
Collaborative Computing for
Heterogeneous Integrated Systems

Li-Wen Chang†, Juan Gómez-Luna∗, Izzat El Hajj†, Sitao Huang†, Deming Chen†, Wen-mei Hwu†

†University of Illinois at Urbana-Champaign, ∗Universidad de Córdoba
lchang20@illinois.edu, el1goluj@uco.es, {elhajj2, shuang91, dchen, w-hwu}@illinois.edu

ABSTRACT
Computing systems today typically employ, in addition to
powerful CPUs, various types of specialized devices such as
Graphics Processing Units (GPUs) and Field-Programmable
Gate Arrays (FPGAs). Such heterogeneous systems are
evolving towards tighter integration of CPUs and devices
for improved performance and reduced energy consumption.
Compared to traditional use of GPUs and FPGAs as offload
accelerators, this tight integration enables close collabora-
tion between processors and devices, which is important
for better utilization of system resources and higher perfor-
mance. Programming interfaces are also adapting rapidly
to these tightly integrated heterogeneous platforms by in-
troducing features such as shared virtual memory, memory
coherence, and system-wide atomics, making collaborative
computing even more practical.

In this paper, we survey current integrated heterogeneous
systems and corresponding collaboration techniques. We
evaluate the impact of collaborative computing on two het-
erogeneous integrated systems, CPU-GPU and CPU-FPGA,
using OpenCL. Finally, we discuss the limitation of OpenCL
and envision what suitable programming languages for col-
laborative computing will look like.

1. INTRODUCTION
While GPUs have been a central part of computing sys-

tems due to their ability to provide high performance at
low energy costs while being programmable, FPGAs have
also been integrated into computing systems by industry
vendors such as Microsoft [19, 5], Intel/Altera [18, 2], Xil-
inx [22], and IBM [4] due to their extremely high power effi-
ciency. The continuous demand for higher performance un-
der constrained power and energy budgets is driving tighter
system-level integration of CPUs with other coprocessors or
accelerators, such as GPUs or FPGAs.

With such tight integration, fine-grain collaboration be-
tween processors becomes a practical approach to improv-
ing resource utilization and system performance [12]. For

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPE’17, April 22-26, 2017, L’Aquila, Italy
c© 2017 ACM. ISBN 978-1-4503-4404-3/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3030207.3030244

this reason, programming interfaces such as OpenCL 2.0 and
CUDA 8.0 have introduced features such as shared virtual
memory and system-wide atomics to productively express
fine-grain collaboration. Among existing programming in-
terfaces, OpenCL is perhaps the most suitable interface for
programming these heterogeneous architectures because it
is supported by a wide range of processors, including CPUs
and GPUs, as well as FPGAs via high-level synthesis (HLS).
Although OpenCL FPGA stacks [13] currently support only
OpenCL 1.2 which does not support the new features, it is
expected to support OpenCL 2.0 in the near future.

Multiple studies [8, 14] have investigated characteristics
of and optimization for heterogeneous systems with CPUs,
GPUs, and FPGAs. Recent literature [21, 15, 16, 11, 10] has
focused on fine-grain collaboration in the context of system-
level CPU-GPU integration. A variety of general collabora-
tion patterns have been investigated [21, 11], which can be
mainly classified into data or task partitioning. However,
similar collaborative computing techniques have not been
studied for CPU-FPGA systems.

We envision future integrated heterogeneous system in-
cluding CPUs, GPUs, and FPGAs. Features such as shared
virtual memory and system-wide atomics will be widely
adopted in most programming models. Coherence will be
supported, which can either be achieved via unified physical
memory or via coherence protocols over various intercon-
nect technologies. These features are a step forward in
programmability, simplifying fine-grain collaboration which
will become ubiquitous, instead of traditional use of GPUs
and FPGAs as offload accelerators.

Although OpenCL and other existing programming mod-
els support expressing fine-grain collaboration in applica-
tions for specific integrated systems, these programming
models show limited support for automatically converting a
program from one collaboration pattern to another pattern
across systems. We envision new high-level programming
languages that are capable of synthesizing kernels with dif-
ferent collaboration patterns from generic representations
of the program. These languages will replace OpenCL as a
programming interface for end users.

