
Predicting Power Consumption of
High-Memory-Bandwidth Workloads

Norbert Schmitt
University of Würzburg
norbert.schmitt@
uni-wuerzburg.de

Jóakim von Kistowski
University of Würzburg
joakim.kistowski@
uni-wuerzburg.de

Samuel Kounev
University of Würzburg
samuel.kounev@
uni-wuerzburg.de

ABSTRACT
High performance workloads with high bandwidth memory
utilization are among the most power consuming software
applications [15]. When writing such applications, devel-
opers can directly influence power consumption of the fi-
nal software through their choice of data size and traver-
sal method, mostly due to caching characteristics. Explicit
knowledge on how choices influence power consumption can
thus lead to greater overall energy efficiency. In existing
work, power prediction for memory accesses and high band-
width applications requires either detailed measurement in-
formation on the system on which the software is executed
or it is too generic, not taking significant aspects, such as
caching and data size into account. In this paper, we propose
a power model that bridges this gap by modeling power con-
sumption based on concrete software properties, while con-
sidering hardware characteristics on a more abstract level,
characterizing it primarily using publicly available data. The
model is designed to enable developers to compare power
consumption of implementation alternatives for high mem-
ory bandwidth software components. We validate our model
by measuring modified versions of the high bandwidth bench-
mark stream [11]. We show that our model can predict the
relative change of power consumption due to implementa-
tion changes and the power consumption of a concrete sys-
tem under test with an average error of 19 percent.

Keywords
Cache, SPEC, Performance Counter, Workloads, Energy Ef-
ficiency, CPU, Load level, Utilization

1. INTRODUCTION
Energy efficiency of computing systems has become a sig-

nificant issue over the past decades. In 2010, the U.S. En-
vironmental Protection Agency (U.S. EPA) estimated that
3% of the entire energy consumption in the U.S. is caused
by data center power draw [8]. High performance work-
loads with high bandwidth memory utilization are among
the most power consuming software applications. Espe-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPE’17, April 22 - 26, 2017, L’Aquila, Italy

c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4404-3/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3030207.3030241

cially when comparing high performance CPU workloads,
workloads with additional high-bandwidth memory usage
draw more power than their less memory intensive counter-
parts [15].

Software developers can directly influence the power con-
sumption of high-bandwidth software components through
their implementation and design decisions. Especially, char-
acteristics such as data type and data traversal methods can
have a significant impact both on performance, as well as
power consumption. Explicit knowledge on the relationship
between power consumption and implementation details can
help developers to make conscientious choices regarding en-
ergy efficiency during development and may lead to more
efficient software.

Existing power models are either too generic or too spe-
cific for use in such a context. Simple full-system power
models, such as [4, 13] do not consider memory access suf-
ficiently. In stark contrast, models intended for hardware
design [12, 10, 9] are too specific, requiring detailed infor-
mation about target hardware. Similarly, some more gen-
eral purpose models which consider memory accesses, such
as [5] also require very specific hardware information. More
generic models that consider memory accesses are mostly
intended to be used for system management and thus still
require some concrete hardware descriptions. [2] features a
processor power model, whereas [3] and [14] focus on man-
agement of virtual machines.

In this paper, we propose a power model that bridges
this gap of models being either too generic or too specific
by modeling power consumption based on concrete software
properties. Specifically, model parameters that characterize
hardware may be set to default values, in which case the
model’s power prediction is proportional to actually con-
sumed power on a concrete system. This way, the model
enables developers to compare power consumption of imple-
mentation alternatives for high memory bandwidth software
components. The model may also be used with system-
specific hardware parameters, in which case model results
absolute accuracy increases.

The major contributions of this paper are as follows:

1. We classify the differences in power consumption that
can be achieved by high-memory-bandwidth workloads.

2. We propose a model that allows for comparison of im-
plementation options, based on data type and data
traversal method.

