
Performance Analysis of Applications in the Context of
Architectural Rooflines

Boyana Norris
University of Oregon

norris@cs.uoregon.edu

Wyatt Spear
University of Oregon

wspear@cs.uoregon.edu

Allen Malony
University of Oregon

malony@cs.uoregon.edu

ABSTRACT
Intuitive visual representations of architecture capabilities
and the performance of applications are critical to enabling
effective performance analysis, which in turn guides opti-
mizations. The Roofline Model and its derivatives provide
such an intuitive representation of the best achievable per-
formance on a given architecture. The Roofline Toolkit
project is a collaboration among researchers at Argonne Na-
tional Laboratory, Lawrence Berkeley National Laboratory,
and the University of Oregon and consists of three princi-
pal components: hardware characterization, software char-
acterization, and data manipulation, which includes a visu-
alization interface. These components address the different
aspects of performance data acquisition and manipulation
required for performance analysis, modeling and optimiza-
tion of applications. In this paper we introduce an imple-
mentation of the third component, a system for visualizing
roofline charts and managing roofline performance analysis
data. We demonstrate analysis of an application use case
within this framework and outline future directions for this
type of performance analysis and visualization.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

Keywords
performance, analysis, visualization

1. INTRODUCTION
The Roofline model [17] enables programmers to visual-

ize the performance potential of algorithms by introducing a
simple way to quantify the computation’s locality and par-
allelism and present them in the context of a given archi-
tecture’s capabilities. Until recently Roofline models were

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPE’17, April 22-26, 2017, L’Aquila, Italy
c© 2017 ACM. ISBN 978-1-4503-4404-3/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3030207.3030232

typically laboriously created through (1) collection of hard-
ware performance data, e.g., with micro benchmarks; (2)
manual code analysis to determine the arithmetic intensity
of the algorithm(s) being studied; and (3) visualizing both
the architectural rooflines and the kernel’s expected perfor-
mance under different optimization assumptions. Automat-
ing most of this process has been the goal of the Roofline
Toolkit Project. The development of portable microbench-
marks that automate the first step is discussed in [13]. In
this paper we first introduce the current state of the data
representation and visualization infrastructure required to
automate the third step. The main contribution is a usable
software framework for generating and visualizing architec-
tural rooflines. We also discuss future research on automa-
tion performance bottleneck analysis and the generation of
accurate, fine-grained, understandable performance models
that can significantly improve the current state of the art in
terms of precision, usability, and efficiency.

2. BACKGROUND
We briefly overview the roofline model and the tools that

were leveraged in our research and implementations to date.

2.1 Roofline Analysis
For any machine model, we can evaluate the upper bound

on performance by using the roofline model introduced by
Williams et al [17]. Given the arithmetic intensity of an al-
gorithm, the roofline model defines an upper limit on kernel
performance Pk with the equation, Pk = minPf , BAi where
Pf is the peak hardware floating-point performance, B is
peak bandwidth, and Ai is the arithmetic intensity, typi-
cally expressed as the ratio of floating-point operations to
bytes transferred to/from memory.

The Roofline model and its extensions (e.g., for energy [9])
provide a compact representation of the architectural capa-
bilities as a context that enables visualization of the current
and potential performance of a computational kernel within
its algorithmic and architectural constraints. As operational
intensity increases memory bandwidth’s limiting influence
decreases until the flat, peak bound of processor GFLOPS
is reached. Placement of compute kernels on the graph in-
dicates their relationship with the system’s theoretical peak
performance given their operational intensity.

2.2 Eclipse
Eclipse [1] is a popular and extensible software develop-

ment platform. The default set of plugins is designed for
Java development, but the Eclipse community has provided

345

support for other languages including C/C++ and Fortran.
Support for high performance computing has also been pro-
vided via the Parallel Tools Platform (PTP) [2]. The porta-
bility and extensibility of the Eclipse platform motivated
our choice to use it as the basis of the Roofline visualization
framework.

3. CURRENT STATE
In this section we discuss the current state of the ongoing

efforts to automate performance analysis and modeling in
the context of architectural rooflines.

3.1 Visualization Implementation
The initial roofline visualizations were implemented us-

ing general-purpose scientific charting tools such as Gnu-
plot [18]. This was adequate for developing and testing
the roofline system and and for the performance analysis
activities of experts. It was clear, however, that general
adoption of the roofline system would benefit greatly from
a simpler automated means of visualizing the performance
data. Moreover, given the intended major use case of com-
paring the performance of multiple applications or functions
to establish best-case performance behavior with respect to
the roofline model, a framework that allows rapid and easy
analysis would be of benefit even to experts with other vi-
sualization techniques at their disposal.