The rest of this paper is organized as follows. Section 2 de-
scribes our envisioned heterogeneous integrated system, and
surveys existing techniques to realize these systems. Sec-
tion 3 describes collaborative computing, its patterns, and
provides a preliminary evaluation using current integrated
systems as proxies. Section 4 describes the limitation of cur-
rent programming models and our envisioned model. Sec-
tion 5 concludes this paper and outlines future work.

385

http://dx.doi.org/10.1145/3030207.3030244

…

…

data-parallel tasks

se
qu

en
tia

l s
ub

-ta
sk

s

co
ar

se
-g

ra
in

ed

sy
nc

hr
on

iz
at

io
n

…

…

Device 1 Device 2

(a) Program Structure (d) Coarse-grained Task
Partitioning

…

…

Device 1 Device 2

…

…

(b) Data Partitioning

Device 1 Device 2

…

…

…

…

…

(c) Fine-grained Task
Partitioning

…

Figure 1: Collaboration Patterns

2. INTEGRATED HETEROGENEOUS SYS-
TEMS

Traditionally, accelerators such as GPUs and FPGAs have
been connected to CPUs through PCIe or similar interfaces,
which provide efficient large-block data transfer through
Direct Memory Access (DMA) engines between devices.
However, DMA overhead is a burden on performance for
smaller data transfers due to non-uniform data accesses
in many contemporary workloads (e.g., graph-based algo-
rithms, machine learning inference, etc.). For this reason,
heterogeneous systems need shared memory between CPUs
and accelerators. There have been several recent efforts led
by industry vendors in this direction for both CPU-GPU
and CPU-FPGA systems. They all provide shared coherent
memory in a similar way, but differ in CPU architecture,
processor implementation, and silicon fabrication.

For CPU-GPU systems, NVIDIA has launched the Pas-
cal architecture [17] which implements coherence over PCIe
and NVlink. AMD APUs provide even closer integration by
coupling devices on the same die, and using specialized mem-
ory buses. The CPU-FPGA counterparts are Intel QPI [18],
Hyper Transport, Front Side Bus (FSB), AXI Coherency
Extension (ACE) [22], Acceleration Coherency Port (ACP),
ARM Core Link Interconnect, IBM CAPI [4], and CCIX [1].

We envision that future heterogeneous systems will con-
tain CPU cores with one or multiple GPUs and/or FPGAs.
The three devices have access to coherent memory through
specific interfaces. Additional non-coherent interfaces might
also be included for data not shared across devices, or not
simultaneously accessed. The system could include a shared
last-level cache (LLC) that can help accelerate collaborative
workloads [10]. The three devices might be integrated at
either chip-level or realized as separate chips. As mentioned
above, current trends integrate CPU and GPU or CPU and
FPGA [2] in the same die. However, systems with the three
devices in the same die are already available, though the
GPU is not OpenCL-programmable yet [22].

3. COLLABORATIVE COMPUTING

3.1 Collaboration Patterns
Multiple collaboration patterns have been studied for inte-

grated heterogeneous architectures [11, 21]. These patterns
can be classified into two major types based on work parti-
tioning strategies: data partitioning and task partitioning.
Task partitioning can be further refined into fine-grain and
coarse-grain, based on partitioning points in the code.

Figures 1(b)-(d) illustrate different patterns for an ex-
ample program in Figure 1(a) containing two sets of data-
parallel tasks, each with two sequential sub-tasks (white/dark
gray, and light gray/black). We provide a few key insights
behind the collaboration patterns, while referring to [11]
for more detailed explanations. First, given an appli-
cation, different devices might prefer different sub-tasks
due to different device characteristics (such as parallelism
and resources), making collaborative computing non-trivial.
Second, while fine-grain task partitioning (Figure 1(c)) im-
proves utilization of parallelism across devices via pipeline
execution, it may require coherent memory and system-wide
atomic support which may introduce some communication
overhead. Third, traditional accelerator models with CPUs
and accelerators are special cases of coarse-grain task par-
titioning (Figure 1(d)). Last, coarse-grain task partitioning
may utilize all devices in a pipeline fashion if multiple inde-
pendent data sets are processed independently.

Multiple factors may impact the choice of collaboration
pattern. These factors include: the diversity of sub-tasks,
the cost of communication between devices (latency and
bandwidth), the relative metrics (such as performance,
power, energy, etc.) among devices for a specific workload,
and hardware resource constraints. Moreover, collaborative
computing can be considered with multiple objectives such
as maximizing performance, minimizing latency, minimizing
power, or minimizing energy. In this paper, we mainly focus
on performance.