We evaluate our model using measurements of nine mod-
ified versions of the stream benchmark [11]. We predict
power consumption for memory operations using different

353

data types and strides. We define stride as the step size for
each iteration over a contiguous block of memory. We show
that our model can accurately predict the relative change in
power consumption between the different versions without
calibration to the specific hardware. We also show that the
model can predict CPU and Memory power consumption
with a mean error of 32 and 54 percent, if calibrated to a
specific system.

The remainder of this paper is structured as follows: We
describe our model and its parameters in Section 2, followed
by an evaluation of both relative and absolute prediction
accuracy in Section 3. Finally, we conclude the paper in
Section 4.

2. POWER PREDICTION MODEL
The goal of the power prediction model is modeling power

consumption of (1) CPU and (2) full-system power. We are
also able to estimate memory power. For each of these pre-
dictions, we predict either relative changes in power depend-
ing on workload characteristics or absolute power, which re-
quires additional information on the hardware.

CPU power (pwr(CPU)) and full-system power (pwr(sys))
are the results of our workload model, whereas memory
power (pwr(mem)) can be derived from the former two. To
derive memory power, we assume that the high-memory-
bandwidth workload exercises a negligible amount of I/O. If
so, pwrmem can be derived as follows (Eq. 1):

pwr(mem) = pwr(sys) − pwr(CPU) − pwr(idle) (1)

pwridle is a constant that can be read from manufacturer
sheets or standard benchmark results, such as SPECpower-
ssj2008 [7] or the SPEC SERT [8].

The power models for full-system and CPU power are
based on the hypothesis that larger data types and bigger
steps in data traversal cause lower CPU power consump-
tion. This behavior is expected due to the way in which ex-
ecution and power consumption depend on the CPU cache.
The general rationale is as follows: Every memory access
instruction reads data either from cache (cache hit) or di-
rectly from memory (cache miss), each direct memory ac-
cess (caused by cache miss) causes the CPU to wait, reduc-
ing its power consumption, while at the same time, causing
memory to perform work, increasing its power consumption.
Consequently, the CPU power consumption decreases with
the cache miss probability up to the minimum power con-
sumption pwrmin(CPU) and pwrmin(sys). The memory
power consumption increases with the cache miss probabil-
ity. However, as memory consumes far less power than CPU
overall full-system power consumption scales with the CPU
power consumption factor p (Eq. 4) to pwrmax(CPU) as
well as pwrmax(sys), as shown in Eq. 2 and Eq. 3.

pwr(CPU) = pwrmin(CPU)

+ (pwrmax(CPU) − pwrmin(CPU)) ∗ p
(2)

pwr(sys) = pwrmin(sys)

+ (pwrmax(sys) − pwrmin(sys)) ∗ p
(3)

CPU and full-system power values are either system spe-
cific or default values. Full-system power values can be
read from standard benchmark results, such results from the
SPEC SERT [8]. However, the cache miss probability also
depends on the workload. We calculate cache hit probability

(Eq. 4) based on the data type size, stride, and cache size of
the last level cache (LLC). Cache size can also be set using
a default value. However, cache sizes of existing processors
are public information and available from the manufacturer’s
data sheets.

p =
datasize ∗ stride

cachesize
∗ inverseprefetcheraccuracy (4)

The inverseprefetcheraccuracy in Eq. 4 is the only hard-
ware parameter that can not be pulled from a manufacturer
data sheet or standard benchmark result. Fortunately, it
does not affect the ranking of relative results, which means
that it can be omitted for relative comparisons. It mod-
els the hardware cache prefetcher’s ability (or rather inverse
ability, as we are modeling cache misses) to pre-fetch data for
the cache that would normally not be in the cache according
to naive caching algorithms. To keep the model simple, the
cache miss probability is the only modeled hardware param-
eter. This enables the model to compare relative results if
neglected as described, and predict the power consumption
with reasonable accuracy.

Note that the model’s absolute prediction accuracy is ex-
pected to strongly depend on the accuracy of the pwrmax

and pwrmin parameters. If these do not correlate for a full-
system and a corresponding CPU power model it may be
prudent to use different cache miss probabilities for these
models, even though this is semantically unintuitive.

