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ABSTRACT 

Explicitly stated response time, throughput, and other 

performance requirements of an application implicitly impose 

other performance requirements on the system components that 

implement it. We call these derived performance requirements. 

The explicit performance requirements cannot be met if the 

derived performance requirements are not met. Explicit 

performance requirements naturally give rise to corresponding 

derived performance requirements expressed in terms of the same 

metrics. Derived performance requirements may also be identified 

that specify the sizes of object pools or the amount of memory 

needed to meet explicit and other derived requirements. 

Moreover, derived requirements may be identified that depend on 

the implementation of the components. We explore how derived 

requirements arise and present a methodology for identifying and 

specifying them. 

Categories and Subject Descriptors 

• General and reference~Performance • General and 

reference~Measurement • Software and its 

engineering~Software performance • Software and its 

engineering~Requirements analysis 

Keywords 
Performance requirements engineering, software engineering, 

software life cycle, performance analysis. 

1. INTRODUCTION 
The specification of an average response time requirement for a 

transaction inherently imposes upper limits on the acceptable 

values for the times taken to support the various actions that must 

occur to complete it .Similarly, the specification of a transaction 

completion rate inherently imposes throughput requirements on 

those actions and on those system components that must be 

traversed to carry those actions out. In addition to derived 

throughput and response time requirements, we must consider 

space/time requirements that arise indirectly, such as those for 

object pools needed to avoid queueing and buffer sizes needed to 

sustain low probabilities of message loss.  

We shall examine the performance requirements that must be 

derived from the end-to-end performance requirements to 

determine the suitability of these components for inclusion in the 

system. A performance model would be used to determine 

whether a component is suitable from a performance standpoint. 

The outputs of the model would be the parameters of the derived 

performance requirements. Examining, testing, and validating the 

performance requirements of components in the architectural 

phase of the lifecycle reduce the risk of rework close to the 

intended delivery date. Omission of these steps increases the risk 

of performance failure on delivery [9]. The identification of 

derived requirements cannot occur until the components have 

been specified in the architectural or design phases of the software 

life cycle. The derived performance requirements must conform to 

the same guidelines as the external performance requirements [3], 

[4]. 

Space/time considerations engender performance requirements on 

discrete software resources such as page frames, object pools, 

locks, and logical connectors like JDBCs. Their pool sizes must 

be large enough to keep the probability of transaction failure due 

to pool exhaustion below a very low value. The sizes of the 

resource pools needed to support the performance of the hosted 

applications are performance requirements that must be derived 

from the frequency with which their members are requested and 

the probability distribution  of how long they are held.  

Here, we explore ways to derive implied performance 

requirements about system components from specifications about 

performance requirements as seen from the standpoint of the 

sources of one or more requests for specified actions, or, in the 

case of a computer-controlled system, from the standpoints of 

components that are receiving commands from the control system 

and issuing stimuli or sending data to it. Examples of specified 

actions include initiating batch jobs, responding to transaction 

requests, triggering an activity within a system in response to a 

browser click, activating an alarm, delivering a message, or failing 

over to a standby machine. If the machine of interest is a 

communications switch or some other mission-critical component, 

there may be a requirement that a boot or failover be completed 

within a short amount of time. If several machines need to 

synchronously shake hands with a central server while booting, 

there will of necessity be both throughput and delay requirements 

on it that must be formulated and met to support the timing 

requirements of the booting procedure. The minimum achievable 

handshaking delay to the application of interest will be a lower 

bound on the achievable boot time. If the consequent lower bound 

is greater than the desired boot time, improvements must be made. 
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The architecture of a large-scale data analytics and storage system 

may be influenced by the volume of historical and recent data 

used as input to an analysis algorithm. The tradeoff between the 

cost of moving and storing that data and the location and cost of 

computing power may determine whether the computation of the 

analysis is done where the data are stored or if the data are moved 

to where the computation is done. That decision induces 

requirements for bandwidth and storage at each of the nodes 

involved. 