We implemented the roofline visualization system using
JavaFX [3]. The new graphing functionality provided in the
JavaFX API allows reasonably sophisticated visualizations
without relying on external libraries as long as a relatively
recent version of Java is available.

The data for visualizing Roofline architectural profiles is
generated by a collection of portable micro benchmarks [13].
By default, a single set of architectural roofline data is dis-
played. Multiple roofline datasets may be loaded simulta-
neously, either from the local filesystem or from a remote
repository enabling rapid switching of views or overlaying
rooflines for comparison. The intersection points and the
inflection points on the roofline chart may be selected to
display the specific recorded metric values.

Figure 1 shows the rooflines generated for the NERSC
Cray XC30 Edison supercomputer1. The left side of Fig-
ure 1 shows just the non-interactive architectural roofline
plot generated by the ERT [13]. The top GFLOP/s rate
achieved by the micro-benchmark data is indicated with the
top orange line. The right side of Figure 1 is a screenshot of
the interactive roofline visualization Eclipse-based tool we
developed, showing the arithmetic intensity of the functions
in the MiniFE proxy application [12] that take a significant
portion of the execution time. In some cases lines corre-
sponding to different hardware components overlap. Dif-
ferent rooflines reflect peak capabilities of different hard-
ware components with respect to the operational intensity
(x-axis) of the computation. We can also visualize different
versions of the same functions in a single plot, which enables
study of the effects of optimizations on the operational in-
tensity and performance.

At present application developers can evaluate their appli-
cation performance at the level of individual routines with

1Edison has 5576 nodes, each with two 12-core Intel ”Ivy
Bridge” processor at 2.4 GHz and 64 GB DDR3 1866 MHz
memory, 460.8 Gflops/node peak per node.

respect to the architectural roofline models of systems where
it is being or will be run. This will provide valuable in-
sight into the question of attainable performance gains. Ap-
plication performance profiles stored in TAUdb databases
are searchable from the Eclipse interface and plotted on the
chart of the selected roofline. The Eclipse UI supports selec-
tion of code elements from the project source tree which will
facilitate examination of the performance of specific routines
with respect to the architecture roofline. This requires accu-
rate measurement of GFLOPS/byte when generating appli-
cation profiles. Collecting this data is not trivial, as shown
in [16], but a capability we hope will be provided in future
releases of TAU and other performance analysis systems and
then integrated into the Roofline visualization framework.

3.2 Roofline Data Management
There are two primary elements to roofline visualization

data. The systems where the roofline is being modeled
are typified by the benchmarked upper bounds on mem-
ory throughput and computational intensity. These values
and metric names are stored as name-value pairs. Memory
throughput values are typically subdivided into the FLOPs
per byte capacity supported by the different cache layers.
Additional metrics representing the technical specifications
may be included along with the empirically collected data.
The simplicity of these data accommodate a wide range of
data presentation options. We have selected JSON [4] for
roofline data storage because it is simple to work with and
there is strong support for it in Java and Python.

In addition to the core metrics of the architectural and
application performance data, the data format must allow
integration of metadata for systems and experimental trials.
This is necessary to establish the provenance of collected
data, to avoid duplicate trials and to allow searching and
comparison of task specific data from what may be a very
large general collection of system models. A robust meta-
data system also supports more advanced analytical features
under development, such as comparison between rooflines of
different systems or between the same system with altered
software or hardware parameters.

The nature of roofline analysis lends itself to central, pub-
licly available data repositories. Because the system bench-
marks are useful to all developers working in the same envi-
ronment it makes sense to make these a common resource.
Motivated by this community oriented use case, the roofline
visualization system supports accessing roofline data from a
remote repository. A roofline data library is being assem-
bled, hosted by the University of Oregon. As of this writing
it is organized using simple name based selection of rooflines
from the available systems. It is also possible to use meta-
data values as criteria to search the repository.

4. FUTURE DIRECTIONS
While viewing arithmetic intensity at the level of function

and loop granularity is a useful capability, all current tools
do not provide a comprehensive and usable modeling infras-
tructure. In this section we discuss outstanding research and
implementation challenges.

4.1 Performance Experiments, Analysis, and
Model Generation

Generating fine-grain performance models automatically
is essential for fast and accurate identification of sources of

346

1e+01

1e+02

1e+03

1e+04

1e-01 1e+00 1e+01 1e+02

At
ta

in
ab

le
 G

Fl
op

s

Arithmetic Intensity (Flops/Bytes)

Roofline Model, Edison

theoretical L1
theoretical RAM

empirical L1
empirical RAM

Figure 1: Left: Architectural roofline plot for Edison, a Cray XC30 supercomputer. Nodes are 12-core Intel ”Ivy Bridge”
processors (2.4 GHz) with 64 GB memory. Right: Application analysis for the MiniFE mini-app [12].

performance degradation and strategies to optimize the cor-
responding computations. For example, Calotoiu et al. [8,
7] show that it is possible to generate scalability models
from empirical data. These models require only wall-clock
time but even this relatively simple measurement involves
running an application at varying scales. Selecting problem
sizes for each experiment are typically user-defined tasks,
which can be both error-prone (because of lack of complete
knowledge on how to scale problem sizes in complex codes)
and potentially wasteful (e.g., running too many large-scale
experiments that are not necessary for constructing the model).

