
Many Flies in One Swat:
Automated Categorization of

Performance Problem Diagnosis Results

Tobias Angerstein
University of Stuttgart
Universitätsstraße 38

Stuttgart
Germany

Dušan Okanović
University of Stuttgart
Universitätsstraße 38

Stuttgart
Germany

Christoph Heger
NovaTec Consulting GmbH

Dieselstraße 18
Leinfelden-Echterdingen,

Germany

André van Hoorn
University of Stuttgart
Universitätsstraße 38

Stuttgart
Germany

Aleksandar Kovačević
University of Novi Sad

Trg Dositeja Obradovića 6
Novi Sad

Serbia

Thomas Kluge
NovaTec Consulting GmbH

Dieselstraße 18
Leinfelden-Echterdingen,

Germany

ABSTRACT
As the importance of application performance grows in mod-
ern enterprise systems, many organizations employ applica-
tion performance management (APM) tools to help them
deal with potential performance problems during produc-
tion. In addition to monitoring capabilities, these tools pro-
vide problem detection and alerting. In large enterprise sys-
tems these tools can report a very large number of perfor-
mance problems. They have to be dealt with individually,
in a time-consuming and error-prone manual process, even
though many of them have a common root cause.

In this vision paper, we propose using automatic catego-
rization for dealing with large numbers of performance prob-
lems reported by APM tools. This leads to the aggregation
of reported problems, reducing the work required for resolv-
ing them. Additionally, our approach opens the possibility
of extending the analysis approaches to use this information
for a more efficient diagnosis of performance problems.

1. INTRODUCTION
Large enterprise systems are usually composed of a large

number of services running on many computing nodes. Any
performance degradation in these systems results in signifi-
cant losses. There are many approaches for dealing with per-
formance problems by performing diagnosis and root cause
analysis, both before [10, 15] and after [5] the software enters
production.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPE’17, April 22-26, 2017, L’Aquila, Italy
c© 2017 ACM. ISBN 978-1-4503-4404-3/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3030207.3030242

In large enterprise systems, application performance mon-
itoring (APM) tools can report a large number of perfor-
mance incidents, such as slow response times or increased
resource consumption. However, the capabilities of these
tools are limited to alerting and reporting performance prob-
lems [3], while only few approaches deal with diagnosing
them [5]. In both cases, all performance problems are re-
ported separately, again leaving the performance expert to
deal with one problem at the time.

We propose to use well-known automatic categorization
approaches [6] with the goal of reducing the number of per-
formance problems that have to be analyzed. Problems that
are similar to each other are categorized and dealt with to-
gether, reducing the effort required from the performance
expert. We also propose to use optimization approaches, to
improve the quality of the categorization result. The main
goal of the preliminary work presented in this vision paper
is the assessment of different clustering and optimization
approaches in categorization of performance problems.

The remainder of this paper is organized as follows. Sec-
tion 2 emphasizes the addressed problem and states our vi-
sion. Section 3 outlines our approach and shows preliminary
findings. In Section 4 we discuss related work, while in Sec-
tion 5 we draw the conclusions and outline the future work.

2. PROBLEM STATEMENT
In our previous work [5], we presented diagnoseIT—an

approach for automated diagnosis of performance problems.
The motivation for our work was the fact that APM practice
requires enormous manual effort and expertise. As stated
before, APM tools provide very little support in identifying
root causes of performance problems. The manual process
is often problematic for performance analysts, as most of
the tasks are recurring, time-consuming, and error-prone.
The goal of our work was to address this issue by formaliz-
ing APM expert knowledge. This knowledge is further used
to automatically execute recurring APM tasks, such as the
proper configuration of APM tools and diagnosis of perfor-
mance problems, to isolate their root causes.

341

http://dx.doi.org/10.1145/3030207.3030242

A

B

...
...

...
...

...

PresentationTier

PT1

PT2

Business Tier
BT1

BT2

BT3

Data Service

DS

Execution traces

callA(...) @ PT1 175 ms

search(...) @ BT1 149 ms

12 ms

2 ms

3 ms

5 ms

...

query() @ DS

query() @ DS

query() @ DS

query() @ DS

callB(...) @ PT2 350 ms

search(...) @ BT3 201 ms

12 ms

3 ms

5 ms

...

query() @ DS

query() @ DS

query() @ DS

process(...) @ BT3 100 ms

Problem instance 1
no. of occurrences: 5

Problem instance 2
no. of occurrences: 3

APM dataAPM dataAPM data

APM Tool

Figure 1: Example of diagnosis results in the system
that provides different services.

