
Performance and Dependability Evaluation of Distributed
Event-based Systems: A Dynamic Code-injection

Approach

[Work-in-Progress Paper]

Saleh Mohamed, Matthew Forshaw, Nigel Thomas
School of Computing Science, Newcastle University, Newcastle upon Tyne, UK

{s.mohamed,matthew.forshaw,nigel.thomas}@ncl.ac.uk
Andrew Dinn

Red Hat UK Ltd, UK
a.dinn@redhat.com

ABSTRACT
Distributed stream processing and event-based systems are
an increasingly critical component in contemporary large-
scale data processing applications, and are often subject
to strict latency and reliability requirements. However, to
achieve scalability demands, they are often deployed on dis-
tributed clusters of heterogeneous nodes, causing unpredictable
runtime performance and complex fault characteristics.

The behaviour of these systems is poorly understood, and
existing performance and dependability evaluation techniques
are ill-equipped to handle the challenges introduced by the
complex and distributed nature of event-based systems.

We develop a dynamic code-injection approach to evalu-
ate the performance and dependability of stream process-
ing and event-based systems. Our approach supports fine-
grained instrumentation of applications and their runtime
infrastructure, and the dynamic injection of code mutations
and faults into a production system at runtime. We demon-
strate the proposed approach by performing instrumentation
and code injection on a distributed Apache Spark cluster.

Keywords
Event-based systems; performance; dependability

1. INTRODUCTION
Event-based systems and complex event processing (CEP)

engines are an increasingly critical component in modern
large-scale software deployments, e.g., Internet of Things
(IoT). In order to make optimal deployment and resource
management decisions, it is necessary to gain an under-
standing of the performance of systems. However, the per-
formance and dependability characteristics of these systems

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPE’17, April 22 - 26, 2017, L’Aquila, Italy
c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4404-3/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3030207.3030245

are not well understood [6]. Furthermore, there are com-
pelling scenarios to motivate autonomic operation and fault
recovery of event-based systems [13, 3], but there is a reluc-
tance – particularly within industrial applications – to add
complexity to fault resolution scenarios. There is the belief
that software will be buggy, especially under error cases and
code which is executed infrequently.

Existing approaches to evaluate event-based systems have
focused on the instrumentation of applications or infrastruc-
ture, but few have the ability to capture the interactions
between the software deployment and its runtime environ-
ment [16]. Benchmarks for stream processing systems are
emerging, but these generally only consider application-level
metrics [7], and not infrastructure issues such as resource
utilisation and energy consumption. Preliminary efforts are
emerging to apply code injection techniques within stream
processing systems [17], though these focus on instrumenta-
tion only, rather than code and fault injection.

Our work was motivated by the limitations of existing
fault injection approaches, limiting their usefulness to eval-
uate the dependability of distributed event-based systems.
Firstly, many approaches require the re-compilation of ap-
plication code. Secondly, there is limited flexibility in when
faults can be injected in the application lifecycle. Finally,
coordinating complex test scenarios enacted across multiple
nodes in distributed clusters is an open challenge.

We present an approach which addresses these key chal-
lenges to evaluate the performance and dependability, using
our non-invasive dynamic code injection tool, Byteman [4].
Our approach allows a practitioner to instrument an appli-
cation, and develop code injection rules with only the knowl-
edge of the public interface of the application, and without
the need to adapt or re-compile the application. We can ‘at-
tach’ our tool to a deployment at runtime, and dynamically
load and unload our rules during the execution of the sys-
tem under evaluation. Our system facilitates greater test
coverage. Finally, our approach allows programmatic speci-
fication of complex fault scenarios, across distributed nodes.

The remainder of this paper is organised as follows. In
Section 2 we present our architecture, and describe how code
and fault injection rules are specified in the Byteman lan-
guage. In Section 3 we demonstrate the applicability of our
approach in performance evaluation and dependability as-

349

sessment of an Apache Spark cluster. We present related
work in Section 4. Finally, in Section 5 we provide con-
cluding remarks and present future challenges and research
directions.