When modeling single-node performance, a number of ad-
ditional complications arise. Consider estimating arithmetic
intensity as defined in the roofline model, which requires
measurement of floating-point operations and main memory
traffic. Even homogeneous platforms do not provide consis-
tent interfaces for obtaining accurate measurements of these
quantities. On each platform, the user must learn how to
install and use a mix of tools with different interfaces and
information granularities. In some cases, there are no hard-
ware counters for the quantity of interest (e.g., floating-point
operations on Intel Haswell servers). The alternatives are
manual estimates for time-intensive portions of the applica-
tion (an approach taken by some HPC numerical packages
such as PETSc [5, 6], or using static source code analysis
to estimate such quantities [15, 11]. The static approach
allows the generation of more abstract models, which can
then be modified by the user to reflect planned or necessary
optimizations, with the resulting performance visualized in
the context of architectural rooflines.

Arithmetic intensity is just one way of viewing the effi-
ciency of computations. Other metrics of interest include
energy, or domain-specific quantities such as number of ver-
tices or edges processed per second in graph computations.
When used in the context of the architectural roofline, arith-
metic intensity or a similar measure of useful work is a good
first step in identifying functions that should be targeted

for optimizations. Arithmetic intensity by itself, however,
does not provide information to inform the optimization de-
cisions, e.g., are the GFLOP/s lower because a significant
loop was not vectorized or because of conflict misses in a
multithreaded computation? To identify root causes, more
detailed (automated) measurements are required. Again,
the lack of common interfaces and tool infrastructure across
platforms makes this a challenging and time-consuming task.
Increasing heterogeneity at node level is also not addressed
by existing measurement approaches – users are expected to
use separate tools for CPUs and GPUs. Merging data from
different tools is also non-trivial because of differences in
sampling rates or types of measurements available. Our Au-
toperf framework [10] implements some initial steps toward
automating complete performance modeling (and eventually
optimization) workflows. Much remains to be done before
performance experiment automation is widely available in
support of performance analysis and model generation on
modern heterogeneous platforms.

So far we have considered mostly empirical performance
analysis and modeling. Because of the challenges in obtain-
ing accurate measurements across platforms, we believe that
static program analysis will play an increasingly important
role in the analysis and model generation process. For ex-
ample, we are pursuing static approaches that consider both
source code and binary analysis (on both CPUs and GPUs)
to generate models for metrics such as arithmetic intensity.

4.1.1 Visualization
The roofline visualization system remains under devel-

opment and there are a number of features we anticipate
adding as the project proceeds. These will dovetail with the
continuing development of the roofline data collection and
analytical utilities also under development.

Comparison between systems and between multiple sets
of application trial data within a single chart will be use-
ful in performance engineering operations that incorporate

347

roofline data. Devising good visual representations that are
informative rather than cluttered and confusing has been an
ongoing challenge. Beyond single metrics, the effectiveness
of different approaches to 2-D or 3-D representations [14] of
multidimensional data merit future investigation.

We are also planning to increase the integration between
the Eclipse framework and the visualization system. En-
abling control of performance measurements, analysis and
models from within the IDE is a natural next step. Rather
than reimplementing existing tools, leveraging approaches
(e.g., Autoperf [10]) that interface with existing measure-
ment and analysis tools would be preferable.

The computation and visualization of arithmetic intensity
(and other emerging algorithmic metrics) can be integrated
into the Eclipse source code views, so that users can easily
visualize the current and potential performance of selected
computations as they are developing them. To accomplish
this we will implement two main components of the Roofline
Toolkit—developer-aided static model generation and em-
pirical performance data integration.

In its ultimate form the visualization system, in conjunc-
tion with other roofline data collection mechanisms, should
enable system designers to easily compare and typify fun-
damental performance characteristics for proposed and ex-
isting hardware, help software developers to explain and
tune the performance of their computational kernels in a
hardware-aware fashion and encourage sharing and use of
system and application level performance data.