This automation of the diagnosis process reduces the num-
ber of performance problems reported by APM tools, that
usually have to be manually dealt with. The diagnoseIT ap-
proach will report where the problem occurred, provide an
explanation why is this a problem, and recommend how it
can be fixed. In the context of diagnoseIT, problem instances
represent a concrete atomic performance problem, and are
extracted from an execution trace [11]. They are described
using the following attributes. Entry point is a point in the
system from which the execution of the trace started. Root
cause is a method in the execution trace that causes a per-
formance problem. Problem context is a method which takes
the largest amount of time in the execution trace, for exam-
ple 80 % of a trace’s execution time. Node type is a type of
the node in the system, where the problem appears, e.g., pre-
sentation tier, business tier. Exclusive duration represents
the time that was consumed by the affected method.

However, although there are many problem instances, they
often have the same or a similar root cause. For exam-
ple, consider a three-tiered system as shown in Fig. 1. This
system provides two services—Service A and Service B. To
process requests from clients to these two services, different
components are used. While processing the requests to the
Service A, the execution goes over the component PT1 in
the presentation tier to the component BT1 in the business
tier. In the end, BT1 obtains the data from the service DS.
Requests to Service B are processed in a similar fashion, this
time using the components PT2, BT3, and DS.

Now consider that the component DS is improperly con-
figured, e.g., the database connection pool is to small, caus-
ing the well-known N-Lane Bridge problem [13]. This results
in slow response times of this component. This additional
delay will cause the response times of Service A and Ser-

vice B to increase. The APM tool that monitors the system
will register this increase in response times as a performance
problem, and it will pass it to diagnoseIT. The diagnosis for
both performance problems is the same: “slow access to ser-
vice DS due to an N-lane bridge”. However, as they come
from two different business transactions, these problems will
be reported as separate problem instances. The basic im-
plementation of diagnoseIT groups problem instances only
if all of the attributes, except for the exclusive duration, are
equal. As a consequence, in large enterprise systems, where
the number of services and components is often very large,
the number of reported problem instances can be extremely
high. They would all have to be dealt with separately by
the expert, although they all have the same root cause.

To tackle this issue, we propose a categorization of similar
performance problems. This will reduce the amount of work
performance experts have, as the problems with similar root
causes become members of the same group. This will allow
the performance expert to deal with them as one problem—
”killing multiple flies with one swat.”

In this vision paper, we present preliminary research on
the choice of the automatic categorization approach. We
perform a sensitivity analysis to evaluate the influence of
problem instance attributes on the categorization result. The
results of this evaluation are used for an optimization of
the process. During the optimization, weights are assigned
to problem instance attributes, which aims to improve the
quality of the result.

3. CATEGORIZATION OF
PROBLEM INSTANCES

An overview of our approach is presented in Fig. 2. diag-
noseIT analyzes the data from the APM tool and generates
problem instances (PI s). Problem instances, each repre-
sented as a vector whose features correspond to attributes of
problem instances, e.g., root cause and exclusive duration,
are then automatically categorized, using an unsupervised
approach (Section 3.1). In this case, the resulting categories
are Category 1, Category 2, and Category n. Along with the
process of categorization, optimization is performed (Sec-
tion 3.2). The initial categorization of problem instances is
performed using default weights. The role of weights is to
define the influence of each problem instance attribute on
the categorization result. The goal of the optimization is to
generate a better set of parameters for categorization by as-

Categorization

Optimization

APM tool

PI PIPI
PI

PI

Category 1 Category 2

Categorization result

Category n

PI PI
PI

execution
traces

problem
instances

optimized
weights

default
weights

Figure 2: An overview of the approach.

342

signing different weights to attributes of problem instances,
as these weights can be specific for each case.

Section 3.1 provides an overview of the considered auto-
matic categorization approaches. Section 3.2 provides an
overview of the optimization approaches. Preliminary find-
ings are presented in Section 3.3.

3.1 Categorization of Problem Instances
Cluster analysis is an unsupervised approach to organiz-

ing data elements into clusters based on their proximity [6].
Contrary to supervised approaches, unsupervised approaches
do not require pre-classified training data. In our case, since
we want to perform the analysis automatically and do not
have prior information about the data, we opt to use an
unsupervised approach.

According to Jain et al. [6], there are several steps in
the clustering activity. The first step is pattern represen-
tation. A problem instance can be represented as a vector
~P = (p1, p2, ..., pn), where p1, p2,..., pn are the values of the
problem instance’s attributes (as described in Section 2).

In the second step, proximity of patterns is defined. Our
approach uses Euclidean distance because of its simplicity.
However, Euclidean distance can be very sensitive to dis-
tortion, e.g., when data does not consist of compact and
isolated clusters. A solution for this is to assign weights to
features, so that the vector ~P becomes ~P ′ = (w1 · p1, w2 ·
p2, ..., wn · pn).

