
Efficient Sampling-based Lock Contention
Profiling for Java

Andreas Schörgenhumer Peter Hofer David Gnedt
andreas.schoergenhumer@jku.at peter.hofer@jku.at david.gnedt@jku.at

Christian Doppler Laboratory on Monitoring and Evolution of Very-Large-Scale Software Systems
Johannes Kepler University Linz, Austria

Hanspeter Mössenböck
hanspeter.moessenboeck@jku.at

Institute for System Software
Johannes Kepler University Linz, Austria

ABSTRACT
Concurrent code commonly uses locks. Choosing between
simpler but less scalable and more sophisticated but error-
prone locking mechanisms is difficult during development.
Therefore, lock contention analysis at run-time is crucial to
aid such decisions.

We present a novel sampling-based approach for collecting
detailed information on lock contention in Java applications
by using the Java Virtual Machine Tool Interface (JVMTI)
and bytecode instrumentation. We support both intrinsic
locks as well as java.util.concurrent locks. Moreover, we
can determine not only where contention occurs but also
where it is caused. With a mean run-time overhead of about
5%, we consider our approach suitable for use in production
environments.

Keywords
Locking, Contention, Java, Concurrency, Parallelism, Thread-
ing, Synchronization, Profiling, Monitoring

1. INTRODUCTION
Multi-core hardware has become widely available and offers

a considerable performance improvement over single-core sys-
tems. However, developers have to explicitly write concurrent
software to make use of these capabilities. With concurrent
programming, synchronization is necessary to safely access
shared resources, which is commonly achieved with locks.
When using locks incorrectly, anomalies and bugs can occur
that are difficult to detect, locate and fix. Coarse-grained
locking is simpler and less error-prone, but it can lead to
higher lock contention, which is when multiple threads try to
acquire the same lock at the same time. Fine-grained locking
can alleviate this problem, but it may be more difficult to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICPE’17, April 22-26, 2017, L’Aquila, Italy
c© 2017 ACM. ISBN 978-1-4503-4404-3/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3030207.3030234

implement correctly. Deciding on an appropriate locking
mechanism when developing concurrent software is not an
easy task. Lock contention analysis at run-time is crucial to
reveal performance bottlenecks. These can then be resolved
by opting for a more complex but also more scalable locking
mechanism.

In earlier work, we presented an efficient lock contention
profiler directly in the OpenJDK HotSpot Virtual Machine
(VM) that provides detailed information on lock contention
in Java applications while imposing only a small performance
overhead [5]. However, this approach relies on specific ca-
pabilities of the VM, which might not be available in an
existing environment. In this paper, we describe an approach
to lock contention analysis which relies only on the commonly
available Java VM Tool Interface (JVMTI) and on bytecode
instrumentation.

The main contributions of this work in progress paper are:

1. We describe a novel approach for collecting lock con-
tention information at run-time by only using JVMTI
and bytecode instrumentation. Our approach is capa-
ble of recording similar information as our previous
VM-internal approach that we described in [5]. The
collected data shows both where lock contention occurs
and where it is caused.

2. We provide a preliminary evaluation of the run-time
overhead as well as the amount of generated data of our
implementation. The results demonstrate that both
of these metrics are low enough so that we consider
our approach to be feasible for the use in production
environments.

The rest of this paper is organized as follows: Section 2
characterizes locking in Java. Section 3 presents our novel
approach and describes how we collect and record information
on lock contention. Section 4 evaluates the run-time overhead
and the amount of generated data with our approach. In
Section 5, we discuss related work and Section 6 concludes
this paper.

