
DuckTracks: Path-based Object Allocation Tracking

[Work in Progress]

Stefan Fitzek1 Philipp Lengauer2 Hanspeter Mössenböck2

1Christian Doppler Laboratory MEVSS 2Institute for System Software
Johannes Kepler University Linz, Austria Johannes Kepler University Linz, Austria

stefan.fitzek@jku.at philipp.lengauer@jku.at

ABSTRACT
Efficiently tracking an application’s object allocations is of
interest for areas such as memory leak detection or mem-
ory usage optimization. The state-of-the-art approach of in-
strumenting every allocation site with a counter introduces
considerable overhead. This makes allocation tracking in
a production environment unattractive. Our approach re-
duces this overhead by instrumenting control flow paths in-
stead of allocation sites and dynamically determining the
hot path through a method. Our ultimate goal is to reduce
the amount of required counter increments by such a degree
that using it in production environments becomes feasible.
We present an implementation of our approach for the Java
HotSpot Virtual Machine. First measurements already show
a reduction of required increments of up to 30% compared
to the state of the art.

Keywords
Allocation Tracking; Allocation Site; Hot Path; Memory
Monitoring; Path; Control Flow

1. INTRODUCTION
Detecting and localizing memory leaks, reducing the

amount of required garbage collections, or identifying pos-
sible code optimizations regarding memory behavior count
among the areas that require, or benefit from, allocation
tracking. The general approach used by state-of-the-art al-
location trackers is to instrument every allocation site with a
counter. The drawback of this approach is that the counter
overheads ruin the advantage of Java’s fast allocations. Al-
though it provides accurate results, the introduced run-time
overhead makes this approach infeasible in a production en-
vironment. State-of-the-art memory monitoring software
such as ElephantTracks sometimes introduces run-time over-
head exceeding 1000% [7], although it has to be said that
they track some additional events like object deaths, too.

We introduce DuckTracks, an allocation tracking ap-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPE’17, April 22-26, 2017, L’Aquila, Italy
c© 2017 ACM. ISBN 978-1-4503-4404-3/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3030207.3030235

proach that uses path information to reduce the amount
of counter increments, and, therefore, the introduced over-
head required to track allocations. We define a path as a
sequence of connected blocks in the control flow graph of
a method. All blocks and edges in the control flow graph
belong to exactly one path.

Every method usually has multiple paths which the con-
trol flow can take during execution. One of these paths will
be taken more often than the others. We call this the hot
path. By identifying this path and by instrumenting it with
a counter representing its allocations we can track the al-
locations of a method with just a single counter increment
in most cases. To correctly track allocations during execu-
tions that diverge from the hot path, we have to instrument
all diverging paths as well. Their counters may add addi-
tional allocations or remove allocations which were already
counted, but will not happen due to the control flow diverg-
ing from the expected path.

Correctly identifying the hot path is best done by analyz-
ing the path usage of a method while it is executed, which
can be done by gathering a path profile during a data gath-
ering run and then basing the instrumentation on this profile
during the actual run. This, however, assumes that the data
gathering run is representative for the actual method usage
and would require tailoring data gathering runs to profiled
applications. We therefore chose a more dynamic approach.
By initially choosing paths based on heuristics, DuckTracks
gathers hot path information during the actual run. It then
reinstruments methods based on this information, if neces-
sary.

To the best of our knowledge, DuckTracks is the first mon-
itoring tool that tracks allocations pathwise in order to re-
duce the amount of required counter increments. Further-
more, these paths are not statically determined and fixed,
but dynamically adjusted based on data derived from our al-
location counters. This enables DuckTracks to adapt itself
to the behavior of the monitored application.

2. APPROACH
Our approach dynamically instruments the methods of ev-

ery class at load time, using functionality provided by the
Java Virtual Machine Tool Interface (JVMTI) and the Java
Native Interface (JNI). The instrumentation process is di-
vided into six steps, as shown in Figure 1.

The first step is acquiring the method’s bytecode which is
trivial due to existing JVMTI functionality. We then con-
struct the bytecode’s control flow graph.