2. ARCHITECTURE
We present our system architecture in Figure 1. This

shows a typical deployment of our approach to add dynamic
code injection to an Apache Spark cluster distributed across
remotely running Java Virtual Machines (JVMs). We eval-
uate this representative use case in Section 3.

Fault Load: We adopt a fault load which describes
the types of faults experienced on the system under test [9]
and runtime environment [16]. We can also use metrics ob-
tained from production deployments to inform our fault load
through workload characterisation.

Byteman Rules: The defined ‘Fault Load’ acts as the
basis when developing a Byteman ruleset which captures
these failure types, targeting components of the runtime sys-
tem to recreate these faults.

Test Scenario: One or more rules may be then com-
posed, alongside timing information and other required meta-
data, to construct a test scenario.

Test Coordinator: Our tool is capable of ingesting
a test scenario definition, automatically deploying the test
infrastructure [?] and enacting code injection through the
Thermostat Client, which communicates over a Command
Channel with Thermostat agents on each node.

On each compute node we instrument, we run two ‘agents’,
the ‘Thermostat agent’ and ‘Byteman agent’.

Byteman Agent: Byteman [4] is an open-source dy-
namic Java bytecode manipulation tool, facilitating code in-
jection into running JVM processes.

Thermostat Agent: Thermostat [2] is an open-source
instrumentation and monitoring tool, facilitating performance
monitoring covering various aspects of the operating system
and fine-grained JVM behaviour. Thermostat is responsi-
ble for instructing Byteman to perform code injection into
a JVM, specified by a ‘rule’ (Section 2.1).

Storage Layer: Logging data and metrics – whether
emitted by Byteman rules or obtained from OS/JVM pro-
cesses – are aggregated via the Thermostat agent and saved
to a MongoDB persistent store.

2.1 Code injection with Byteman Rules
Byteman rules are expressed as Event-Condition-Action

rules (ECA-rules) [5], describing where during application
execution a side-effect should occur, whether the side-effect
should happen or not, and what the side effect should be.

Events: A rule specifies the CLASS and METHOD the rule
targets, as well as the stage in the method call lifecyle the
rule applies (e.g. ON EXIT, AT INVOKE). A location specifier
(e.g. AT ENTRY, AT EXIT or AT LINE) specifies the trigger
point within the target method call.

Condition: Rules can be enacted conditionally, based on
boolean rule expressions.

Action: POJO code and/or Byteman built-in calls sup-
porting complex thread coordination, exception raising.

We explore each aspect of an ECA-rule, with respect to a
representative example of a Byteman rule in Listing 1. This
rule instruments Spark batches. The rule is enacted AT EXIT

for the onBatchCompleted method within the spark.JobListener
class, and uses BIND to access a number of instance variables

within the class. Each time the rule is triggered, the rule
dispatches these bound values – in JSON format to the Mon-
goDB persistent store – using the send(...) method of the
Thermostat HELPER class.

Listing 1: Exemplar Byteman Rule
1 RULE Instrumentation of Spark job batches
2 CLASS spark.JobListener
3 METHOD onBatchCompleted
4 AT EXIT
5 HELPER org.jboss.byteman.thermostat.helper.ThermostatHelper
6 BIND timestamp = $time,
7 input size = $inputSize,
8 processing time = $processingTime,
9 scheduling delay = $schedulingDelay,

10 total delay = $totalDelay
11 IF TRUE
12 DO
13 debug(”Sending batch metrics to thermostat”);
14 send(”map”, new Object[] { ”timestamp”, timestamp,
15 ”batch size”, input size,
16 ”processing time”, processing time,
17 ”scheduling delay”, scheduling delay,
18 ”total delay”, total delay});
19 ENDRULE

2.2 Rule classification
Byteman rules may be written to target components at

different levels of the applications and infrastructure.
1) Operating system (OS) and environment issues can

be targeted, e.g. node crash, network connectivity, resource
contention, launching of external processes leading to inter-
ference, etc.

2) We can explore the impact of JVM-specific issues e.g.
Stop-the-World (STW) garbage collection, memory leaks,
thread deadlocks, etc.