2. LOCKING IN JAVA
Every object in Java has exactly one intrinsic lock (also

known as the monitor of the object) which can be used for
mutual exclusion of threads in synchronized code blocks. The

331

http://dx.doi.org/10.1145/3030207.3030234

Event
Buffer

SleepSuspend
All Threads

Record Data

Sampling Thread

Resume
All Threads

Processing async

Contended Objects

Acquire Contended Object

Figure 1: Overview of the sampling approach.

synchronized keyword can also be used for entire methods.
Every time a thread wants to enter such a synchronized block,
it must first acquire the object’s monitor. All other threads
that also want to enter the same block or a block protected
with the same synchronization object have to wait until
the lock is released again by the thread currently holding
it. Intrinsic locks are always automatically released upon
exiting the synchronized block, whether it is due to the
normal program execution or due to an exception. Their
implementation in the VM typically imposes a significant
overhead only when there is actually lock contention [1, 10].

The java.util.concurrent package of Java 5 offers another
way of implementing synchronization. The LockSupport class
provides the methods park and unpark for the current thread
and a given blocker object. In contrast to intrinsic locks,
which are implemented in the VM, park and unpark can
be used together with compare-and-set operations to im-
plement synchronization directly in Java. The Abstract-
QueuedSynchronizer (AQS) class provides a framework for
lock implementations relying on wait queues on which many
ready-to-use synchronizers in Java are based. The main goal
of synchronizers is to minimize performance overhead, most
notably under contention and especially in heavily multi-
threaded applications, where the overhead of intrinsic locks
would be high [7]. An example for an implementation based
on AQS is the ReentrantLock class which provides similar
semantics as intrinsic locks.

3. APPROACH
Initially, we attempted to recreate our VM-internal pro-

filer [5]. We used JVMTI callbacks for recording lock con-
tentions and combined them with Java bytecode instrumen-
tation to signal when a monitor is released. However, this
required instrumenting every possible monitor exit, regard-
less of whether actual contention occurred. As a result,
the overhead was infeasible and we decided to implement a
sampling-based approach. We will use the phrase contended
objects throughout this paper to conveniently address objects
for which there is contention.

Figure 1 shows an overview of our sampling-based ap-
proach. We manage a list of possibly contended objects for
both intrinsic locks as well as for java.util.concurrent locks.
For intrinsic locks the contended objects are the lock objects
used in the synchronized blocks, for java.util.concurrent they
are the blocker objects. In the loop of the sampling thread,
we periodically inspect each of the objects in this list. If an
object is still contended at that time, we record contention

data which consists of the object itself, the owner thread,
all threads that are currently waiting on this object and
the stack traces of these threads. While taking the sam-
ple we suspend all threads in order to guarantee that the
recorded stack traces correspond to the locations where the
contentions occurred. The collected data is stored in events
that are written into a buffer. This buffer is asynchronously
processed and the results are written to a file which can then
be analyzed with the same visualization tool as described
in [5]. The processing includes an optional online analysis
which can be viewed in the visualization tool at run-time.

Our analysis not only reveals which threads were blocked
(where and how long) but also which threads were responsible
for the blocking. This is possible because our samples record
the contended object and its owner thread for all waiting
threads. A description of this analysis can be found in [5].

3.1 Intrinsic Locks
For intrinsic locks we get currently contended objects from

the JVMTI callback MonitorContendedEnter (MCE). This
callback is invoked whenever a thread cannot acquire an
object’s lock and must wait because another thread currently
holds this lock. We add every newly encountered object to
a list of intrinsic lock objects and assign an additional data
structure to it using JVMTI’s object tagging capability. The
data structure contains a unique identifier (see Section 3.4)
and a contention flag which indicates whether the object is
contended. The flag is initially set. The sampling loop peri-
odically inspects each object in the list by calling JVMTI’s
GetObjectMonitorUsage (GOMU). This function returns the
object’s owner thread as well as all threads that are currently
waiting for this object’s lock. Since we do not capture when
a contention is resolved, the list can contain objects which
are no longer contended, in which case GOMU returns no
waiting threads. If an object is no longer contended, we clear
its contention flag and remove it from the list. In case the
MCE callback is invoked again for this object, we simply set
the contention flag and reinsert it into the list. We could
also track uncontended objects with the MonitorContended-
Entered callback which signals when a waiting thread finally
acquires the lock. However, we decided against this because
executing code in this callback would increase the duration
of holding the lock which could cause more lock contention
and affect our analysis results.