327

http://mevss.jku.at/?page_id=1538
http://www.ssw.jku.at/General/Staff/PL/
http://www.ssw.jku.at/General/Staff/HM/
http://mevss.jku.at/
http://www.ssw.jku.at/
http://www.jku.at/
http://www.jku.at/
mailto:stefan.fitzek@jku.at
mailto:philipp.lengauer@jku.at
http://dx.doi.org/10.1145/3030207.3030235

A

D

B C

A

D

B C

A

D

B C

void foo(){
 new A();
 if(...) {

 new B();
 } else {

 new C();
 }
 new D();
}

void foo(){
 new A();
 if(...) {
 cnt1++;
 new B();
 } else {
 cnt2++;
 new C();
 }
 new D();
}

A

D

B C

200 50

200 50

Figure 1: From original to instrumented bytecode

In the next step, we mark every edge of this control flow
graph with its execution frequency. Naturally, when a class
is initially loaded no edge frequency data exists. There-
fore, we additionally instrument every method with an entry
counter. These entry counters trigger a reload of the class
after a certain number of method calls, which allows us to re-
instrument its methods. During reinstrumentation we have
access to the counter values of the previous instrumentation,
which gives us the traversal frequencies of all instrumented
edges. We then propagate these values through the control
flow graph. This propagation is currently rather rudimen-
tary, and improving it will be part of our future work.

The frequency-marked control flow graph is then used to
create the paths through the method. We continue by deter-
mining the ideal counter position for each of these paths and
then calculate the counter semantics, i.e., which allocations
are measured by a specific counter and which other alloca-
tions have to be corrected. Finally, the method’s bytecode
is instrumented with these counters and the instrumented
class is loaded.

Although constructing the control flow graph and instru-
menting the bytecode are comprehensive topics by them-
selves, the path building and counter calculation steps con-
stitute the core of our contributions. We will therefore cover
these two aspects in more detail, starting with how paths are
built.

2.1 Path Building
We define a path as a sequence of connected blocks in the

control flow graph of a method. The left side of Figure 2
shows a trivial method with two such paths and purely se-
quential control flow. A path can either start at a block
without predecessors, such as the continuous (red) path at
the method entry block A, or by branching off from another
path, as the dashed (blue) path. The block from which a
path branches off is called its branching block, e.g., block A
is the dashed path’s branching block. Similarly, a path can
end by leaving the method, indicated by ending with a block
without successors, such as block E, or by joining another
path, i.e., the path’s last block is connected to a block that
belongs to another path. The block at which the path joins
is called its joining block, e.g., block E is the dashed path’s
joining block.

2.1.1 Handling Sequential Paths
Path building starts with the hot path, which starts at the

method entry block. We build it by incrementally append-
ing the most likely successor of the current tail block. If the
control flow graph is not frequency marked, e.g., when the
class is initially loaded, the most likely successor is picked
based on static heuristics. Otherwise, we pick the successor
with the highest edge frequency. The picked successor be-
comes the path’s new tail block. This process repeats until
we reach a method exit, which ends the path.

The resulting path may contain several branching points,

A

E

B

C

D

B
ran

ch
ing B

lo
ck

Jo
inin

g B
lock

P
ath B

locks

A

E

B

C

D

Sequential: Loop Detection:

A

E

B

C

D

Loop Splitting:

Figure 2: Sequential and looping path structure

i.e., blocks with more than one successor where additional
paths branch off. We now create each of these side paths.
Unlike the initial path, these paths may select successors
that already belong to other paths. This leads to a join:
The path’s joining block is set accordingly, which ends the
path. The result of this process can be seen on the left side
of Figure 2, with the dashed path branching off from block
A and rejoining at block E.

2.1.2 Handling Loops
Loops are detected during path building when a path un-

der construction, called the current path, tries to append a
block that is already part of this path. We call this block
the header block. Figure 2 shows this situation in the middle
graph: the dashed (blue) path tries to append block C as
the successor of block D, but block C is already part of the
dashed path. Therefore, block C is identified as the header
block of a loop.