Derived requirements can impact the configuration in a system 

that already exists or in an architecture that has already been 

chosen. For instance, in a multitier web system, the number of 

Java database connections (JDBCs) needed to prevent queuing for 

them is determined by the rate at which transactions occur 

between the application server and the backend database and the 

duration of those transactions. While one can observe whether 

packet loss, call loss, or queueing for a JDBC occurs orders of 

magnitude more often than it should, e.g., with relative frequency 

10−3 instead of 10−9, a long test time and a large number of 

transactions are needed to determine whether the relative 

frequencies of these events are 10−7 instead of 10−9. If we can 

collect data to estimate throughputs and the means and variances 

of resource holding times, and buffer or object pool sizes, we can 

combine approximate modeling with tests that verify the 

configured object sizes to help us ensure that the frequencies with 

which undesired events occur are likely to be in the required 

range. Instrumentation of the object pool is needed to ensure that 

performance needs are met and to enable the measurement of 

object holding times and throughputs. 

As with performance requirements that are formulated from the 

perspective of an end user or from the perspective of a software-

controlled industrial system, derived performance requirements on 

software and hardware components provide a basis for defining 

the parameters of performance test plans. These test plans may be 

executed whenever the components are available. Testing of 

components should be conducted as early as possible so that one 

can identify unsatisfactory performance characteristics and choose 

alternative components well before release. 

The remainder of this paper is organized as follows. After 

discussing related work, we consider how derived requirements 

arise, how they might be identified, and the metrics in which they 

might be expressed. These metrics may differ from those of the 

external performance requirements. For example, while a buffer 
pool exhaustion probability is not explicitly stated in end-to-end 

throughput and response time requirements, it may be necessary 

to specify one to sustain them. We then go on to describe a 

process for obtaining derived requirements, and possible impacts 

of explicit and derived requirements. Finally, we discuss the 

relationship between derived requirements and performance 

testing. 

2. RELATED WORK 
Hierarchical models can sometimes be formulated to determine 

the drivers of performance requirements, even if this was not the 

original intent [6], [13], [8]. 

In [14], Smith uses queueing network models and execution 

graphs to predict the effect of component throughputs and 

response times on the performance of an overall system. Smith 

illustrates heuristics for determining the extent to which 

components must be sped up to provide the required performance 

characteristics of components under a given workload. A response 

time requirement is more easily achieved when a component has a 

lower anticipated offered load. The Processing vs. Frequency 

Tradeoff Principle [14] states that one should minimize the 

processing times frequency product of each component. The 

implication is that a higher response time requirement might be 

tolerated if the frequency of execution of the component is 

smaller. The Centering Principle states that the dominant 

workload functions should be identified and their processing 

minimized. In the context of performance requirements, this 

means that the most frequently visited components should have 

more stringent response time requirements than those that are 

visited less often. In [15], it is suggested that performance budgets 

be allocated to collaborating components to ensure that an end-to-

end response time requirement is met. Argent-Katwala et al [1] 

use process algebra models to show how end-to-end performance 

might be predicted for complex interactions of concurrently 

executing processes and threads, but they do not describe the 

derivation of performance requirements based on these 

predictions. Grassi and Mirandola describe how performance 

models of components can be composed to yield performance 

models of the system as a whole [7], but they do not attempt to 

use their framework to derive performance requirements on the 

components. Bondi briefly discusses and gives examples of 

derived performance requirements in [3] and [4]. He explains how 

performance requirements could be derived from other 

requirements or from the values of performance measures 

prescribed in domain-related specifications such as fire codes, but 

he does not show how they might be derived from queueing 

network models or execution graphs.  

3. OCCURRENCE OF DERIVED 

PERFORMANCE REQUIREMENTS 
From the standpoint of the stakeholders of a system component, 

such as architects, developers, and owners, the response time and 

throughput requirements appear to be externally driven. These 

requirements may have arisen from the needs of the system 

components that use the component of interest, or they may be 

domain-specific. For instance, the routing of parcels in a conveyor 

system may be determined by queries to a database [5]. The query 

and the response must be delivered before a parcel arrives at the 

next junction in the system. The time allowed for the response to 

be delivered depends on the conveyor speed. This imposes a 

response time requirement on the combined database query 

response time and the latency of the network and programmable 

logic controllers that run the belt. The frequency with which 

queries occur depends on the rate at which parcels pass a bar code 

scanner. That rate in turn depends on routing patterns, the speed 

of the belt, and the distance between parcels on each segment of 

the belt. A model is needed to determine the peak database query 

rate as a function of the number of parcel movements and of the 

parcel volume combined. The calculated query rate constitutes a 

throughput requirement of the parcel routing database. 