3) Issues arising related to the particular event-based
system under test, e.g. Spark-specific exceptions and faults.

4) Finally, we consider domain-specific faults concerning
the user’s application, e.g. performance degradation. At
each level, we consider two broad classes of rule:.

Instrumentation: Collection of metrics not otherwise
exposed by the system. We can optionally share state be-
tween Byteman rules at runtime, such that the enactment
of a rule be conditional on global system state; e.g. a rule
could be triggered when a tuple arrives to a worker node
with high CPU load.

Fault Injection: A class of rule to bring about a failure
of a component, representative of a real-world fault. For
example, one may trigger node crashes, deadlocks, or impose
probabilistic delays to processing (based on models derived
from empirical evaluation of production systems, e.g. [11]).

2.3 Coordinated failure scenarios
Many previous works focus on ‘independent’ failures, namely

those affecting an individual node. In the context of dis-
tributed event-based systems, we must consider scenarios
exhibiting inter-cluster fault propagation, where a fault on
a particular node has a knock-on impact across the cluster.

A significant contribution of our approach is to offer pro-
grammatic specification of distributed test scenarios. These
scenarios control the automatic provisioning of runtime in-
frastructure, automated code injection allowing multiple Byte-
man rules to be injected across nodes in a cluster. This al-
lows us to enact complex test scenarios to evaluate emergent

350

Node n

OS

JVM

Thermostat
Storage Layer

MongoDB
Node 1

MongoDB
Node n

MongoDB

Systemtap

JVM 1

JVM 2

Byteman Agent

Thermostat

Agent OS /proc

Spark Executor

Spark Worker

Controller

Fault Load

Taxonomy
Workload

Characterisation

T
e

s
t C

o
o

rd
in

a
to

r

Thermostat

Client

Byteman Rules

OS ApplicationEngineJVM

Test Scenario

Rule composition and metadata

Command Channel

Logging and metrics

Infrastructure Deployer

OpenStack Azure AWS EC2

…

Load/Unload

Logging/
Metrics

JVM n

…Workload Generator + Producer

Synthetic
Workloads

Bench
mark

Trace
Data

Production
Metrics

Figure 1: System architecture to support code-injection of event-based and stream processing systems.

behaviours across distributed clusters, e.g. fault propaga-
tion. This work is closely aligned with our related research
concerning the automated deployment of distributed event-
based infrastructure to support IoT applications [14].

3. EVALUATION
Fault-injection approaches are often evaluated in the lit-

erature according to the tradeoff between three key require-
ments; representativeness, usability and efficiency [15]. Here
we demonstrate our approach satisfies each of these, and is
a suitable option for evaluating event-based systems.

Representativeness: The representativeness of a fault
injection approach describes the realism of the tests, in rela-
tion to the types of faults encountered by the system and its
environment. Our ability to compose rules together allows
us to explore sophisticated test scenarios representative of
those specified in fault loads for stream based systems.

Usability: Our developed tool is portable, and can be
used with any stream processing system with little modifi-
cation. Our simple rule specification, as highlighted in Sec-
tion 2.1, allows rules to be written for any application whose
Java public interface is known. In Section 3.2 we show our
tool to be minimally intrusive, with the loading and unload-
ing of our rulesets having negligible impact on the target
workload and its underlying runtime infrastructure.

Efficiency: We lower experimental effort by offering
automated test infrastructure deployment and tooling sup-
port for runtime injection, and we offer highly targeted fault
injection through expressive rule language (Section 2.1).

I1 I2 I3 U1 U2 U3

0

5000

10000

18:50 18:52 18:54 18:56 18:58 19:00

P
ro

c
e
s
s
in

g
 T

im
e

(m
s
)

I1 I2 I3 U1 U2 U3
0

50000

100000

150000

18:50 18:52 18:54 18:56 18:58 19:00

Time (hour:minute)

T
h
ro

u
g
h
p
u
t

(R
e
c
o
rd

s
/s

e
c
)

Figure 2: Code injection of probabilistic processing
delays in a distributed Apache Spark cluster.

