
Identifying Derived Performance Requirements

of System Components from Explicit Customer- and

Application-Facing Performance Requirements

André B. Bondi
Software Performance and Scalability

Consulting LLC
Red Bank, New Jersey 07701 USA

andrebbondi@gmail.com

ABSTRACT

Explicitly stated response time, throughput, and other

performance requirements of an application implicitly impose

other performance requirements on the system components that

implement it. We call these derived performance requirements.

The explicit performance requirements cannot be met if the

derived performance requirements are not met. Explicit

performance requirements naturally give rise to corresponding

derived performance requirements expressed in terms of the same

metrics. Derived performance requirements may also be identified

that specify the sizes of object pools or the amount of memory

needed to meet explicit and other derived requirements.

Moreover, derived requirements may be identified that depend on

the implementation of the components. We explore how derived

requirements arise and present a methodology for identifying and

specifying them.

Categories and Subject Descriptors

• General and reference~Performance • General and

reference~Measurement • Software and its

engineering~Software performance • Software and its

engineering~Requirements analysis

Keywords
Performance requirements engineering, software engineering,

software life cycle, performance analysis.

1. INTRODUCTION
The specification of an average response time requirement for a

transaction inherently imposes upper limits on the acceptable

values for the times taken to support the various actions that must

occur to complete it .Similarly, the specification of a transaction

completion rate inherently imposes throughput requirements on

those actions and on those system components that must be

traversed to carry those actions out. In addition to derived

throughput and response time requirements, we must consider

space/time requirements that arise indirectly, such as those for

object pools needed to avoid queueing and buffer sizes needed to

sustain low probabilities of message loss.

We shall examine the performance requirements that must be

derived from the end-to-end performance requirements to

determine the suitability of these components for inclusion in the

system. A performance model would be used to determine

whether a component is suitable from a performance standpoint.

The outputs of the model would be the parameters of the derived

performance requirements. Examining, testing, and validating the

performance requirements of components in the architectural

phase of the lifecycle reduce the risk of rework close to the

intended delivery date. Omission of these steps increases the risk

of performance failure on delivery [9]. The identification of

derived requirements cannot occur until the components have

been specified in the architectural or design phases of the software

life cycle. The derived performance requirements must conform to

the same guidelines as the external performance requirements [3],

[4].

Space/time considerations engender performance requirements on

discrete software resources such as page frames, object pools,

locks, and logical connectors like JDBCs. Their pool sizes must

be large enough to keep the probability of transaction failure due

to pool exhaustion below a very low value. The sizes of the

resource pools needed to support the performance of the hosted

applications are performance requirements that must be derived

from the frequency with which their members are requested and

the probability distribution of how long they are held.

Here, we explore ways to derive implied performance

requirements about system components from specifications about

performance requirements as seen from the standpoint of the

sources of one or more requests for specified actions, or, in the

case of a computer-controlled system, from the standpoints of

components that are receiving commands from the control system

and issuing stimuli or sending data to it. Examples of specified

actions include initiating batch jobs, responding to transaction

requests, triggering an activity within a system in response to a

browser click, activating an alarm, delivering a message, or failing

over to a standby machine. If the machine of interest is a

communications switch or some other mission-critical component,

there may be a requirement that a boot or failover be completed

within a short amount of time. If several machines need to

synchronously shake hands with a central server while booting,

there will of necessity be both throughput and delay requirements

on it that must be formulated and met to support the timing

requirements of the booting procedure. The minimum achievable

handshaking delay to the application of interest will be a lower

bound on the achievable boot time. If the consequent lower bound

is greater than the desired boot time, improvements must be made.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components of
this work owned by others than the author(s) must be honored. Abstracting

with credit is permitted. To copy otherwise, or republish, to post on servers or

to redistribute to lists, requires prior specific permission and/or a fee.

Request permissions from Permissions@acm.org.