A driver of the required object pool size is the number of discrete 

objects needed to sustain the throughput of the units of work that 

need them to proceed through the system. For an analogy, 

consider a physical system such as an airport security checkpoint. 

The mechanism by which objects such as trays for passengers’ 

belongings are returned to the free pool plays a crucial role in 

determining the necessary object pool size, i.e., the number of 

trays, to sustain throughput, because it affects the object holding 

time. To see this, let us compare the mechanisms by which 

recently emptied trays are moved from the secured side of the 

checkpoint to the unsecured side so that they can be reused. At 

Newark Airport, the released trays are stacked up on dollies and 
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returned to the unsecured side of the checkpoint according to rules 

that are unknown to this author. At Gatwick Airport, released 

trays are placed one at a time on a conveyor positioned under the 

roller table used to move the trays and luggage towards the X ray 

machine, and are thus continuously returned to unsecured side. 

Little’s Law tells us that the number of trays (and in the case of 

Newark, the number of dollies) needed to sustain a given level of 

passenger throughput depends in part on the tray return procedure, 

and that the achievable passenger throughput will be degraded if 

trays are only returned when very large stacks of them accumulate 

before they are made available. At Gatwick, the throughput and 

latency of the returning belt are factors that only limit passenger 

throughput and increase the holding times for trays to the extent 

that the latency exceeds the time for a passenger to traverse a 

check point once the trays have been filled. The Gatwick system 

is analogous to bytewise acknowledgement of messages in a 

sliding window protocol, while the Newark system is somewhat 

analogous to intermittently acknowledging the delivery of large 

packets before more data can be sent. The architecture of each 

tray return system engenders its own set of derived requirements. 

At Newark, the use of dollies to return stacks of trays engenders 

requirements on the number of trays needed at each checkpoint, 

the number of dollies needed at the passenger entry and exit 

points at each baggage X ray machine, and the frequency with 

which the dollies are returned to the passenger entry point at the 

approach to each baggage X ray machine. At Gatwick, the use of 

a conveyor mounted under the table of rollers at the approach to 

each X ray machine engenders requirements for tray throughput, 

the number trays needed to retain that throughput, the travel time 

of each tray on return, and the numbers of dollies to hold stacks of 

trays at the conveyor entry and exit points, even if the trays are 

not moved on them. The average time to inspect each piece of 

luggage and each tray as they pass through the X ray machine is 

independent of tray movements from the exit to the entry point. It 

depends on the capabilities of the human inspector and perhaps on 

any automated intelligence that is used to interpret the X ray 

images.  

The airport security example is a metaphor for what might happen 

in a control system. If each tray is equipped with an RFID, there 

must be a corresponding record for it in the associated 

computerized tracking system. This illustrates how domain-

specific requirements can arise from physical situations. Domain-

specific requirements such as those for computer-controlled 

systems induce performance requirements on the software 

systems that provide the control and on the services that support 

them. Similarly, Software as a Service (SaaS) and Service-

Oriented Architectures (SOAs) have performance requirements 

imposed upon them by the demands and transaction rates of the 

applications. 

4. OBTAINING DERIVED 

PERFORMANCE REQUIREMENTS 
In our experience, derived requirements arise while identifying a 

top-down hierarchy of non-functional requirements or quality 

attributes, including performance requirements, starting with 

external, explicitly specified performance requirements. These 

correspond to a top down view of both the architecture and of the 

implementation. There is a need to iterate between architecture 

choices and performance requirements on the architectural 

components to eliminate bottlenecks, foci of overload. Then one 

must respond to tradeoffs between architectures due to the cost of 

processing, the cost of replication, and the cost of data movement, 

as well as to constraints imposed by the need to incorporate 

legacy components or components from a designated supplier. 