0.00

0.25

0.50

0.75

1.00

0 20 40 60

CPU Utilization (%)

F
n

(x
)

Legend

Standard

Instrumented

(a)

0.00

0.25

0.50

0.75

1.00

0 100 200

Eden Space Memory Consumption (MB)

F
n

(x
)

Legend

Standard

Instrumented

(b)

Figure 3: Injection overhead (a) CPU, (b) Memory

3.1 Example scenario
We demonstrate the effectiveness of our approach in ex-

periments using Apache Spark [1]. We use a cluster of Mi-
crosoft Azure DS1_V2 standard virtual machines (1 core,
3.5GB disk space and 7GB of RAM) running Ubuntu 14.04.
The cluster consists of one single-node Kafka server, one
Spark master, and three Spark workers.

The workload is a Spark streaming word count applica-
tion where a Kafka producer publishes lines of text into a
Kafka server. The streaming application consumes the lines
of text using the Spark-Kafka connector and performs a se-
ries of Spark built-in RDD transformations (map, mapToPair
and reduceBykey) to generate the word counts.

Due to limiting space, we evaluate a single use case; in-
jection and removal of tuple processing delays on our three
Spark workers. Figure 2 shows the results of our experimen-
tation on application throughput and processing time, where
the red lines are the actual time series and the green lines
represent the moving averages. The annotation lines mark
the time when delaying faults were introduced to the system.
At points I1, I2 and I3 we inject a 10ms processing delay on
every 1000th message processed, for worker node one, two
and three respectively. We see this leads to increased pro-
cessing time, and degraded throughput. At points U1, U2
and U3 we unload the rules from worker node one, two and
three respectively. It can be seen that processing time and
throughput recover to their original level.

3.2 Performance Evaluation
In order for performance and dependability measurements

to be meaningful, we must demonstrate that the presence of
our instrumentation does not perturb the normal operation
of the system under evaluation.

Here we evaluate the impact of the dynamic loading and

351

unloading of Byteman rules into a production Apache Spark
cluster. We collect two ten-minute performance traces from
a node in a Spark cluster, with and without code injection.
Figure 3(a) shows the empirical CDF plot of CPU load,
while Figure 3(b) shows JVM Eden Space Memory Con-
sumption. In both cases, we observe that our code-injection
approach has negligible impact on host resource utilisation,
giving us confidence our approach is non-intrusive.

4. RELATED WORK
Lopez et al. [12] explore the performance of Apache Storm,

Apache Flink, and Apache Spark Streaming, with respect
to message processing performance in the presence of node
failures. The authors provide experimental results from a
testbed comprising eight virtual machines, comprising one
master node and eight workers. To emulate node failures,
one virtual machine is turned off. Meanwhile, Heorhiadi et
al. [8] propose Gremlin, an approach to evaluating fault-
tolerance of microservice architectures, through network-
level manipulation of inter-service messages.

Vögler et al. [17] demonstrate the use of the AspectJ
aspect-oriented programming (AOP) framework to instru-
ment and collect performance measurements from an Apache
Spark and Apache Storm cluster. This research focuses on
the instrumentation of production stream processing sys-
tems, while our research furthers the application of fault
injection in event-based systems, by supporting dynamic in-
jection of faults and automated management of the testing
lifecycle, including infrastructure provisioning.

Hummer et al. [9] present a taxonomy of classes of faults
encountered in event-based systems such as, event stream
processing (ESP) and complex event processing (CEP) sys-
tems. Pietrantuono et al. [16] present a characterisation of
software faults arising from the runtime environment. Both
of these efforts are complementary to ours. Their findings
can inform our ‘Fault load’ and our derived Byteman rules.

Gupta et al. [7] present BFT-Bench for evaluating Byzan-
tine Fault Tolerance algorithms using fault injection. Jacques-
Silva et al. [10] consider a fault-injection approach to eval-
uate the viability of Partial Fault Tolerance (PFT) for a fi-
nancial application running within IBM System S. Their ap-
proach involves developing a fault injection operator (FIOP)
which emulates a particular faulty operator behaviour. The
application is then recompiled, with these faulty operators
placed directly infront of the ‘target’ operator.