5. CONCLUSION
We have introduced a new Eclipse-based performance vi-

sualization system that shows loop-level performance infor-
mation in the context of architectural rooflines. The gen-
eration of the hardware roofline profiles is fully automated.
Most of the application performance data gathering on Intel
architectures is also automated, as is the computation of the
derived metrics required for displaying performance in the
context of the rooflines. We then discuss the ways in which
this framework can be extended to enable more complete au-
tomation of performance measurement, analysis, and model
generation on modern heterogeneous platforms.

Acknowledgments
This work was supported in part by DOE Grant DE-SC0004510.

6. REFERENCES
[1] Eclipse IDE. http://www.eclipse.org. Accessed:

2014-10-20.

[2] Eclipse Parallel Tools Platform.
http://www.eclipse.org/ptp/. Accessed: 2014-10-20.

[3] JavaFX. http://www.oracle.com/technetwork/java/
javase/overview/javafx-overview-2158620.html.
Accessed: 2014-10-20.

[4] JSON. http://www.json.org. Accessed: 2014-10-20.

[5] S. Balay, J. Brown, K. Buschelman, W. D. Gropp,
D. Kaushik, M. G. Knepley, L. C. McInnes, B. F.
Smith, and H. Zhang. PETSc Web page.
http://www.mcs.anl.gov/petsc, 2016.

[6] S. Balay, W. D. Gropp, L. C. McInnes, and B. F.
Smith. Efficient management of parallelism in object
oriented numerical software libraries. In E. Arge,

A. M. Bruaset, and H. P. Langtangen, editors, Modern
Software Tools in Scientific Computing, pages
163–202. Birkhäuser Press, 1997.

[7] A. Calotoiu, D. Beckingsale, C. W. Earl, T. Hoefler,
I. Karlin, M. Schulz, and F. Wolf. Fast
Multi-Parameter Performance Modeling. Oct. 2016.
Accepted at IEEE International Conference on Cluster
Computing (Cluster’16).

[8] A. Calotoiu, T. Hoefler, M. Poke, and F. Wolf. Using
automated performance modeling to find scalability
bugs in complex codes. In Proceedings of the
International Conference on High Performance
Computing, Networking, Storage and Analysis, SC ’13,
pages 45:1–45:12, New York, NY, USA, 2013. ACM.

[9] J. W. Choi, D. Bedard, R. Fowler, and R. Vuduc. A
roofline model of energy. In Parallel Distributed
Processing (IPDPS), 2013 IEEE 27th International
Symposium on, pages 661–672, May 2013.

[10] X. Dai, B. Norris, and A. D. Malony. Autoperf:
Workflow support for performance experiments. In
Proceedings of the Workshop on Challenges in
Performance Methods for Software Development
(WOSP-C’15), Austin, Texas, 1 2015.

[11] L. Djoudi, D. Barthou, P. Carribault, C. Lemuet,
J.-T. Acquaviva, , and W. Jalby. MAQAO: Modular
assembler quality analyzer and optimizer for Itanium
2. In Proceedings of the Workshop on Explicitly
Parallel Instruction Computing Techniques, Santa
Jose, California, March, 2005.

[12] M. A. Heroux, D. W. Doerer, P. S. Crozier, J. M.
Willenbring, H. C. Edwards, A. Williams, M. Rajan,
E. R. Keiter, H. K. Thornquist, and R. W. Numrich.
Improving performance via mini-applications.
Technical Report SAND2009-5574, Sandia National
Laboratories, Sept. 2009.

[13] Y. Lo, S. Williams, B. Van Straalen, T. Ligocki,
M. Cordery, N. Wright, M. Hall, and L. Oliker.
Roofline Model Toolkit: A practical tool for
architectural and program analysis, volume 8966 of
Lecture Notes in Computer Science, pages 129–148.
Springer Verlag, 2015.

[14] O. G. Lorenzo, T. F. Pena, J. C. Cabaleiro, J. C.
Pichel, and F. F. Rivera. 3dyrm: a dynamic roofline
model including memory latency information. The
Journal of Supercomputing, 70(2):696–708, 2014.

[15] S. H. K. Narayanan, B. Norris, and P. D. Hovland.
Generating performance bounds from source code. In
Proceedings of the First International Workshop on
Parallel Software Tools and Tool Infrastructures
(PSTI 2010), 9 2010.

[16] G. Ofenbeck, R. Steinmann, V. C. Cabezas, D. G.

Spampinato, and M. PÃijschel. Applying the roofline
model. In Proceedings of the IEEE International
Symposium on Performance Analysis of Systems and
Software (ISPASS), pages 76–85, 2014.

[17] S. Williams, A. Waterman, and D. Patterson. Roofline:
An insightful visual performance model for multicore
architectures. Commun. ACM, 52(4):65–76, 2009.

[18] T. Williams, C. Kelley, and many others. Gnuplot 4.4:
an interactive plotting program.
http://gnuplot.sourceforge.net/, March 2010.

348