We handle loops by splitting off the path segment after
the header block and turning it into a separate path. The
resulting path’s branching block and its joining block are
identical, i.e., the header block. This has been done in the
rightmost graph of Figure 2, resulting in the dashed-dotted
(green) path which branches off from block C. Construction
of the dashed path then continues at the header block by
picking another successor, which leads to the dashed path
joining the continuous (red) path at block E in our example.

If the header block has no other successors, then the cur-
rent path ends with the header block. As a rule, the current
path cannot join any loop path that has been split off from
the current path itself. After the current path has been con-
structed, the branching points in any of the split off loop
paths are handled in addition to the path’s own branching
points.

No further knowledge of loop structure or specialized han-
dling is required. Loops are therefore simply paths that
branch off from some block and rejoin at the same block.

2.2 Counter Construction
We now construct a counter for each path. These coun-

ters are defined by two attributes: their location and their
semantics, i.e., the set of allocation sites that are affected by
a specific counter. A counter’s semantics is influenced by its
own location as well as by the locations of other counters.
We therefore determine the locations of all counters before
calculating their semantics.

328

A

C

B

E

D

F

G

A

C

B

E

D

F

G

A

C

B

E

D

F

G

...Counter that will be triggered if green(dash-dotted)path is taken ...Counter that will be skipped if green(dash-dotted) path is taken

A

C

B

E

D

F

G

Allocations: {+D}
BC: {-C}
JC:{+F,+G}
Semantics:
{-C,+D,+F,+G}

Allocations: {+D}
BC: {-C}
JC:{-E}
Semantics:
{-C,+D,-E}

Allocations: {+D}
BC: {+A,+B}
JC:{-E}
Semantics:
{+A,+B,+D,-E}

Allocations: {+D}
BC: {+A,+B}
JC:{+F,+G}
Semantics:
{+A,+B,+D,+F,+G}

Figure 3: Counter semantics as dictated by location

2.2.1 Counter Locations
Counters are placed on edges in the control flow graph.

We want to place counters such that as few of them as pos-
sible are triggered during any given method execution. To
achieve this, we introduce the terms flow and share count.
A flow is a sequence of blocks from the method entry to
the method exit, i.e., a complete control flow through the
method during a particular execution. The share count of
an edge specifies how many flows share this edge. Since ev-
ery edge is owned by exactly one path, the share count is
at least one. It is increased by every path that branches off
after the edge’s end block and every path that joins before
the edge’s start block.

The chance of incrementing multiple counters during a
method execution rises for every counter placed on an edge
with a share count greater than one. We therefore aim to
place counters at the least shared edge of every path.

2.2.2 Counter Semantics
A counter’s semantics is the set of allocation sites that

the counter represents. It consists of three components: the
allocations, the branching correction and the joining correc-
tion.

A path’s allocations represent the allocation sites of the
path itself and are therefore the set of all allocation sites in
its blocks. The branching correction and the joining correc-
tion represent allocations before and after the path. Their
values depend on the counter placement in the path from
which the current path branches off and the counter place-
ment in the path that the current path joins. Figure 3 shows
the four possible counter placement scenarios and their ef-
fect on the branching correction and the joining correction.
In this example, we are interested in the value of the dash-
dotted (green) path, which branches off from the continuous
(red) path and joins the dashed (blue) path.

If the continuous path’s counter is placed before the
branching block B, it will have been incremented already
when the dash-dotted path is entered. The dash-dotted
path therefore requires a branching correction (BC) that
subtracts the allocations on the continuous path after the
branching block B since they have been counted but will not
be traversed. This is the case in the two graphs on the left
side of Figure 3.

A

E

B

C

D

A

E

B

C

D

Allocations: {+D}
BC: {+A,+C}
JC:{-A}
Semantics:
{+C,+D}

Allocations: {+D}
BC: {-E}
JC:{+C,+E}
Semantics:
{+D,+C}

Figure 4: Loop counter semantics as dictated by
location

On the other hand, if the continuous counter is placed af-
ter the branching block B, it will not have been incremented
yet when the dash-dotted path is entered. The dash-dotted
path’s branching correction therefore needs to add all alloca-
tions that happen before and in the branching block B since
they have been traversed but were not counted. This can be
seen in the two graphs on the right side of Figure 3.