The data types are selected which we see as the most
commonly used data types in C programming. We do not
distinguish between floating point and integer types. There-
fore longer strides for integers are not evaluated.

3. EVALUATION
We evaluate the relative and absolute prediction accuracy

of our model. To this end, we modify the stream bench-
mark [11] to iterate over 16 arrays in parallel. We compare
the accuracy of comparative predictions (relative accuracy)
using default hardware parameters and absolute prediction
accuracy using hardware parameters for a specific system.

3.1 Workloads and Measurement
We use modified versions of the stream benchmark [11]

to evaluate our model. Stream is a high-memory-bandwidth
intensive benchmark that performs sequential memory ac-
cesses for scalar multiplication and copy operations on three
large arrays. We modify stream to be used according to the
SPEC power measurement methodology [1]. To this end, we
execute stream in parallel using 16 system processes, each
with separate arrays. The array iterations are repeated with
the number of iterations per second serving as a through-
put metric. Iterations are repeated for the entire measure-
ment duration. In adherence to the SPEC methodology [1],
we run the workload for 15 seconds before beginning the
measurement phase, which lasts for 120 seconds, collecting
throughput, system power (using an external power meter)
and CPU performance counters each second. CPU perfor-
mance counters are monitored using the IntelPCM tool [6].
We measure CPU Power, Memory Power, and memory bytes
read and written.

We modify the workload by changing the data type of the
stream array (char, int, double, and long) and the stride
of the array iteration (1, 2, 4, 8, 16, and 24).

To determine the inverseprefetcheraccuracy, we select the

354

inversepre−
pwrmin pwrmax fetcheraccuracy

Full system power 104.7W 140.6W 151, 518
CPU power 63.81W 89.37W 189, 552

Table 1: Benchmark results for the machine specific
configuration of power consumption

Power Power
Data Type Stride Measured Estimated Ordering
char 1 120.8W 140.31W 8
int 1 109.9W 139.43W 32
long 1 108.7W 138.26W 64
double 1 109.6W 138.26W 64
double 2 110.0W 135.26W 128
double 4 110.4W 131.26W 256
double 8 109.6W 121.92W 512
double 16 107.4W 103.23W 1024
double 24 105.8W 84.55W 1536

Table 2: Measured full system power compared to
configured model and predicted ordering

stream workload using its standard data type double to-
gether with a stride of 16. We select a stride of 16 to ac-
commodate for normal software with a mixture of data with
good spatial memory locality, benefiting from the hardware
prefetcher, and random access to main memory. The double
data type with stride 16 is used as a training value and is
therefore excluded from the evaluation. The machine onto
which the model is trained is a HP DL160 Gen9 with a
Xeon E5-2640 v3 (2.6Ghz) processor with 20MiB L3 cache
(LLC) and 32GiB (2133Mhz) memory. The machine spe-
cific inverseprefetcheraccuracy as the mean of both training
values, full system power and CPU power, is 170, 535. in-
verseprefetcheraccuracy for the trained model is obtained by
measuring the L3 cache miss rate with IntelPCM.

As pwrmin(CPU) we use the LU benchmark from the
SERT and SOR for pwrmax(CPU), also from the SERT.
They are designed to specifically stress the CPU with a
negligible amount of memory access of 0.18KiB/s (LU) and
0.24KiB/s (SOR). The low memory access makes both bench-
marks well suited to determine the maximum and minimum
CPU power. All benchmarks are executed on the same ma-
chine used for the inverseprefetcheraccuracy shown in Ta-
ble 1.

3.2 Prediction Accuracy
We use our model to predict the relative changes in power

consumption. To only show the relative changes, we remove
all machine specific values from the model. pwrmin(CPU)
and pwrmax(CPU) are set 0 and 1 respectively. The value
for cachesize and inverseprefetcheraccuracy are set to 1, re-
moving all machine specific impacts on our model. The re-
sulting power consumption values therefore only rely on the
data type and stride. Results together with the measured
full system power as well as the predicted ordering for com-
parison are shown in Table 2.

