process in a manner similar to
that of commonly used unit testing frameworks, with the goal
of supporting three basic use cases: identifying performance
regressions, capturing performance assumptions about (third-
party) code, and providing performance documentation [6].

Briefly, in the case of a functional unit test, the test result
depends on evaluating program state. A test is responsible
for setting up the initial state, executing the test operations,
and checking whether the resulting program state meets the
expectations. Each test is the sole arbiter of the correctness
of the tested behavior, and the testing framework just or-
chestrates test execution and provides the tests with means
to indicate test results.

In contrast, in the case of a performance unit test, the
test results depends on performance data collected during
program execution. A test needs to provide a way to induce

(representative) workload on a performance sensitive part
of the program code, and a test condition in form of a hy-
pothesis over performance measurements collected during
test execution. The test itself does not determine the test
result, because the workload may need to be executed many
times to obtain data suitable for statistical analysis, and
because the test condition may actually involve more than
one version of the program code. Here the role of a testing
framework is much more involved, because it needs to di-
rect the collection of performance data from test executions
(possibly for different versions), and then evaluate the test
conditions on the collected data.

The specific requirements of performance unit tests have
led our work on integrating SPL into development process
towards a complex framework that supports different version
control systems and build systems, performs measurements
on demand and controls the amount of measured data to
evaluate SPL-based test conditions, keeps a history of the
measured data, and integrates with IDEs such as Eclipse
and continuous integration tools such as Hudson. However,
the results of the survey from Section 4 suggest that a dif-
ferent design direction may be needed to make SPL-based
performance unit testing attractive to developers.

What we find interesting is that practically the only frame-
work that is being used to conduct some form of performance
evaluation or testing is JMH. Apparently, JMH is considered
more useful or easier to use by the developers who have
adopted some kind of performance testing into their project.
Consequently, when it comes to integrating SPL-based perfor-
mance testing into project development, we should consider
the needs of these developers. We therefore turn to JMH for
usability cues, and adapt the design of our SPL evaluation
framework so that we can provide loosely-coupled building
blocks that the developers can integrate into their projects
as they see fit, without having to face the steep learning
curve of a huge integrated framework. Before discussing
the adjustments to the design of our performance testing
framework, we first briefly review the typical usage of JMH
in projects analyzed in our survey.

5.1 Overview of Typical JMH Usage
JMH provides developers with a simple way to implement

and execute microbenchmarks correctly. Microbenchmarks
typically execute operations that take very short time, but
because they may be executed very often in many programs,
they have the potential to influence the overall performance.
Unsurprisingly, there are many pitfalls related to microbench-
marking – especially on a managed platform with a just-in-
time compiler such as Java. JMH goes to great lengths to
avoid them.

With JMH, the developer is responsible for providing the
workload (i.e. the operation to be measured), while JMH
takes care of benchmark execution and data collection. When
finished, JMH typically reports aggregate statistics concern-
ing the durations of the measured operations. From the
developer’s perspective, the usage of JMH is rather simple,
as shown in Listing 1. Similar to using a testing framework
such as JUnit, the developer only needs to create a class
containing the operations to be measured in form of methods
annotated with the @Benchmark annotation. Unlike JUnit,
JMH does not evaluate the results in any way (apart from
providing aggregate statistics), and leaves the responsibility
for interpreting the results to the developer.
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public class SimpleBenchmark {
@Benchmark
public void measuredOperation () {

// Implementation of the
// operation to be measured.

}
}

Listing 1: Minimal JMH-based benchmark

JMH supports additional annotations that provide more
fine-grained control over microbenchmark execution, includ-
ing benchmarking mode, output time units, output format,
the number of warmup iterations, and many others. While
they may require deeper understanding on the side of the
developer, this does not really change the fact that a basic
microbenchmark is very simple to write.

The microbenchmarks are also executed using JMH, which
locates all the benchmark methods, generates benchmarking
harness around those methods and executes the microbench-
marks in separate virtual machines configured to disable
inlining of the benchmark method. While JMH can run
the benchmarks directly (from an IDE or a command line),
it is typically used to build a self-contained JAR file with
the benchmark, which can then be simply executed on a
dedicated machine. In contrast to functional unit testing,
this is an important prerequisite for obtaining measurements
that are not influenced by interference that may be present
on the developer’s machine.

With respect to build system integration, JMH officially
supports Maven through a plugin which provides a JMH
benchmark project archetype. Community-supported bind-
ings enable integration with other build systems and IDEs.
The typical (and endorsed) way using JMH is to create a
standalone Maven-based project which contains benchmark
code and depends on the application JAR files. The artifact
produced by the project is the benchmark JAR file, which
can then be used to execute the benchmarks as needed.