The third step is the choice of the most appropriate ap-
proach for grouping of patterns, and in our case, it is dic-
tated by the following assumptions.
Uniqueness Each problem instance represents one perfor-

mance problem, so each problem instance should be-
long to one category only.

Independence The algorithm should be independent of the
number of categories, as the potential number of cate-
gories is not known at the beginning of the process.

Performance The algorithm should be able to handle large
numbers of instances in a reasonable amount of time.

We found that, among different clustering approaches [1,
6, 16], hierarchical clustering and k-means algorithm sat-
isfy our requirements. Other approaches are not suitable
because they provide multiple solutions, e.g., evolutionary
clustering, or require some sort of training set, e.g., artificial
neural networks.

Hierarchical clustering provides the result as a hierar-
chical structure. It is independent of any initial choice of
clusters, and provides one solution. However, the drawback
of this approach is that it can be very slow because of its
high complexity.

k-means algorithm is faster than hierarchical cluster-
ing, as it has fairly low complexity. Although the number
of clusters has to be known in advance, there are ways to
perform the estimation [14].

The obvious advantage of using the k-means approach is
its speed. On the other hand, the hierarchical approach
provides results that can be useful in the diagnosis of per-
formance problems, as problem instances can be categorized
by symptoms [15].

Assessing the quality of clustering result can be done in
two general ways [12]. Using the internal quality criteria,
the clustering result is evaluated based on the data about
clusters themselves, such as the distances between instances
in the cluster (Sum of Squared Errors) and the distances

40 60 80 100 120 140 160 180 200 220
0

50

100

150

200

250

Number of problem instances

S
um

 o
f s

qu
a

re
d

er
ro

rs

k-means clustering

Hierarchical clustering with:
3 levels
4 levels
5 levels
6 levels

Clustering algorithms:

Figure 3: Sum of squared errors for k-means and hi-
erarchical clustering algorithms, for different num-
ber of problem instances.

between clusters (Standard Deviation of Cluster Center Dis-
tances). External quality criteria use external data, such as
separately created reference clusters.

3.2 Optimization of Categorization
As stated before, not all problem instance attributes con-

tribute equally to the clustering result. To assess the influ-
ence of each attribute, a calibration of parameters is needed
to assign them weights.

We evaluated three approaches for optimization. The evo-
lutionary approach uses standard evolutionary operators to
create variations in weights. After clustering is performed
with each set of weights, results are compared with a fitness
function. The hill-climbing constantly modifies weights as
long as the result is improving. The human-in-the-loop ap-
proach requires manual effort, instead of the fitness function,
to pick the optimal result.

3.3 Preliminary Evaluation of Approaches
A preliminary evaluation of the selected approaches was

performed using the data obtained by monitoring the DVD
Store application and the inspectIT APM tool,1 which was
then analyzed with diagnoseIT. The problem instance cate-
gorization and optimization was performed using the Weka
framework [4]. The experimental setup and a runnable ex-
ample can be found in the supplementary material.2

An evaluation of the clustering results using internal qual-
ity criteria shows that the results of the k-means algorithm
are better, although, in some rare cases, hierarchical cluster-
ing has some advantage (Figure 3). Similar results are ob-
tained when analyzing the standard deviation of cluster cen-
ter distances. Additionally, results show that, as expected,
k-means performs faster. Although these results are as ex-
pected, hierarchical clustering proves valuable for the diag-
nosis of performance problems, because of the hierarchical
structure of the result.

A comparison of optimization approaches has shown that
the results of automatic optimization approaches almost do
not bring any improvement of clustering results. However,
improvement was present with the human-in-the-loop ap-

1http://www.inspectit.rocks/
2https://doi.org/10.5281/zenodo.321383

343

proach, which leads us to the conclusion that some knowl-
edge about the observed system should be included. Al-
though this seems contrary to our initial idea, inclusion of
humans in this case is justified, as the performance ana-
lyst would deal with a much smaller number of problem
instances.

4. RELATED WORK
To the best of our knowledge, modern APM tools [3] pro-

vide no aggregation of performance problems. Some tools
report the total number of incidents, e.g., how many times
response times exceeded a threshold, or aggregate some of
the metrics, e.g., average response time of some method,
but the correlation between incidents has to be established
manually.

There are some approaches to dealing with the large num-
ber of results in load testing. Malik et al. [9] use Princi-
pal Component Analysis to reduce the performance counter
data, e.g., CPU utilization, disk I/O, queues and network
traffic, and identify performance gains and losses. The same
group of authors [8] proposes the use of performance signa-
tures, which aggregate the data from performance counters
into smaller, more manageable sets. Further, to deal with
these sets, they propose both supervised and unsupervised
approaches (including k-means) to detect possible perfor-
mance deviations. The reduction of data is a topic of Foo [2],
where performance metrics are converted into discrete lev-
els. However, this results in loss of information about small
deviations between these levels. The approach proposed by
Jiang [7] uses execution logs and performs mining of the load
test data. The drawback of the approach is that it relies on
the log formats, which are platform-specific.