The same principle applies when calculating the joining
correction (JC) of the dash-dotted path. If the dashed
path’s counter will be skipped, i.e., if it is placed before
the joining block F the joining correction needs to add all
allocations of the dashed path after and in the joining block
F. This case holds in the two upper graphs in Figure 3. If
the dashed path’s counter will be incremented, i.e., if it is
placed after the joining block F, the joining correction needs
to subtract all allocations of the dashed path that happen
before the joining block F. This is the case in the two lower
graphs in Figure 3.

This example assumes, for simplicity’s sake, that both the
continuous path and the dashed path do not branch off from,
or join, another path. If, for example, the dashed or con-
tinuous path were to join a fourth path, then this fourth
path would also affect the dash-dotted path’s corrections,
as would every other path in this join chain until a path is
reached that exits the method. The dashed and continuous
paths’ branching chains affect the dash-dotted path’s cor-
rections in the same way. This will be explained in more
detail in future work.

The actual counter semantics is the sum of these three
components. Consequently, parts of the branching correc-
tion and the joining correction may cancel each other out.
Loops are a good example of this. Since a loop’s branch-
ing block and joining block are the same, namely the header
block, both corrections will be calculated based on the same
path segment. The result will be that the parts of the cor-
rections that handle blocks before and after the header block
cancel each other out, leaving only the allocations of the
header block itself. The resulting counter semantics for the
loop will therefore include the loop’s allocations and the al-
locations of the header block, which together represents a
single loop iteration. This is shown in Figure 4: the place-
ment of the dashed (blue) path’s counter changes the dash-
dotted (green) path’s branch correction and join correction,
but the resulting counter semantics remains the same.

When this step is completed, we know the location and
semantics of every path’s counter. A path’s counter seman-
tics may be empty, meaning that traversing the path has no

329

effect on the allocation total. We eliminate such counters.
After placing the counters into the bytecode, they will

accurately count the number of allocations caused by every
method execution. Since we identified the hot path and
constructed the counters based on it, only a single counter
increment will be needed most of the time.

3. FIRST RESULTS
We tested our prototype implementation on various

benchmarks of the DaCapo, DaCapo Scala and SPECjvm
suites. These preliminary tests showed a reduction of re-
quired counter increments of up to 30% compared to count-
ing allocations individually. We measured a run-time over-
head of 20-30%. Section 5 will present some of our ideas to
further improve these first results.

4. RELATED WORK
There is ample work on tracking allocations, resulting in

varying levels of overhead and precision. Some approaches,
such as AntTracks [6], modify a VM and thus benefit from
having full access to VM functionality. This allows for low
overhead as well as for tracking events that cannot be ac-
cessed from outside the VM. The price for this level of access
is a lack of portability due to the required VM modifications.

Agent-based approaches such as ElephantTracks [7] imple-
ment tracking through instrumentation. These approaches
cause significantly more overhead and have less access to VM
events. They are, however, not restricted to a single VM.
DuckTracks falls into this category and attempts to reduce
the overhead penalty to a level that makes its usage feasible
in a production environment.

Creating and utilizing path information is a well-
researched area, too. The seminal work of Ball and Larus [1,
2] describes an algorithm for creating path traces in purely
sequential programs. It has been built upon in a variety of
subsequent work, including additions for loop handling such
as D’Elia et al. [4], or selective profiling such as Vaswanie
et al. [8]. The main difference between the Ball/Larus al-
gorithm and our approach is that they consider paths as
complete sequences of blocks from method entry to method
exit, which requires counters that ensure that every such se-
quence is correctly tracked. Since we are only interested in
tracking allocations, we can omit all counters for path se-
quences that do not change the number of allocated objects.
Also, their counter placement is optimized to reduce the
number of placed counters while still delivering a complete
path trace. The goal of our counter placement is to minimize
the number of counter increments during execution.