3.2 java.util.concurrent
The java.util.concurrent part requires bytecode instrumen-

tation to get the list of contended objects since JVMTI does
not provide the means. As explained in Section 2, AQS
provides a basis for locking implementations. Hence, we
modified its method parkAndCheckInterrupt, which invokes
the LockSupport.park method. In the method, we introduced
additional bytecode that inserts the blocker object into a list
(separate from the list used for intrinsic locks). The blocker
object is always the this object, that is, an instance of AQS.
Each object in the list is inspected in the sampling loop by
retrieving its owner thread and all waiting threads via the
AQS interface. If an object is no longer contended, it is
removed from the list.

3.3 Sampling
Using JVMTI we record stack traces of the owner thread

and all waiting threads for every contended object used in

332

intrinsic locks and java.util.concurrent locks. After recording
the stack traces all data is packed into a so-called contention
event which is inserted in a global event buffer. An asyn-
chronous Java thread periodically retrieves all events in this
buffer, processes them and writes the result into a file, op-
tionally using compression.

3.4 Metadata
In order to efficiently create the contention event men-

tioned above, we do not include information like the thread
name, the class signature or the stack trace data in this event
itself but rather use unique identifiers that refer to addi-
tional metadata events. This way we significantly reduce the
amount of output data because we need to write the actual
metadata only once and not repeatedly in every contention
event. Each time a thread is started, we are notified via
the corresponding JVMTI callback and record a thread start
event with the name of the thread. When we encounter a
contended object for the first time, we create a new object
event, both for intrinsic locks and for java.util.concurrent
locks. This event consists of the identity hash code and the
class signature of the object. The new stack event stores the
method signature as well as the class signature of every stack
frame. It is only created once for every newly encountered
stack trace, because previously recorded stack traces are
already stored in a stack trace cache. All events are written
to the same global buffer.

4. EVALUATION
We evaluated the run-time overhead and the amount of

generated data using OpenJDK version 8u45 on a set of
real-world benchmarks. We also looked at the accuracy of
our approach using a synthetic benchmark.

4.1 Overhead
For simulating real-world tasks, we decided to use the multi-

threaded benchmarks from both the DaCapo 9.12 [2] bench-
mark suite1 and the Scala Benchmarking Project 0.1.0 [11].
Each benchmark was run with 45 iterations of which we only
used the last ten iterations for our evaluation to exclude the
VM’s startup phase. We repeated this process 40 times to
avoid other biases in the results.

All benchmarks were executed on a hyper-threaded quad-
core processor Intel Core i7-4770 with 16 GB of main mem-
ory and operating under Ubuntu Linux 15.10. Dynamic
frequency scaling and turbo boost were disabled for more
stable and reliable results. The benchmark suite was started
while no processes other than essential system services were
running. We chose sampling frequencies of 20 samples/s
and 100 samples/s, which we consider a reasonable trade-off
between overhead and accuracy. We measured the run-time
overhead by comparing the execution times of the individual
benchmarks with and without our profiler.

Figure 2 shows the median execution times for all multi-
threaded benchmarks. The first and third quartiles are rep-
resented by the error bars. The G.Mean shows the geometric
mean over all benchmarks with a 50% confidence interval
displayed as its error bars. The mean run-time overhead
is 1.5% when sampling with 20 samples/s and 5.1% when
sampling with 100 samples/s.

1We excluded batik and eclipse (do not work on OpenJDK 8)
and tradesoap which constantly timed out on our system.

90%
95%

100%
105%
110%
115%
120%
125%
130%
135%
140%
145%
150%

G.Mean

actors
apparat

avrora
h2 jython

luindex

lusearch

pmd
scalac

scaladoc

scalatest

sunflow

tmt
tomcat

tradebeans

xalan

Off
20 samples/s

100 samples/s

Figure 2: Run-time overhead with different sam-
pling frequencies compared to using no profiler.