This is especially important if modeling to derive requirements 

shows that a component cannot meet performance requirements. 

The predicted or measured inability for a component to meet 

performance requirements may necessitate its replacement with 

something else, a performance improvement, or even a change to 

the envisioned deployment scenario or other architectural aspect. 

Our proposed process of deriving performance requirements is 

closely related to the execution graph methodology proposed in 

[14] for predicting the demands on various components and 

modeling their response times. Performance modeling and 

deriving performance requirements both require that information 

flows be captured. The required sizes of discrete pools should be 

explored based on the derived understanding of throughputs and 

delays. Traversing the execution graphs enables one to identify 

where performance requirements need to be derived and where 

the sizing of discrete object pools is needed. A single tool and 

data representation of the system could be used for both activities. 

The process is top-down recursive in the sense that each 

component may in turn consist of other components for which 

derived performance requirements are needed.. 

We can use a process to derive performance requirements that is 

analogous to modeling the performance of complex systems via 

hierarchical decomposition. This entails decomposing the system 

into different parts, modeling them separately (perhaps 

approximately), and then iteratively plugging the outputs of 

component models into a model of the entire system. This process 

of hierarchical decomposition allows the modeler to 

approximately capture the interactions between the components. 

The global or higher level system model predicts the loads that 

will be offered to the components. The models of the components 

are used to predict response times and maximum attainable 

throughputs. These predictions are fed into the higher-level 

model. The process is repeated until convergence is achieved.  

We can use a similar process to derive performance requirements. 

The higher-level model predicts the throughput requirements of 

the subcomponents. We can also use the higher-level model to 

approximately predict whether the achievable response times of 

the subcomponents at the offered loads are low enough to achieve 

the required response time of the entire system, and, if not, to 

determine how low the response times of the subcomponents must 

be to achieve the overall response time. Sufficiently low values 

for the response times of the subcomponents at the predicted 

offered throughputs constitute the performance requirements for 

the respective measures of the components of interest. 

Performance improvements must be made to subcomponents that 

cannot meet those requirements, or else alternative components or 

even a different architecture must be used instead. 

We may identify the following steps to derive performance 

requirements for components. 

The first step is to ensure that a baseline set of end-to-end 

performance requirements exists. If the system is a platform for 

service-oriented architectures (SOA) [11] and for software as a 

service (SaaS), a baseline set of performance requirements may be 

obtained by first identifying current use cases and then computing 

reference workloads from them. The reference workloads will 

constitute the baseline for performance requirements. Like all 

performance requirements, the baseline requirements must be 

traceable, testable, verifiable, and unambiguous. They must be 

expressed in measurable terms [4]. It is important that the baseline 

performance requirements include specifications regarding peak 

traffic and the anticipated durations of the peaks, because the 
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onset of peaks will tax discrete object pools most heavily. If the 

workload has not yet been defined or is in dispute, a reference 

workload and a set of corresponding performance requirements 

should be devised as a basis for system design and testing [12]. 

The second step is a review of the information flow through the 

system for frequently occurring and computationally intensive use 

cases. This step should be carried out whether the system already 

exists or whether it is in the early stages of a software 

development life cycle. It is also the first step in a performance-

oriented architecture review. A welcome side benefit of this step 

is that it may uncover performance bottlenecks that had not been 

thought of before, and thus trigger a modification of the 

architecture before any implementation or procurement is done. 

The links between functional requirements, end-to-end 

performance requirements, security, and other non-functional 

requirements can be explored at this time. The development of 

execution graphs to identify performance bottlenecks could be 

part of this step [14]. 

The third step is to develop a top-down recursive hierarchy of 

throughput, response time, and supporting requirements such as 

buffer sizes and object pool sizes for the various model 

components. These can be mapped to external transactions. The 

method is top-down because we are using end-to-end 

requirements to identify derived requirements. The method is 

recursive in the sense that we are identifying derived requirements 

as we proceed from one layer of components to the next. 