ICPE'17, April 22 - 26, 2017, L'Aquila, Italy.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-4404-3/17/04…$15.00

DOI: http://dx.doi.org/10.1145/3030207.3030246

335

mailto:Permissions@acm.org
http://dx.doi.org/10.1145/3030207.3030246

The architecture of a large-scale data analytics and storage system

may be influenced by the volume of historical and recent data

used as input to an analysis algorithm. The tradeoff between the

cost of moving and storing that data and the location and cost of

computing power may determine whether the computation of the

analysis is done where the data are stored or if the data are moved

to where the computation is done. That decision induces

requirements for bandwidth and storage at each of the nodes

involved.

Derived requirements can impact the configuration in a system

that already exists or in an architecture that has already been

chosen. For instance, in a multitier web system, the number of

Java database connections (JDBCs) needed to prevent queuing for

them is determined by the rate at which transactions occur

between the application server and the backend database and the

duration of those transactions. While one can observe whether

packet loss, call loss, or queueing for a JDBC occurs orders of

magnitude more often than it should, e.g., with relative frequency

10−3 instead of 10−9, a long test time and a large number of

transactions are needed to determine whether the relative

frequencies of these events are 10−7 instead of 10−9. If we can

collect data to estimate throughputs and the means and variances

of resource holding times, and buffer or object pool sizes, we can

combine approximate modeling with tests that verify the

configured object sizes to help us ensure that the frequencies with

which undesired events occur are likely to be in the required

range. Instrumentation of the object pool is needed to ensure that

performance needs are met and to enable the measurement of

object holding times and throughputs.

As with performance requirements that are formulated from the

perspective of an end user or from the perspective of a software-

controlled industrial system, derived performance requirements on

software and hardware components provide a basis for defining

the parameters of performance test plans. These test plans may be

executed whenever the components are available. Testing of

components should be conducted as early as possible so that one

can identify unsatisfactory performance characteristics and choose

alternative components well before release.

The remainder of this paper is organized as follows. After

discussing related work, we consider how derived requirements

arise, how they might be identified, and the metrics in which they

might be expressed. These metrics may differ from those of the

external performance requirements. For example, while a buffer
pool exhaustion probability is not explicitly stated in end-to-end

throughput and response time requirements, it may be necessary

to specify one to sustain them. We then go on to describe a

process for obtaining derived requirements, and possible impacts

of explicit and derived requirements. Finally, we discuss the

relationship between derived requirements and performance

testing.

2. RELATED WORK
Hierarchical models can sometimes be formulated to determine

the drivers of performance requirements, even if this was not the

original intent [6], [13], [8].

In [14], Smith uses queueing network models and execution

graphs to predict the effect of component throughputs and

response times on the performance of an overall system. Smith

illustrates heuristics for determining the extent to which

components must be sped up to provide the required performance

characteristics of components under a given workload. A response

time requirement is more easily achieved when a component has a

lower anticipated offered load. The Processing vs. Frequency

Tradeoff Principle [14] states that one should minimize the

processing times frequency product of each component. The

implication is that a higher response time requirement might be

tolerated if the frequency of execution of the component is

smaller. The Centering Principle states that the dominant

workload functions should be identified and their processing

minimized. In the context of performance requirements, this

means that the most frequently visited components should have

more stringent response time requirements than those that are

visited less often. In [15], it is suggested that performance budgets

be allocated to collaborating components to ensure that an end-to-

end response time requirement is met. Argent-Katwala et al [1]

use process algebra models to show how end-to-end performance

might be predicted for complex interactions of concurrently

executing processes and threads, but they do not describe the

derivation of performance requirements based on these

predictions. Grassi and Mirandola describe how performance

models of components can be composed to yield performance

models of the system as a whole [7], but they do not attempt to

use their framework to derive performance requirements on the

components. Bondi briefly discusses and gives examples of

derived performance requirements in [3] and [4]. He explains how

performance requirements could be derived from other

requirements or from the values of performance measures

prescribed in domain-related specifications such as fire codes, but

he does not show how they might be derived from queueing

network models or execution graphs.