As can be seen from our results, the model can keep the
ordering in cases the datasize∗stride exceeds the cache line
size or the size of the data type is small. Comparing the
predicted ordering with the measurement results shows that
the model can predict the ordering correctly, if the difference

Power Power
Data Type Stride Measured Estimated
char 1 69.04W 89.14W
int 1 60.36W 88.44W
long 1 60.30W 87.52W
double 1 60.79W 87.52W
double 2 60.66W 85.67W
double 4 61.04W 81.95W
double 8 60.72W 75.58W
double 16 59.80W 59.80W
double 24 58.24W 45.02W

Table 3: CPU power measured compared to config-
ured model estimation

Power Power
Data Type Stride Measured Estimated
char 1 9.13W 14.75W
int 1 9.11W 14.50W
long 1 9.12W 14.16W
double 1 9.14W 14.16W
double 2 9.10W 13.49W
double 4 9.12W 12.14W
double 8 9.09W 9.45W
double 16 9.04W 4.070W
double 24 8.99W −1.32W

Table 4: Measured and estimated memory power
consumption with an idle full system power of 36.4W

in datasize ∗ stride is large. The model results also show a
minor discrepancy between long and double stemming form
different data types. Our model does not take different data
types into account that might use different execution units
of the CPU resulting in different power consumptions.

To evaluate the prediction accuracy of our model, we mea-
sure the CPU power with IntelPCM while executing mod-
ified versions of the stream benchmark. The full system
power consumption is measured concurrently with an ex-
ternal power meter. Both, CPU and full system power
consumption are estimated with the aforementionend in-
verseprefetcheraccuracy and compared to the measurement
results.

The results presented in Table 3 shows that the model
can predict the CPU power consumption with an average
deviation of 21.7W / 32.02%. As with the ordering, the best
results are achieved if datasize∗stride exceeds the cache line
size, with a deviation of −15.1%. For the full system power
shown in Table 2, an average deviation of 23.5W / 19.34%
could be achieved, with the lowest deviation using double

together with a step size of 8.
The measured and estimated memory power are shown

in Table 4. As idle power for the configured system, the
IDLE workload from the SERT benchmark run is used with
a full system power consumption of 36.4W . The average
memory power deviation is 0.36W / 3.97% with the lowest
deviation at a step size of 8 with double. This coincides with
the CPU power estimation. With deviations from both, the
full system power and CPU power estimate propagating, a
higher deviation than for other estimates is expected. The
estimated memory power deviates with an average of 4.90W
or 53.98% from the measurement.

Promising results at the edge cases with a high step size

355

Figure 1: Measured full system power in watts for
data types and strides

or low data type size stems from irregularities within our
measurement results. While slight divergence from a linear
model is expected, power consumption behaves non-linearly
for small differences in step size or data type size, shown
in Figure 1, which subsequently can lead to the observed
misordering and deviations in the estimation.

The figure also shows that further measurements are nec-
essary to improve our model. Also additional research for
suitable reference benchmarks, more closely related to high-
bandwidth memory workloads, is necessary to achieve better
accuracy determining pwrmin and pwrmax for the CPU and
full system power. Future work should also include a guide-
line for determining the inverseprefetcheraccuracy for pre-
dictions. Higher accuracy for the inverseprefetcheraccuracy
parameter would also aid in avoiding mispredictions as seen
in Table 4 for double with a step size of 24.

4. CONCLUSIONS
This paper introduces a model for prediction of power con-

sumption of high-memory-bandwidth workloads. The model
bridges the gap between system specific prediction models
that require extensive system information, including mea-
surements, and more generic models that do not consider
memory specific workloads and their properties.