Performance requirements and resource usage demands for 

background activity such as database maintenance, archiving, 

batch jobs, or backups should be considered in this step as well. A 

framework for doing so could be developed using the principles in 

[14] as starting points. For systems in which two or more 

activities are launched simultaneously that must all be concluded 

before work can proceed to the next processing step, one must use 

the time to complete the longest activity to compute the holding 

times of any resources that are used. 

5. ARCHITECTURAL IMPACTS 
An architecture may have to be changed if one or more of its 

components cannot meet the derived performance requirements 

imposed upon it by traffic or by architectural characteristics. This 

can occur in different contexts. For example, domain-specific 

requirements such as those for computer-controlled systems 

induce performance requirements on the software systems that 

provide the control and on the services that support them. The 

combined effects of stringent response time requirements and 

bandwidth requirements for status information may necessitate a 

decentralized architecture in which control logic is deployed close 

to the system being controlled, while voluminous status data is 

moved upstream for storage and subsequent analysis. This is one 

of the concerns related to Fog Computing and the architecture of 

the Internet of Things [2]. As an architecture is formulated and the 

data flows between its components are modeled, a hierarchy of 

functional and nonfunctional requirements, including performance 

and security requirements, will emerge to reveal that saturation of 

some components is unavoidable unless the deployment scenario 

is changed [10]. This means that it will be necessary to iterate 

between (a) architectural specifications, (b) modeling to 

understand the performance requirements on system components, 

and (c) the formulation of models and new performance 

requirements as proposed changes the architecture are evaluated.  

6. IMPACTS ON PERFORMANCE 

TESTING 
End-to-end performance requirements are useful for planning 

performance tests over suitable ranges of load parameters and 

configurations [4]. The same holds for the derived performance 

requirements of software and hardware components, such as 

networks, object pools, and even of third party services whose 

function and performance are outside the control of the system 

owner. A third-party service might be essential to a transaction 

when a functional requirement or regulation demands that it be 

invoked before a transaction can be completed. Yet, the attainable 

throughputs and response times of these services might be outside 

the control of the owners of primary application web site, while 

affecting its end-to-end performance. 

One element of a process for identifying derived performance 

requirements is somewhat similar to the process of hierarchical 

decomposition used to model components and their interactions 

with one another. It also has much in common with the 

combination of execution graphs and queueing models used to 

predict the performance of complex systems [14]. Performance 

test plans can be derived for system components that can be tested 

in environments one controls just as they would be for the whole 

system. Once a set of performance requirements has been derived 

for a system component, it should be subjected to performance 

tests structured in the same manner as for end-to-end performance 

tests. A component whose load is driven by transactions would be 

tested for a range of offered throughputs above and below the 

targets predicted by a high-level model described in [14]. 

Similarly, software platforms such as a messaging environment 

would also be tested over a variety of loads before it is 

incorporated into the architecture and before a commitment is 

made to development decisions that assume its presence [8]. 

Where it is not possible to verify a performance requirement that 

an event occur rarely, such as packet loss or the exhaustion of an 

object pool, tests should be conducted to ensure that the 

preconditions for the event to occur rarely as predicted by a model 

are satisfied given assumptions about the nature of the traffic and 

resource holding times. For example, a test would verify that the 

pool size is configured to N if, according to the model, N is the 

number needed to keep the exhaustion probability below a set 

level. 

7. CONCLUSIONS 
External performance requirements inherently impose 

performance requirements upon system components. The 

components may have structural characteristics, such as object 

pool sizes, that necessitate the formulation of performance 

requirements for loss and blocking probabilities. When these 

requirements cannot easily be validated by testing, because they 

refer to events that are intended to occur very rarely, it may be 

useful to verify instead that the configuration parameters 

correspond to those used to make a performance prediction with a 

model, such as a pool size or buffer size. In the foregoing, we 

have outlined how a hierarchical decomposition of the system 

could be used to model the parameters of performance 

requirements on components. This method is analogous to that 

used for approximate performance modeling. Finally, we 

discussed how performance test plans could be written to verify 

that the derived performance requirements on the components are 

met.  
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