3.2 Preliminary Evaluation
We evaluate the performance benefits of collaborative ex-

ecution in two current heterogeneous integrated systems:
CPU-GPU and CPU-FPGA. Our CPU-GPU system is an
AMD Kaveri A10-7850K APU, while our CPU-FPGA sys-
tem is an Intel Xeon E3-1240 v3 connected through PCIe
3.0 x8 with an Altera Stratix V GX FPGA on a Terasic
DE5-Net board. The AMD APP SDK 3.0 with OpenCL 2.0
is used for Kaveri, and Intel OpenCL FPGA SDK 16.0 with
OpenCL 1.2 is used for Stratix V, since OpenCL 2.0 is not
supported. Two OpenCL benchmarks, Canny Edge Detec-
tion (CED) and Random Sample Consensus (RSC) from the
Chai benchmark suite [11] are used for evaluation. CED is
evaluated for both data partitioning and coarse-grain task
partitioning, while RSC is evaluated for both data partition-
ing and fine-grain task partitioning.

CPU-GPU. Figure 2 presents the speedups of CED
and RSC over CPU-only on the CPU-GPU system. For
CED, while GPU-only delivers 9.30× more performance
than CPU-only, collaboration with data partitioning does

386

0
2
4
6
8

10
12
14
16
18

CP
U

-o
nl

y

G
PU

-o
nl

y

D
at

a
pa

rt
.

Ta
sk

 p
ar

t.

CP
U

-o
nl

y

G
PU

-o
nl

y

D
at

a
pa

rt
.

Ta
sk

 p
ar

t.

CED RSC

Sp
ee

du
p

ov
er

 C
PU

-o
nl

y
(h

ig
he

r i
s

be
tt

er
)

Figure 2: Speedup on CPU-GPU

even better with 11.67× and 1.26× over CPU-only and
GPU-only respectively. However, unlike data partitioning,
coarse-grain task partitioning is only 0.83× of GPU-only
performance. One reason is that by assigning tasks to the
CPU, the performance of the entire flow is hampered, since
in CED the GPU performance dominates the CPU. Another
reason is that task partitioning introduces cache coherence
cost for data sharing between the CPU and the GPU.

For RSC, while GPU-only achieves an 8.80× speedup over
CPU-only, collaboration with fine-grain task partitioning
outperforms CPU-only and GPU-only by 16.14× and 1.83×
respectively. The main reason is that one sub-task in RSC is
inherently sequential so its efficiency is improved by moving
it to the CPU. However, data partitioning is only slightly
better than GPU-only by 1.09×, and significantly worse
than fine-grain task partitioning by 0.59×, because the GPU
efficiency in data partitioning still suffers from that inher-
ently sequential sub-task.

These two examples show that the best collaborative exe-
cution pattern highly depends on application characteristics.

CPU-FPGA. Figure 3 shows speedups for CED and
RSC over CPU-only on the CPU-FPGA system. The best
CED collaboration pattern is coarse-grain task partitioning
which is 2.25× and 1.85× faster than CPU-only and FPGA-
only respectively. Data partitioning is just slightly slower
than coarse-grain task partitioning by a factor of 0.96×. The
best RSC collaboration pattern is fine-grain task partition-
ing, with 2.57×, 2.36×, and 1.38× speedup over CPU-only,
FPGA-only, and data partitioning respectively. The reason
is similar to CPU-GPU collaboration.

An important consideration for improving performance on
FPGAs is the OpenCL HLS kernel duplication factor. Per-
formance typically improves with more duplication, but then
saturates when a limit on one of the resources is reached.
Different applications, or the same application with a dif-
ferent collaboration pattern, may saturate for different re-
sources. In our evaluation, the performance of CED with
data partitioning and task partitioning both saturate the
memory bandwidth. However, for RSC, while task parti-
tioning saturates the memory bandwidth, data partitioning
saturates the DSP resource on FPGAs before the memory
bandwidth limit is reached. This explains why the disparity
between collaboration patterns differs across applications.

Comparison. In our evaluation for both systems, collab-
orative execution seems beneficial for performance if applied
correctly. We observe that different applications favor dif-
ferent collaboration patterns. For example, CED performs
better with data partitioning, while RSC favors task par-
titioning. We also observe that different devices may favor
different collaboration patterns. For example, for CED, data

0

0.5

1

1.5

2

2.5

3

CP
U

-o
nl

y

FP
G

A-
on

ly

D
at

a
pa

rt
.