Hot path information is extensively used in areas such as
compilation and code optimization, as shown in the work
of, e.g., Bebenita et.al [3] or Gupta et al. [5]. However, to
the best of our knowledge, we are the first to use hot path
information to achieve more efficient allocation tracking.

5. FUTURE WORK
We currently work on improving edge frequency propaga-

tion by exploiting dominance relationships between blocks
as well as marking edges with frequency ranges if precise
marking is not possible. Since it would by trivial to ex-
tend DuckTracks to allow tracking of other attributes such
as method calls, eventually adding such attributes remains a
possibility for future work. A more immediate improvement

is the addition of counter inlining. This involves removing
the hot path counter from a method and adding its seman-
tics to the counters of every calling method. This would
reduce the amount of required counter increments even fur-
ther. We also plan to handle exceptions by instrumenting
catch blocks and using the stack trace to correct allocations.

6. CONCLUSIONS
We improved upon the state-of-the-art approach for allo-

cation tracking by tracking per path instead of per allocation
site. We further refined our approach by constructing paths
according to their execution probabilities, thereby using hot
path information to great effect.

Preliminary results already show that our approach re-
duces the amount of necessary increments by up to 30%
compared to counting allocations individually, with further
optimizations under way.

Reducing the amount of required increments brings us one
step closer to realizing an allocation tracker that is suited for
production use. This is achieved without the need for extra
runs to gather profiling information due to DuckTrack’s self-
optimizing, adaptive nature.

7. ACKNOWLEDGMENTS
This work was supported by the Christian Doppler For-

schungsgesellschaft and by Dynatrace Austria.

8. REFERENCES
[1] T. Ball and J. R. Larus. Optimally profiling and

tracing programs. ACM Trans. Program. Lang. Syst.,
16(4), July 1994.

[2] T. Ball and J. R. Larus. Efficient path profiling. In
Proc. of the 29th Annual ACM/IEEE Int’l. Symposium
on Microarchitecture, Washington, DC, USA, 1996.

[3] M. Bebenita, M. Chang, G. Wagner, A. Gal,
C. Wimmer, and M. Franz. Trace-based compilation in
execution environments without interpreters. In Proc.
of the 8th Int’l. Conf. on the Principles and Practice of
Programming in Java, New York, NY, USA, 2010.

[4] D. C. D’Elia and C. Demetrescu. Ball-larus path
profiling across multiple loop iterations. In Proc. of the
2013 ACM SIGPLAN Int’l. Conf. on Object Oriented
Programming Systems Languages & Applications, New
York, NY, USA, 2013.

[5] R. Gupta, D. A. Berson, and J. Z. Fang.
Resource-sensitive profile-directed data flow analysis for
code optimization. In Proc. of the 30th Annual
ACM/IEEE Int’l. Symp. on Microarchitecture,
Washington, DC, USA, 1997.

[6] P. Lengauer, V. Bitto, and H. Mössenböck. Accurate
and efficient object tracing for java applications. In
Proc. of the 6th ACM/SPEC Int’l. Conf. on
Performance Engineering, New York, NY, USA, 2015.

[7] N. P. Ricci, S. Z. Guyer, and J. E. B. Moss. Elephant
tracks: Portable production of complete and precise gc
traces. In Proc. of the 2013 Int’l. Symp. on Memory
Management, New York, NY, USA, 2013.

[8] K. Vaswani, A. V. Nori, and T. M. Chilimbi.
Preferential path profiling: Compactly numbering
interesting paths. In Proc. of the 34th Annual ACM
SIGPLAN-SIGACT Symp. on Principles of
Programming Languages, New York, NY, USA, 2007.

330

http://www.cdg.ac.at/en/
http://www.cdg.ac.at/en/
http://www.dynatrace.com

	Introduction
	Approach
	Path Building
	Handling Sequential Paths
	Handling Loops

	Counter Construction
	Counter Locations
	Counter Semantics

	First Results
	Related Work
	Future Work
	Conclusions
	Acknowledgments
	References