5. CONCLUSIONS
In this paper we presented an approach to categorization

of problem instances for more efficient problem diagnosis.
The goal is to group similar problem instances, and reduce
the effort of manually inspecting every single problem in-
stance that is required by performance experts. Our prelim-
inary results are promising, as the use of k-means provides
a manageable number of clusters. The use of hierarchical
clustering, although slower, provides results that are partic-
ularly useful for performance problem diagnosis.

Future work will deal with the extending of the problem
instances, so that they include more data from the execution
trace, e.g., which classes and components were involved, on
which nodes the execution took place, and timing informa-
tion about all segments of the execution. We think that this
would allow us to detect more complex performance anti-
patterns that cannot be detected from a single trace. Also,
we plan to investigate the influence of problem instance at-
tributes. Furthermore, we plan to investigate other catego-
rization approaches.

6. ACKNOWLEDGMENTS
This work is being supported by the German Federal Min-

istry of Education and Research (grant no. 01IS15004, diag-
noseIT), the Research Group of the Standard Performance
Evaluation Corporation (SPEC), and by the Serbian Min-
istry of Education (project “Infrastructure for Technology
Enhanced Learning in Serbia (III47003)”).

7. REFERENCES

[1] V. L. Brailovsky. A probabilistic approach to
clustering. Pattern Recogn. Lett., 12(4):193–198, 1991.

[2] K. C. Foo. Automated discovery of performance
regressions in enterprise applications, 2011.

[3] C. Haight and F. D. Silva. Gartner’s magic quadrant
for application performance monitoring suites, 2016.

[4] M. Hall, E. Frank, G. Holmes, B. Pfahringer,
P. Reutemann, and I. H. Witten. The weka data
mining software: An update. SIGKDD Explor. Newsl.,
11(1):10–18, 2009.

[5] C. Heger, A. van Hoorn, D. Okanović, S. Siegl, and
A. Wert. Expert-guided automatic diagnosis of
performance problems in enterprise applications. In
Proc. 12th Europ. Dependable Computing Conf.
(EDCC ’16), 2016.

[6] A. K. Jain, M. N. Murty, and P. J. Flynn. Data
clustering: A review. ACM Comput. Surv.,
31(3):264–323, 1999.

[7] Z. M. Jiang. Automated analysis of load testing
results. In Proc. 19th Int. Symposium on Soft. Testing
and Analysis (ISSTA ’10), pages 143–146, 2010.

[8] H. Malik, H. Hemmati, and A. E. Hassan. Automatic
detection of performance deviations in the load testing
of large scale systems. In Proc. 35th Int. Conf. on
Soft. Eng. (ICSE ’13), pages 1012–1021, 2013.

[9] H. Malik, Z. M. Jiang, B. Adams, A. E. Hassan,
P. Flora, and G. Hamann. Automatic comparison of
load tests to support the performance analysis of large
enterprise systems. In Proc. 14th European Conf. on
Soft. Maintenance and Reengineering (CSMR ’10),
pages 222–231, 2010.

[10] A. Nistor, P.-C. Chang, C. Radoi, and S. Lu. Caramel:
Detecting and fixing performance problems that have
non-intrusive fixes. In 37th Int. Conf. on Soft.
Engineering (ICSE ’15), pages 902–912, 2015.

[11] D. Okanović, A. van Hoorn, C. Heger, A. Wert, and
S. Siegl. Towards performance tooling interoperability:
An open format for representing execution traces. In
Proc. of the 13th European Workshop on Perf.
Engineering (EPEW ’16), pages 94–108, 2016.

[12] L. Rokach and O. Maimon. Clustering methods. In
Data Mining and Knowledge Discovery Handbook,
pages 321–352. Springer, 2005.

[13] C. U. Smith and L. G. Williams. Software performance
antipatterns. In Proc. 2nd Int. Workshop on Soft. and
Performance (WOSP ’00), pages 127–136, 2000.

[14] R. Tibshirani, G. Walther, and T. Hastie. Estimating
the number of clusters in a dataset via the gap
statistic. Journal of the Royal Statistical Society Series
B (Statistical Methodology), 63:411–423, 2000.

[15] A. Wert, J. Happe, and L. Happe. Supporting swift
reaction: Automatically uncovering performance
problems by systematic experiments. In Proc. 2013
Int. Conf.on Soft. Engineering (ICSE ’13), pages
552–561, 2013.

[16] C. T. Zahn. Graph-theoretical methods for detecting
and describing gestalt clusters. IEEE Trans. Comput.,
20(1):68–86, 1971.

344