Ta
sk

 p
ar

t.

CP
U

-o
nl

y

FP
G

A-
on

ly

D
at

a
pa

rt
.

Ta
sk

 p
ar

t.

CED RSC

Sp
ee

du
p

ov
er

 C
PU

-o
nl

y
(h

ig
he

r i
s

be
tt

er
)

Figure 3: Speedup on CPU-FPGA

partitioning is better on CPU-GPU, but task partitioning is
slightly better on CPU-FPGA.

Note that the collaboration had more performance ben-
efit in the CPU-GPU platform than in the CPU-FPGA
platform. One reason is that in the CPU in our CPU-
FPGA platform is more powerful than the CPU in our CPU-
GPU platform, diminishing the speedups gained from using
FPGA. Another reason is the difference in OpenCL support.
OpenCL 2.0, which is used for CPU-GPU execution, comes
with heterogeneous features such as shared virtual memory
and system-wide atomics that enable more practical collab-
oration than OpenCL 1.2 which is used for CPU-FPGA exe-
cution. Moreover, OpenCL stacks for FPGAs based on HLS
might be less mature than OpenCL stacks for GPUs.

4. PROGRAMMING INTERFACE

4.1 Limitation of Current Practice
Different collaboration strategies can be seen as different

choices of program optimizations. In this sense, conversion
between collaboration strategies is a code transformation be-
tween specific optimizations. Finding the best collaboration
strategy for a given program is an optimization-space explo-
ration problem, while adapting across different integrated
systems is a performance portability problem. Current prac-
tices of programming languages, such as OpenCL, require
programmers to explicitly express collaboration strategies.
Doing so limits the potential for automatic code transfor-
mation for collaboration in multiple ways.

First, it is challenging to automatically apply fine-grain
task partitioning to a generic OpenCL kernel. Sub-tasks
can only be partitioned at specific points of the code. More
precisely, it requires kernel fission at specific points of the
code and introduces extra queue objects for communication
among those new kernels. Therefore, while coarse-grain
task partitioning is commonly adopted in adaptive run-
times [9, 3] and data partitioning can be achieved through
parameter tuning or dynamic fetching [11], fine-grain task
partitioning, to the best of our knowledge, has not yet been
automated by existing OpenCL frameworks for general pur-
pose applications.

Second, it is even more challenging to automate conver-
sion from one collaboration strategy to another in OpenCL.
Conversion from data partitioning or coarse-grain task par-
titioning to fine-grain task partitioning is at least as difficult
as automation of fine-grain task partitioning, which requires
kernel fission. On the other hand, conversion from fine-grain
task partitioning into data partitioning or coarse-grain task
partitioning requires kernel fusion. Considering two sub-
task kernels might not have identical work-item/work-group

387

mapping, kernel fusion requires sophisticated analyses and
transformations to harmonize the mapping. Even though it
is possible, the introduced branch divergence might tax the
benefits of kernel fusion.

Lastly, to the best of our knowledge, OpenCL delivers
limited performance portability when used as one source for
different devices [7, 6].

4.2 High-Level Programming Language
High-level languages such as TANGRAM [6] and Halide [20]

provide generic unified programming interfaces for applica-
tions, and deliver promising performance portability across
devices. By introducing collaboration strategies as opti-
mizations, kernels with collaborative computing can be
directly synthesized in these high-level languages. There-
fore, compared to OpenCL, we envision these high-level
languages will be more suitable programming interfaces for
collaborative execution.

For example, TANGRAM is able to synthesize kernels
with various granularities. For fine-grain task partitioning,
atomic codelets in TANGRAM can be considered the most
fine-grain sub-tasks, thus defining sub-task boundaries. Do-
ing so avoids having to identify fission points in an OpenCL
kernel, and significantly simplifies the automation of fine-
grain task partitioning. Coarse-grain task partitioning can
be achieved by simply synthesizing each kernel to the tar-
get device it will be mapped to. Data partitioning can be
achieved by extending TANGRAM’s containers such as map

and partition for adjusting work-item/work-group map-
ping. While TANGRAM currently supports only CPUs
and GPUs, introducing HLS as a backend can extend TAN-
GRAM to support FPGAs.