3. OCCURRENCE OF DERIVED

PERFORMANCE REQUIREMENTS
From the standpoint of the stakeholders of a system component,

such as architects, developers, and owners, the response time and

throughput requirements appear to be externally driven. These

requirements may have arisen from the needs of the system

components that use the component of interest, or they may be

domain-specific. For instance, the routing of parcels in a conveyor

system may be determined by queries to a database [5]. The query

and the response must be delivered before a parcel arrives at the

next junction in the system. The time allowed for the response to

be delivered depends on the conveyor speed. This imposes a

response time requirement on the combined database query

response time and the latency of the network and programmable

logic controllers that run the belt. The frequency with which

queries occur depends on the rate at which parcels pass a bar code

scanner. That rate in turn depends on routing patterns, the speed

of the belt, and the distance between parcels on each segment of

the belt. A model is needed to determine the peak database query

rate as a function of the number of parcel movements and of the

parcel volume combined. The calculated query rate constitutes a

throughput requirement of the parcel routing database.

A driver of the required object pool size is the number of discrete

objects needed to sustain the throughput of the units of work that

need them to proceed through the system. For an analogy,

consider a physical system such as an airport security checkpoint.

The mechanism by which objects such as trays for passengers’

belongings are returned to the free pool plays a crucial role in

determining the necessary object pool size, i.e., the number of

trays, to sustain throughput, because it affects the object holding

time. To see this, let us compare the mechanisms by which

recently emptied trays are moved from the secured side of the

checkpoint to the unsecured side so that they can be reused. At

Newark Airport, the released trays are stacked up on dollies and

336

returned to the unsecured side of the checkpoint according to rules

that are unknown to this author. At Gatwick Airport, released

trays are placed one at a time on a conveyor positioned under the

roller table used to move the trays and luggage towards the X ray

machine, and are thus continuously returned to unsecured side.

Little’s Law tells us that the number of trays (and in the case of

Newark, the number of dollies) needed to sustain a given level of

passenger throughput depends in part on the tray return procedure,

and that the achievable passenger throughput will be degraded if

trays are only returned when very large stacks of them accumulate

before they are made available. At Gatwick, the throughput and

latency of the returning belt are factors that only limit passenger

throughput and increase the holding times for trays to the extent

that the latency exceeds the time for a passenger to traverse a

check point once the trays have been filled. The Gatwick system

is analogous to bytewise acknowledgement of messages in a

sliding window protocol, while the Newark system is somewhat

analogous to intermittently acknowledging the delivery of large

packets before more data can be sent. The architecture of each

tray return system engenders its own set of derived requirements.

At Newark, the use of dollies to return stacks of trays engenders

requirements on the number of trays needed at each checkpoint,

the number of dollies needed at the passenger entry and exit

points at each baggage X ray machine, and the frequency with

which the dollies are returned to the passenger entry point at the

approach to each baggage X ray machine. At Gatwick, the use of

a conveyor mounted under the table of rollers at the approach to

each X ray machine engenders requirements for tray throughput,

the number trays needed to retain that throughput, the travel time

of each tray on return, and the numbers of dollies to hold stacks of

trays at the conveyor entry and exit points, even if the trays are

not moved on them. The average time to inspect each piece of

luggage and each tray as they pass through the X ray machine is

independent of tray movements from the exit to the entry point. It

depends on the capabilities of the human inspector and perhaps on

any automated intelligence that is used to interpret the X ray

images.

The airport security example is a metaphor for what might happen

in a control system. If each tray is equipped with an RFID, there

must be a corresponding record for it in the associated

computerized tracking system. This illustrates how domain-

specific requirements can arise from physical situations. Domain-

specific requirements such as those for computer-controlled

systems induce performance requirements on the software

systems that provide the control and on the services that support

them. Similarly, Software as a Service (SaaS) and Service-

Oriented Architectures (SOAs) have performance requirements

imposed upon them by the demands and transaction rates of the

applications.