5. CONCLUSION
In this paper we have shown how a dynamic code injection

approach can be used to instrument distributed event-based
systems for performance and dependability evaluation. Our
approach provides practitioners with a usable set of tools
which address many common issues inhibiting automated
and holistic performance and dependability evaluation of
event-based systems. We contribute our source code to the
community as open-source through Github1.

Our future work will focus on a full-scale evaluation of
our approach, developing further tooling support, enabling
practitioners to model more sophisticated failure scenarios.

1https://github.com/ncl-IoT/Fault-Injection

6. ACKNOWLEDGMENTS
This work was supported by the Engineering and Physical

Sciences Research Council, Centre for Doctoral Training in
Cloud Computing for Big Data [grant number EP/L015358/1].

7. REFERENCES
[1] Apache Spark. http://spark.apache.org/.

[2] Thermostat. http://icedtea.classpath.org/thermostat/.

[3] T. Cooper. Proactive Scaling of Distributed Stream
Processing Work Flows Using Workload Modelling:
Doctoral Symposium. In DEBS’16, pages 410–413.
ACM, 2016.

[4] A. E. Dinn. Flexible, Dynamic Injection of Structured
Advice Using Byteman. In Proceedings of the Tenth
International Conference on Aspect-Oriented software
Development companion, pages 41–50. ACM, 2011.

[5] K. R. Dittrich, S. Gatziu, and A. Geppert. The Active
Database Management System Manifesto: A Rulebase
of ADBMS Features. In RIDS. Springer, 1995.

[6] M. Forshaw, N. Thomas, and A. S. McGough. The
Case for Energy-Aware Simulation and Modelling of
Internet of Things (IoT). In ENERGY-SIM, 2016.

[7] D. Gupta, L. Perronne, and S. Bouchenak.
BFT-Bench: A Framework to Evaluate BFT
Protocols. In ACM/SPEC ICPE ’16, 2016.

[8] V. Heorhiadi, S. Rajagopalan, H. Jamjoom, M. K.
Reiter, and V. Sekar. Gremlin: Systematic Resilience
Testing of Microservices. In IEEE ICDCS, 2016.

[9] W. Hummer, C. Inzinger, P. Leitner, B. Satzger, and
S. Dustdar. Deriving a Unified Fault Taxonomy for
Event-Based Systems. In ACM DEBS, 2012.

[10] G. Jacques-Silva, B. Gedik, H. Andrade, K.-L. Wu,
and R. K. Iyer. Fault Injection-Based Assessment of
Partial Fault Tolerance in Stream Processing
Applications. In Proceedings of the 5th ACM
International Conference on Distributed Event-Based
system, pages 231–242. ACM, 2011.

[11] A. Khoshkbarforoushha and R. Ranjan. Resource and
Performance Distribution Prediction for Large Scale
Analytics Queries. In ACM/SPEC ICPE. ACM, 2016.

[12] M. A. Lopez, A. Lobato, and O. Duarte. A
Performance Comparison of Open-Source Stream
Processing Platforms. In IEEE Globecom, 2016.

[13] P. Michalák, S. Heaps, M. Trenell, and P. Watson.
Doctoral Symposium: Automating Computational
Placement in IoT Environments. In DEBS’16, 2016.

[14] S. Mohamed, M. Forshaw, and N. Thomas. Automatic
Generation of Distributed Run-time Infrastructure for
Internet of Things (IoT). In ICSAW’17, 2017.

[15] R. Natella, D. Cotroneo, and H. S. Madeira. Assessing
Dependability With Software Fault Injection: A
Survey. ACM CSUR, 48(3):44, 2016.

[16] R. Pietrantuono, S. Russo, and K. Trivedi. Emulating
Environment-Dependent Software Faults: Position
Paper. In COUFLESS’15, pages 34–40. IEEE Press,
2015.

[17] M. Vögler, J. M. Schleicher, C. Inzinger, B. Nickel,
and S. Dustdar. Non-Intrusive Monitoring of Stream
Processing Applications. In 2016 IEEE SOSE’16,
pages 162–171, March 2016.

352