0.00 B/s

250.00 kB/s

500.00 kB/s

750.00 kB/s

1.00 MB/s

1.25 MB/s

1.50 MB/s

1.75 MB/s

2.00 MB/s

actors20

actors100

pmd
20

pmd
100

scalatest20

scalatest100

tomcat20

tomcat100

tradebeans20

tradebeans100

Uncompressed
Compressed

Figure 3: Output data written per second. The sub-
scripts show the sampling frequency in samples/s.

As expected, the higher sampling frequency has a greater
impact on performance. The highest overhead is caused
by actors with 44% at 100 samples/sec. This is because
the number of possibly contented objects to inspect in the
sampling loop is four to 20 times larger than in all other
benchmarks. On the other hand, some benchmarks like
apparat or luindex even slightly gain performance. This can
be attributed to small influences on thread scheduling and
on garbage collection.

Figure 3 shows the average amount of data written per
second for the benchmarks that yield the highest values. The
largest output when sampling with 100 samples/s is produced
by pmd with slightly below 2 MB/s, followed by scalatest with
about 540 KB/s. For 20 samples/s the same benchmarks
drop to 500 KB/s and 120 KB/s, respectively. All other
benchmarks produce significantly less output, especially those
that are not part of Figure 3 for which we recorded less than
50 KB/s. Enabling compression substantially decreases the
amount of generated data by typically 70% to 90% and
reduces it to under 200 KB/s in all cases. Moreover, the
difference in run-time overhead is negligible (below 0.1%).

4.2 Accuracy
For determining the accuracy, we built a test suite using

the Java Microbench Harness [8]. Our suite creates lock
contention in a predefined way by varying the number of
threads, lock sites and the duration of lock holding times
(ranging from very short to very long contentions). This

333

means that we can predict which threads are waiting for how
long at what lock site. We found that our sampling approach
yielded the predicted results. Moreover, we executed the
test suite with our VM-internal profiler which resulted in
similar output. A more detailed analysis of the accuracy of
our sampling approach will be part of our future work.

5. RELATED WORK
In earlier work [5], we proposed a modification of the

OpenJDK HotSpot VM to record lock contention for both
intrinsic locks and java.util.concurrent locks by tracing con-
tention events. We combined and analyzed these events to
identify where contention occurs and also by which threads
it is caused, including detailed information on the contend-
ing object, its owner thread, all waiting threads and their
call chains. Contrary to our sampling-based approach, our
previous profiler records all contention with high accuracy
and still causes an acceptable mean overhead of just 7.8% for
multi-threaded applications. However, it relies on a modified
VM which may be unsuitable for existing environments.

Another modification of the HotSpot VM is described
by David et al. [3]. Their profiler monitors the so-called
critical section pressure (CSP) for each lock. This metric
represents the time threads have to wait for lock acquisition
as a function of the number of threads that are running. If
the CSP of a lock reaches a threshold, information about
this lock as well as a stack trace from one blocked thread are
collected. The authors report a worst-case overhead of 6%.

Tallent et al. [12] proposed a sampling-based lock con-
tention profiler for C programs which associates a counter
with each lock. The profiler periodically inspects all threads
and for each thread that is blocked on a lock, it increases
the lock’s counter. When the lock is later released by its
owner thread and the lock’s counter is non-zero, the owner
thread records the contention and its call chain. While this
approach has an overhead of only 5%, it does neither record
which threads had to wait nor their call chains.

Using hardware performance counters can result in even
less overhead. Inoue and Nakatami [6] presented a sampling
profiler that utilized such counters in a Java VM to collect
information on where locks are acquired and where blocking
occurs. They use a technique to record call chains using the
stack depth and achieve an overhead of typically below 2.2%.
However, they cannot determine the cause of contention and
java.util.concurrent locks are not supported.