4. OBTAINING DERIVED

PERFORMANCE REQUIREMENTS
In our experience, derived requirements arise while identifying a

top-down hierarchy of non-functional requirements or quality

attributes, including performance requirements, starting with

external, explicitly specified performance requirements. These

correspond to a top down view of both the architecture and of the

implementation. There is a need to iterate between architecture

choices and performance requirements on the architectural

components to eliminate bottlenecks, foci of overload. Then one

must respond to tradeoffs between architectures due to the cost of

processing, the cost of replication, and the cost of data movement,

as well as to constraints imposed by the need to incorporate

legacy components or components from a designated supplier.

This is especially important if modeling to derive requirements

shows that a component cannot meet performance requirements.

The predicted or measured inability for a component to meet

performance requirements may necessitate its replacement with

something else, a performance improvement, or even a change to

the envisioned deployment scenario or other architectural aspect.

Our proposed process of deriving performance requirements is

closely related to the execution graph methodology proposed in

[14] for predicting the demands on various components and

modeling their response times. Performance modeling and

deriving performance requirements both require that information

flows be captured. The required sizes of discrete pools should be

explored based on the derived understanding of throughputs and

delays. Traversing the execution graphs enables one to identify

where performance requirements need to be derived and where

the sizing of discrete object pools is needed. A single tool and

data representation of the system could be used for both activities.

The process is top-down recursive in the sense that each

component may in turn consist of other components for which

derived performance requirements are needed..

We can use a process to derive performance requirements that is

analogous to modeling the performance of complex systems via

hierarchical decomposition. This entails decomposing the system

into different parts, modeling them separately (perhaps

approximately), and then iteratively plugging the outputs of

component models into a model of the entire system. This process

of hierarchical decomposition allows the modeler to

approximately capture the interactions between the components.

The global or higher level system model predicts the loads that

will be offered to the components. The models of the components

are used to predict response times and maximum attainable

throughputs. These predictions are fed into the higher-level

model. The process is repeated until convergence is achieved.

We can use a similar process to derive performance requirements.

The higher-level model predicts the throughput requirements of

the subcomponents. We can also use the higher-level model to

approximately predict whether the achievable response times of

the subcomponents at the offered loads are low enough to achieve

the required response time of the entire system, and, if not, to

determine how low the response times of the subcomponents must

be to achieve the overall response time. Sufficiently low values

for the response times of the subcomponents at the predicted

offered throughputs constitute the performance requirements for

the respective measures of the components of interest.

Performance improvements must be made to subcomponents that

cannot meet those requirements, or else alternative components or

even a different architecture must be used instead.

We may identify the following steps to derive performance

requirements for components.

The first step is to ensure that a baseline set of end-to-end

performance requirements exists. If the system is a platform for

service-oriented architectures (SOA) [11] and for software as a

service (SaaS), a baseline set of performance requirements may be

obtained by first identifying current use cases and then computing

reference workloads from them. The reference workloads will

constitute the baseline for performance requirements. Like all

performance requirements, the baseline requirements must be

traceable, testable, verifiable, and unambiguous. They must be

expressed in measurable terms [4]. It is important that the baseline

performance requirements include specifications regarding peak

traffic and the anticipated durations of the peaks, because the

337

onset of peaks will tax discrete object pools most heavily. If the

workload has not yet been defined or is in dispute, a reference

workload and a set of corresponding performance requirements

should be devised as a basis for system design and testing [12].

The second step is a review of the information flow through the

system for frequently occurring and computationally intensive use

cases. This step should be carried out whether the system already

exists or whether it is in the early stages of a software

development life cycle. It is also the first step in a performance-

oriented architecture review. A welcome side benefit of this step

is that it may uncover performance bottlenecks that had not been

thought of before, and thus trigger a modification of the

architecture before any implementation or procurement is done.