While these high-level languages have promising potential
to automatically synthesize kernels with various collabora-
tion patterns, there remains the step of searching for the op-
timal collaboration strategy for a given integrated system.
This emphasizes the need for performance modeling, effec-
tive heuristics, offline tuning, or adaptive runtime for collab-
orative computing on heterogeneous integrated systems.

5. CONCLUSION AND FUTURE WORK
In this paper, we have explored collaborative computing

for heterogeneous integrated systems. We surveyed tech-
niques in integrated architectures for enabling effective col-
laboration. We demonstrated the benefits of collaborative
computing by evaluating both CPU-GPU and CPU-FPGA
systems. We also discussed the limitation of current pro-
gramming interfaces, such as OpenCL. Finally, we envision
that multiple high-level languages, such as TANGRAM and
Halide, will be more suitable programming interfaces for col-
laborative computing than OpenCL.

For future work, we will study more heterogeneous im-
plementations of collaborative workloads in order to find
generic optimization techniques which can be automatically
applied by compilers of high-level languages.

Acknowledgment
This material is based upon work supported by the DoE Na-
tional Nuclear Security Administration (DE-NA0002374),
Hewlett-Packard Enterprise Labs, the Starnet Center for
Future Architecture Research (C-FAR), the Huawei Project
(YB2015120003), and the IBM Center for Cognitive Com-

puting Systems Research Center at UIUC. We also thank
the Ministry of Education of Spain (TIN2013-42253P) and
the Junta de Andalućıa of Spain (TIC-1692).

6. REFERENCES
[1] Cache Coherent Interconnect for Accelerators (CCIX).

http://www.ccixconsortium.com, 2016.

[2] Altera. Altera’s User-Customizable ARM-Based SoC,
2015.

[3] C. Augonnet et al. StarPU: a unified platform for task
scheduling on heterogeneous multicore architectures.
CCPE, 23(2):187–198, 2011.

[4] Bruce Wile. IBM Systems and Technology Group.
Coherent Accelerator Processor Interface (CAPI) for
POWER8 systems. White paper, September 2014.

[5] A. M. Caulfield et al. A cloud-scale acceleration
architecture. In ISCA, 2016.

[6] L.-W. Chang et al. Efficient kernel synthesis for
performance portable programming. In MICRO, 2016.

[7] L.-W. Chang et al. A programming system for future
proofing performance critical libraries. In PPoPP,
2016.

[8] E. S. Chung et al. Single-chip heterogeneous
computing: Does the future include custom logic,
FPGAs, and GPGPUs? In MICRO, 2010.

[9] A. Duran et al. OmpSs: a proposal for programming
heterogeneous multi-core architectures. PPL,
21(02):173–193, 2011.

[10] V. Garcia-Flores et al. Evaluating the effect of
last-level cache sharing on integrated GPU-CPU
systems with heterogeneous applications. In IISWC,
2016.

[11] J. Gómez-Luna et al. Chai: Collaborative
heterogeneous applications for integrated-
architectures. In ISPASS, 2017 (in press).

[12] W.-m. W. Hwu. Heterogeneous System Architecture:
A New Compute Platform Infrastructure. Morgan
Kaufman, 2015.

[13] Intel. Intel FPGA SDK for OpenCL. Programming
Guide, October 2016.

[14] A. Morad et al. Generalized multiAmdahl:
Optimization of heterogeneous multi-accelerator SoC.
IEEE CAL, 13(1):37–40, Jan. 2014.

[15] S. Mukherjee et al. Exploring the features of OpenCL
2.0. In IWOCL, 2015.

[16] S. Mukherjee et al. A comprehensive performance
analysis of HSA and OpenCL 2.0. In ISPASS, 2016.

[17] NVIDIA. NVIDIA Tesla P100. White paper, 2016.

[18] PK Gupta. Intel. Xeon+FPGA Platform for the Data
Center, June 2015.

[19] A. Putnam et al. A reconfigurable fabric for
accelerating large-scale datacenter services. In ISCA,
2014.

[20] J. Ragan-Kelley et al. Halide: A language and
compiler for optimizing parallelism, locality, and
recomputation in image processing pipelines. In PLDI,
2013.

[21] Y. Sun et al. Hetero-Mark, a benchmark suite for
CPU-GPU collaborative computing. In IISWC, 2016.

[22] Xilinx. Zynq UltraScale+ MPSoCs. White Paper,
June 2016.

388

http://www.ccixconsortium.com