5.2 Catering to the Use Case that Matters
Given that performance unit testing is not yet a common

practice and its benefits are not as immediate as in the case
of functional unit testing, we need to support the adoption
of SPL-based performance unit testing in a lightweight and
gradual fashion. Considering that the role of JMH is to pro-
duce performance data which the developers have to process
and analyze themselves to determine whether there has been
a performance regression, we believe that the next useful
step would be to automate the detection of performance
regressions based on the data collected by JMH.

Recall that SPL is a simple language that allows capturing
performance assumptions as formulas evaluated using sta-
tistical tests applied to performance data. An SPL formula
that captures the essence of performance regression testing
can be actually as simple as last ≤ 1.05 × base. Attached
to something that can produce performance data (e.g. a mi-
crobenchmark), this formula captures the assertion that the
measured operation in the last software version is not more
than 5% slower than in some base (e.g. previous) version. In
a project using JMH, performance regression testing would
mean subjecting the results of all microbenchmarks to such

tests, with the corresponding SPL formulas adjusted to the
nature of the tested operation.

While the SPL formula representing the performance as-
sumption for this particular use case is trivial, evaluating the
formula is not. To remove this burden from the developer,
we provide a tool for evaluating given SPL formulas with
given data. Just like JMH allows the developer to implement
microbenchmarks correctly, the SPL evaluator allows the
same developer to compare microbenchmark results between
versions correctly and with confidence. Also like JMH, the
SPL evaluator is a standalone tool, leaving the developer free
to integrate it into a project in any way desired.

To automate performance unit testing, the developer has
to ensure that benchmarks will be automatically executed to
collect performance data for new software versions, and that
the SPL evaluator will be executed with data representing
the performance of the last and the base versions of the
software. The specifics of the automation and performance
data storage remain at the discretion of the developer.

Because JMH officially supports integration with the Maven
build system, we also provide a Maven plugin intended to
ease adoption of SPL and to simplify integration. We present
the SPL evaluator and the Maven plugin in more detail.

5.3 SPL Evaluator Tool
The SPL evaluator provides a command-line interface

to the SPL evaluation engine originally developed for our
much heavier-weight SPL-based performance unit testing
framework. Decoupling the evaluator from the framework
provides more opportunities for reuse and integration in
existing build systems.

To illustrate the operation of the evaluator, let us again
consider the simple SPL formula that can be used for per-
formance regression testing: last ≤ 1.05 × base. An SPL
formula is one of the evaluator inputs, and the evaluator
expects to find it in a text file within the META-INF directory
of a JAR file, in an external text file, or on the command
line, in that order.

In the formula, the relation operator (≤) represents a
statistical test, the symbols last and base identify the data
sets on which to perform the test, and the constant represents
a scaling factor for the values from the base data set.

Conceptually, the symbols last and base denote the soft-
ware versions that are the subjects of the performance test.
However, the SPL evaluator is not tied to any particular
version control system, and has no notion of the concept of a
version – all it cares about is whether it can find data associ-
ated with the names used in an SPL formula. The evaluator
looks for the data sets in directories corresponding to the
identifiers used in the formula, relative to a base directory
that can be specified on the command line.

In addition, the evaluator can read external files providing
custom mapping between the names used in SPL formulas
and the names to look for in the base directory of benchmark
results. Using this mechanism, the developer can associate
the symbols used in SPL formulas with version identifiers
specific to a particular version control system, such as com-
mit identifiers in Git. It should be possible to configure most
version control systems to update the mapping file automat-
ically, thus keeping a name such as last always mapped to
the latest commit in a particular branch.

Finally, provided with all the required information, the
evaluator performs the statistical tests necessary to evaluate
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the given formula, and returns the result. If the result cannot
be computed, for example because there is not enough data,
the evaluator will return an alternative result specifying the
reason. The developer is then responsible for providing more
data for the software versions being tested.

5.4 JMH SPL Maven Plugin
It is important to note that the SPL evaluator presented

in the previous section is not tied to JMH in any way, except
that it can use data produced by JMH.3 The actual integra-
tion of SPL and JMH occurs at the level of the build system
and only affects the project containing JMH benchmarks.

To make adoption of SPL-based performance unit testing
as non-intrusive as possible, we have created a Maven plugin
to aid with basic integration tasks. The plugin provides
three execution goals bound to different phases of the JMH
benchmark project’s build cycle.