The links between functional requirements, end-to-end

performance requirements, security, and other non-functional

requirements can be explored at this time. The development of

execution graphs to identify performance bottlenecks could be

part of this step [14].

The third step is to develop a top-down recursive hierarchy of

throughput, response time, and supporting requirements such as

buffer sizes and object pool sizes for the various model

components. These can be mapped to external transactions. The

method is top-down because we are using end-to-end

requirements to identify derived requirements. The method is

recursive in the sense that we are identifying derived requirements

as we proceed from one layer of components to the next.

Performance requirements and resource usage demands for

background activity such as database maintenance, archiving,

batch jobs, or backups should be considered in this step as well. A

framework for doing so could be developed using the principles in

[14] as starting points. For systems in which two or more

activities are launched simultaneously that must all be concluded

before work can proceed to the next processing step, one must use

the time to complete the longest activity to compute the holding

times of any resources that are used.

5. ARCHITECTURAL IMPACTS
An architecture may have to be changed if one or more of its

components cannot meet the derived performance requirements

imposed upon it by traffic or by architectural characteristics. This

can occur in different contexts. For example, domain-specific

requirements such as those for computer-controlled systems

induce performance requirements on the software systems that

provide the control and on the services that support them. The

combined effects of stringent response time requirements and

bandwidth requirements for status information may necessitate a

decentralized architecture in which control logic is deployed close

to the system being controlled, while voluminous status data is

moved upstream for storage and subsequent analysis. This is one

of the concerns related to Fog Computing and the architecture of

the Internet of Things [2]. As an architecture is formulated and the

data flows between its components are modeled, a hierarchy of

functional and nonfunctional requirements, including performance

and security requirements, will emerge to reveal that saturation of

some components is unavoidable unless the deployment scenario

is changed [10]. This means that it will be necessary to iterate

between (a) architectural specifications, (b) modeling to

understand the performance requirements on system components,

and (c) the formulation of models and new performance

requirements as proposed changes the architecture are evaluated.

6. IMPACTS ON PERFORMANCE

TESTING
End-to-end performance requirements are useful for planning

performance tests over suitable ranges of load parameters and

configurations [4]. The same holds for the derived performance

requirements of software and hardware components, such as

networks, object pools, and even of third party services whose

function and performance are outside the control of the system

owner. A third-party service might be essential to a transaction

when a functional requirement or regulation demands that it be

invoked before a transaction can be completed. Yet, the attainable

throughputs and response times of these services might be outside

the control of the owners of primary application web site, while

affecting its end-to-end performance.

One element of a process for identifying derived performance

requirements is somewhat similar to the process of hierarchical

decomposition used to model components and their interactions

with one another. It also has much in common with the

combination of execution graphs and queueing models used to

predict the performance of complex systems [14]. Performance

test plans can be derived for system components that can be tested

in environments one controls just as they would be for the whole

system. Once a set of performance requirements has been derived

for a system component, it should be subjected to performance

tests structured in the same manner as for end-to-end performance

tests. A component whose load is driven by transactions would be

tested for a range of offered throughputs above and below the

targets predicted by a high-level model described in [14].

Similarly, software platforms such as a messaging environment

would also be tested over a variety of loads before it is

incorporated into the architecture and before a commitment is

made to development decisions that assume its presence [8].

Where it is not possible to verify a performance requirement that

an event occur rarely, such as packet loss or the exhaustion of an

object pool, tests should be conducted to ensure that the

preconditions for the event to occur rarely as predicted by a model

are satisfied given assumptions about the nature of the traffic and

resource holding times. For example, a test would verify that the

pool size is configured to N if, according to the model, N is the

number needed to keep the exhaustion probability below a set

level.