The model can help developers to compare power con-
sumption of different implementation options by specifying
their workload and using publicly available hardware infor-
mation and/or default values for hardware specification. As
a result, the model may lead to implementation choices with
less power consumption.

We show that the model is able to predict a system’s power
consumption accurately with a mean deviation of 19 percent
and ranks implementation options correctly if used with ab-
stract default hardware parameters, enabling implementa-
tion comparisons.

5. REFERENCES
[1] SPEC Power and Performance Benchmark

Methodology. http://spec.org/power/docs/SPEC-
Power and Performance Methodology.pdf.

[2] R. Basmadjian and H. De Meer. Evaluating and
modeling power consumption of multi-core processors.
In Future Energy Systems: Where Energy, Computing
and Communication Meet (e-Energy), 2012 Third
International Conference on, pages 1–10, May 2012.

[3] A. Bohra and V. Chaudhary. Vmeter: Power
modelling for virtualized clouds. In Parallel
Distributed Processing, Workshops and Phd Forum
(IPDPSW), 2010 IEEE International Symposium on,
pages 1–8, April 2010.

[4] X. Fan, W.-D. Weber, and L. A. Barroso. Power
provisioning for a warehouse-sized computer. In The
34th ACM International Symposium on Computer
Architecture, 2007.

[5] S. Gurumurthi, A. Sivasubramaniam, M. J. Irwin,
N. Vijaykrishnan, M. Kandemir, T. Li, and L. K.
John. Using complete machine simulation for software
power estimation: The softwatt approach. In
Proceedings of the 8th International Symposium on
High-Performance Computer Architecture, HPCA ’02,
pages 141–, Washington, DC, USA, 2002. IEEE
Computer Society.

[6] Intel. Intel Performance Counter Monitor.
https://software.intel.com/en-us/articles/intel-
performance-counter-monitor.

[7] K.-D. Lange. Identifying Shades of Green: The
SPECpower Benchmarks. Computer, 42(3):95–97,
March 2009.

[8] K.-D. Lange and M. G. Tricker. The Design and
Development of the Server Efficiency Rating Tool
(SERT). In Proceedings of the 2nd ACM/SPEC
International Conference on Performance
Engineering, ICPE ’11, pages 145–150, New York, NY,
USA, 2011. ACM.

[9] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M.
Tullsen, and N. P. Jouppi. McPAT: An Integrated
Power, Area, and Timing Modeling Framework for
Multicore and Manycore Architectures. In Proceedings
of the 42Nd Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO 42, pages
469–480, New York, NY, USA, 2009. ACM.

[10] M. Mamidipaka and N. Dutt. eCACTI: An enhanced
power estimation model for on-chip caches. Center for
Embedded Computer Systems, Technical Report TR,
pages 04–28, 2004.

[11] J. D. McCalpin. STREAM benchmark. Link: www. cs.
virginia. edu/stream/ref. html# what, 22, 1995.

[12] G. Reinman and N. P. Jouppi. CACTI 2.0: An
integrated cache timing and power model. Western
Research Lab Research Report, 7, 2000.

[13] S. Rivoire, P. Ranganathan, and C. Kozyrakis. A
comparison of high-level full-system power models. In
Proceedings of the 2008 Conference on Power Aware
Computing and Systems, HotPower’08, pages 3–3,
Berkeley, CA, USA, 2008. USENIX Association.

[14] A. Verma, P. Ahuja, and A. Neogi. Power-aware
dynamic placement of hpc applications. In Proceedings
of the 22Nd Annual International Conference on
Supercomputing, ICS ’08, pages 175–184, New York,
NY, USA, 2008. ACM.

[15] J. von Kistowski, H. Block, J. Beckett, K.-D. Lange,
J. A. Arnold, and S. Kounev. Analysis of the
Influences on Server Power Consumption and Energy
Efficiency for CPU-Intensive Workloads. In
Proceedings of the 6th ACM/SPEC International
Conference on Performance Engineering (ICPE 2015),
ICPE ’15, New York, NY, USA, February 2015. ACM.

356