The first goal, spl_annotation, is bound to the generate-

sources build phase, and its purpose is to generate a single
source file with the definition of the @SPLFormula annotation.
The annotation can then be used to attach SPL formulas
to JMH benchmark methods. This goal serves to avoid
introducing additional compile dependencies into the JMH
benchmark project – instead, the necessary file is simply
injected into it.

The second goal, formula_extractor, is bound to the
compile build phase, and its purpose is to scan the compiled
benchmark classes for annotations containing SPL formulas.
All SPL formulas are then stored into a text file within the
META-INF directory of the benchmark JAR file produced by
JMH in the subsequent package build phase.

The third goal, data_saver, is bound to the verify build
phase, and its purpose is to execute the JMH benchmarks
and store the collected performance data for later use with
the SPL evaluator. This goal is important because the JMH
benchmarks need to be run with specific options to store the
results into a revision-specific directory, and to output raw
data needed for SPL formula evaluation. By providing this
goal, we avoid requiring the developer to change the JMH
execution options when adopting SPL-based performance
unit testing.

In summary, through the plugin we provide a thin, non-
intrusive layer on top of a JMH benchmark project. This layer
enables annotating JMH benchmarks with SPL-formulas and
using JMH as a provider of performance data. To facilitate
SPL-based performance unit testing based on the collected
performance data, we provide a standalone SPL formula
evaluator. As a result, developers can introduce SPL-based
performance unit testing into their software project gradually,
without having to adopt a heavy-weight approach imposed
by a fully integrated testing framework. However, they are
left with the responsibility for automating the performance
testing process and integrating it into their development
process.

6. CONCLUSION
Coming back to the question posed in the title of this

paper, we have to conclude that as far as Java open source
projects from the GitHub repository are concerned, we are
not there yet.

3It requires JMH with support for reporting raw measure-
ment data, which was introduced in version 1.14.

Of the 99019 projects that we have analyzed, only 0.37 %
(370) actually use any performance testing framework. Of
those projects whose performance tests we have executed,
only 62 % produce performance measurements within 4 hours.
Considering a broader class of projects that query clock
using functions available in Java, only 3.4 % of sampled
projects (using a random sample of 1000 projects) obviously
implement performance tests or benchmarks.

Focusing on the usage of the JMH framework, performance
tests are usually introduced later in the lifetime of a project
(compared to functional unit tests), and can be mostly found
in projects with less than 50 kLOC. Using the default settings,
only about one third of the tests finishes within one hour,
but more importantly, only half of the projects using JMH
has enough measurements to estimate the mean time of
all benchmark methods at 99 % confidence level with at
most 20 % relative confidence interval width. About 20 % of
projects using JMH can only estimate the mean execution
time with a relative confidence interval width exceeding
100 %. Consequently, in one hour of execution, almost none
of the tests can provide enough data to detect other than
very obvious changes in performance. Collecting enough
data to achieve higher sensitivity would prevent such tests
from being executed on every commit. Observations on the
relationship between accuracy and execution time suggest
that careful measurement scheduling, rather than simple
execution of all tests on all commits, is needed to achieve
reasonable sensitivity at reasonable cost.

Survey responses from 111 developers who use the JMH
performance testing framework indicate automation of per-
formance testing is a major issue – 77 % of developers report
processing results manually, automated evaluation and build
integration are listed by 61 % and 50 % of developers, respec-
tively, as needed features. The developers also recognize that
correct test implementation is important – 72 % report trust
in results as their reason for choosing the JMH framework,
and 31 % mention need for simpler test implementation.

The issue of test execution time is further highlighted by
47 % of developers preferring to run performance tests at
commit time, contrasted with 37 % of developers preferring
to run performance tests only before each release.

Also interesting is the role of performance tests in enabling
reasoning about performance. Only 23 % of developers report
regularly acting on performance improvements or regressions,
as opposed to 57 % of developers who report using perfor-
mance tests for design decisions.

Our own effort in the area of performance unit testing is
centered around SPL, a performance testing framework and
formalism to express performance assumptions that can be
validated through statistical testing. The results of our survey
indicate that, contrary to our previous development, SPL
should consider a light and flexible design to make it easier
to introduce performance testing into a software project.
Inspired by JMH as the most popular framework among
projects that do any performance testing, we have focused on
providing the essential building blocks of SPL while reusing
tools such as JMH that the developers have already adopted,
and otherwise leaving much of the responsibility for the
actual implementation of the performance testing process
with the developers.

Additional resources to complement our submission are
available at [30].
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