7. CONCLUSIONS
External performance requirements inherently impose

performance requirements upon system components. The

components may have structural characteristics, such as object

pool sizes, that necessitate the formulation of performance

requirements for loss and blocking probabilities. When these

requirements cannot easily be validated by testing, because they

refer to events that are intended to occur very rarely, it may be

useful to verify instead that the configuration parameters

correspond to those used to make a performance prediction with a

model, such as a pool size or buffer size. In the foregoing, we

have outlined how a hierarchical decomposition of the system

could be used to model the parameters of performance

requirements on components. This method is analogous to that

used for approximate performance modeling. Finally, we

discussed how performance test plans could be written to verify

that the derived performance requirements on the components are

met.

338

8. ACKNOWLEDGMENTS
This paper was completed while the author was a visiting

professor at the University of L’Aquila.

9. REFERENCES
[1] Argent-Katwala, A., J. T. Bradley, and N.J. Dingle.

Expressing performance requirements using regular

expressions to specify stochastic probes over process algebra

models. Proc. ACM WOSP 2004Workshop on Software and

Performance) Redwood Shores, California, 49-58, 2004.

[2] Bonomi, F., R. Milito, J. Zhu, S. Addeppelli. Fog computing

and its role in the internet of things. MCC’12, Proceedings of

the First Edition of the MCC Workshop on Mobile Cloud

Computing, 13-16, 2012.

[3] Bondi, A. B. “Best practices for writing and managing

performance requirements: a tutorial.” Proc. ICPE 2012,

2012.

[4] Bondi, A. B. Foundations of Software and System

Performance Engineering: Process, Performance Modeling,

Requirements, Testing, Scalability, and Practice. Addison-

Wesley, 2014.

[5] Bondi, A.B., C. S. Simon, and K. A. Anderson. Bandwidth

usage and network latency in a conveyor system with

Ethernet-based communication between controllers. Proc.

IEEE PACRIM 2005, 9-12, 2005.

[6] Chandy, K.M., U. Herzog, and L. Woo. Parametric Analysis

of Queuing Networks. IBM J. of R.&D. 19 (1), 36-42, 1975.

[7] Grassi, V., and R. Mirandola. Toward automatic

compositional performance analysis of component-based

systems. Proc. ACM WOSP 2004Workshop on Software and

Performance) Redwood Shores, California, 59-63, 2004.

[8] Lazowska, E. J., J. Zahorjan, G. S. Graham, and K. C.

Sevcik. Quantitative System Performance. Prentice Hall,

1984. Also available online at

www.cs.washington.edu/homes/lazowska/qsp .

[9] Masticola, S., A. B. Bondi, and M. Hettish. “Model-based

scalability estimation in inception-phase software

architecture.” In ACM/IEEE 8th International Conference on

Model-Driven Engineering Languages and Systems, 2005.

Lecture Notes in Computer Science 3713, 355–366. Springer,

2005.

[10] Mylopoulos, J., L. Chung, and B. Nixon. Representing and

using nonfunctional requirements: a process-oriented

approach. IEEE Transactions on Software Engineering 18

(6), 483 – 497, 1992.

[11] O’Brien P. P. Merson, and L. Bass. Quality Attributes for

Service-Oriented Architectures. SDSOA '07 Proceedings of

the International Workshop on Systems Development in

SOA Environments, 2007.

[12] Rempel, G. Defining Standards for Web Page Performance

in Business Applications, Proc ICPE2015 (International

Conference on Performance Engineering), 245-252, 2015.

[13] Sauer, C. and K. M. Chandy. Computer Performance

Modeling. Prentice Hall, 1981.

[14] Smith, C.U. Independent General Principles for Constructing

Responsive Software Systems. ACM TOCS 4(1), 1-31, 1986.

[15] Smith, Connie U., and Lloyd G. Williams. Performance

Solutions: A Practical Guide to Creating Responsive,

Scalable Software. Addison-Wesley, 2002.

339

http://www.cs.washington.edu/homes/lazowska/qsp
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.J.%20Mylopoulos.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.L.%20Chung.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.B.%20Nixon.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=32