Another approach is used in the Java Flight Recorder
(JFR) [4], a commercial tool built into the Oracle JDK.
It mostly imposes only about 1% run-time overhead and
provides data on the objects used in locking, which threads
were blocked and their call chains. However, only contentions
longer than 10 ms are recorded by default. Furthermore, JFR
blames the last thread that owned the lock for the contention.
This thread’s call chain, however, is not recorded and threads
that held the same lock before this last thread are not taken
into account. java.util.concurrent locks are not supported.

Research investigating java.util.concurrent locks was con-
ducted by Patros et al. [9]. They modified the IBM Java
VM to record park contention data whenever threads are
parked. The records include class data of the blocker object,
thread names and stack traces. They measured where locks
are held for how long and how many threads have to park.
The modifications result in a overhead below 0.5%. However,
they collect no information about where contention is caused.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we presented a sampling-based lock con-

tention profiler for Java applications that works outside the
VM. Using only JVMTI and Java bytecode instrumentation,
we can collect detailed contention data for both intrinsic
locks as well as for locks of the java.util.concurrent frame-
work. This data does not only show where contention occurs
but also where it is caused. Our novel approach incurs only
1.5% overhead when running with a sampling frequency of
20 samples/s and 5.1% with 100 samples/s. Therefore, we
consider this approach to be feasible for the use in production
environments.

Future work includes a statistical evaluation of accuracy of
our new profiler by comparing its contention output against
the results of our VM-internal approach [5]. Furthermore,
we intend to add capabilities to determine the actual lock
site of java.util.concurrent locks which we currently cannot
obtain from the stack traces.

7. ACKNOWLEDGEMENTS
This work was supported by the Christian Doppler For-

schungsgesellschaft and by Dynatrace Austria.

8. REFERENCES
[1] D. F. Bacon, R. Konuru, C. Murthy, and M. Serrano.

Thin locks: featherweight synchronization for Java. In
ACM SIGPLAN Not., volume 33, pages 258–268, 1998.

[2] S. M. Blackburn et al. The DaCapo benchmarks: Java
benchmarking development and analysis. OOPSLA ’06,
pages 169–190, 2006.

[3] F. David, G. Thomas, J. Lawall, and G. Muller.
Continuously measuring critical section pressure with
the free-lunch profiler. OOPSLA ’14, pages 291–307,
2014.

[4] M. Hirt and M. Lagergren. Oracle JRockit: The
Definitive Guide. Packt Publishing Ltd, 2010.

[5] P. Hofer et al. Efficient tracing and versatile analysis of
lock contention in Java applications on the virtual
machine level. ICPE ’16, pages 263–274, 2016.

[6] H. Inoue and T. Nakatani. How a Java VM can get
more from a hardware performance monitor.
OOPSLA ’09, pages 137–154, 2009.

[7] D. Lea. The java.util.concurrent synchronizer
framework. Sci. Comput. Program., 58(3):293–309, Dec.
2005.

[8] Oracle. OpenJDK Code Tools: Java Microbench
Harness (JMH).
http://openjdk.java.net/projects/code-tools/jmh/.

[9] P. Patros, E. Aubanel, D. Bremner, and M. Dawson. A
java util concurrent park contention tool. PMAM ’15,
pages 106–111, 2015.

[10] T. Pool. Lock optimizations on the HotSpot VM.
Technical report, 2014.

[11] A. Sewe, M. Mezini, A. Sarimbekov, and W. Binder.
Da capo con scala: Design and analysis of a scala
benchmark suite for the java virtual machine. OOPSLA
’11, pages 657–676, 2011.

[12] N. Tallent, J. Mellor-Crummey, and A. Porterfield.
Analyzing lock contention in multithreaded
applications. PPoPP ’10, pages 269–280, 2010.

334

http://www.cdg.ac.at/en/
http://www.cdg.ac.at/en/
http://www.dynatrace.com
http://openjdk.java.net/projects/code-tools/jmh/

	Introduction
	Locking in Java
	Approach
	Intrinsic Locks
	java.util.concurrent
	Sampling
	Metadata

	Evaluation
	Overhead
	Accuracy

	Related Work
	Conclusions and Future Work
	Acknowledgements
	References

