
Cloning IO Intensive Workloads Using Synthetic
Benchmark

Dheeraj Chahal Manoj Nambiar

{d.chahal|m.nambiar}@tcs.com
TCS Innovation Labs

Mumbai, India

ABSTRACT
Performance evaluation of an enterprise application on mul-
tiple storage systems of interest called target systems, is a
time consuming and costly process. Moreover, it is increas-
ingly challenging to predict the performance at higher con-
currencies (no. of users) on target systems when the appli-
cation is migrated from the low performance source system
where the application is currently deployed.
In this paper, we present a methodology to generate equiv-
alent synthetic benchmark workloads for IO intensive ap-
plications. These synthetic benchmarks are easy to deploy
and recreate the application behavior faithfully. We essen-
tially extract the temporal and spatial characteristics of the
application workload traces on the source system and re-
play those characteristics using synthetic benchmark on the
target system. Also, we extrapolate these characteristics to
predict the performance at higher concurrencies using syn-
thetic benchmark without generating traces for those con-
currencies.
To verify the efficacy of our methodology, we have tested our
approach successfully using two different types of workloads
namely TPCC and JPetStore. We present our extrapolation
results on the target storage system with an error bound of
less than 20% for concurrencies up to an order of the mag-
nitude of the source system.

Keywords
Performance prediction; IO traces; extrapolation

1. INTRODUCTION
When the resource utilization or latency of an IO intensive

application increases, enterprises are interested in migrating
their data from a system using slow performing storage de-
vices (e.g. low-end HDDs) to a system with low latency
devices like high-end hard disk drives (HDDs) or solid-state-
drives (SSDs). SSDs are becoming commonplace and prac-
titioner in academia and industry are giving more emphasis

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPE’17, April 22-26, 2017, L’Aquila, Italy
c© 2017 ACM. ISBN 978-1-4503-4404-3/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3030207.3030238

on their performance studies [6] as SSDs offer dual advan-
tage of better performance and energy efficiency.
Unfortunately, studying the performance of an application
with multiple types of storage devices and varying number
of cores is a time consuming and daunting task. It either re-
quires deploying the application and migrating the data to
each target system or a priori knowledge of the system with
different concurrency levels (no. of users). IO trace replay is
one technique that can be used to reproduce the application
characteristics without deploying the application on the tar-
get system. Trace collection at large workload results in time
dilation and replaying such traces results in incorrect per-
formance estimation. Hence, trace replay based techniques
are not advisable for large workloads.
Synthetic benchmarks like IOZone [3], IOmeter [8] overcome
many drawbacks of trace and replay when configured appro-
priately for representing the application workloads.
Our scheme presented in this paper allows system admin-
istrators to experiment easily with multiple systems with
minimal efforts. We capture IO traces of the application of
interest at low concurrencies and extract important proper-
ties. We feed these properties to synthetic benchmark and
play them on the target system and thus accurately creating
the same behavior of the application. Also, we use statistical
methods to extrapolate these features to predict the perfor-
mance at higher concurrency levels without generating the
traces at those concurrency levels.
This approach does not require deploying real database on
the target system because performance of the system is de-
pendent on the access pattern instead of the actual data. We
are recreating the same access pattern using only replica of
database files of the same size as in the real database. Also,
our approach is independent of operating systems or sched-
ulers as we capture application characteristics in the traces
which does not change across operating systems or sched-
ulers.
The objective of this research work is two-fold:
1) Generate representative workloads for IO intensive enter-
prise applications using synthetic benchmarks that can be
used with ease across multiple platforms with different stor-
age systems.
2) Extrapolate features of the application that represent the
workload of the application at higher concurrency levels.
We make an assumption that there are no software bottle-
necks present in the application and bottlenecks are resulted
only due to hardware resources at higher concurrencies.
The rest of the paper is structured as follows: Section 2 de-
scribes related work and state of the art. In section 3, we

317

discuss our approach and implementation in detail. We dis-
cuss experimental setup in section 4. Results are discussed
in section 5 followed by conclusion in section 6.

2. RELATED WORK
Trace and replay is a well known technique used for de-

bugging and profiling applications. There is a large body of
work available for trace replay based mechanisms for storage
system evaluation[5][10]. Tak et al. developed a trace based
technique called PseudoApp[9] to estimate the performance
and resource consumption of the application. ROOT[11]
is similar work in this area to capture the traces at each
resource and replay them in the same order on the target
system. These methods either replay traces as it is on the
potential target systems or develop representative workloads
using traces without extracting application features.
In another work, Carrington et al. [4] used statistical meth-
ods for extrapolating the trace characteristic of the appli-
cation for inferring the large scale computation behavior of
an application. While this work is applied to compute in-
tensive applications, our research is focused on IO intensive
applications where application features differ from compute-
intensive applications.
We extend the recent work of Carrington et al. for IO inten-
sive applications by introducing novel method for extrapo-
lating the application features and predict the scaling be-
havior. To the best of our knowledge there is no work avail-
able for extrapolating the IO workloads using application
features from IO traces.

Figure 1: Framework

3. OUR APPROACH
The framework we developed is as shown in Figure 1. Our

approach requires running the application workload at dif-
ferent levels of concurrencies and recording the IO traces at
the system call level of the database server. All significant
features are extracted from the traces by the feature ex-
traction engine. These features are extrapolated by modeler
using the statistical models. Extrapolated feature values are
translated into job file for synthetic benchmarks. Synthetic
benchmark is run with the extrapolated values to study the
performance of the new device at larger concurrencies. De-
tailed description of each component is as below:

3.1 IO Trace Recording
Two popular tools for tracing I/O activity of an appli-

cation are strace and blktrace. strace records system calls
of the application and blktrace records I/O activity of the
device. We choose strace as it is a better representation of
application behavior which can be easily reproduced unlike
blktrace which captures kernel activity related to a device.
To capture the trace at database server we first track all
the threads spawned by MySQL and then attach strace to
each of those threads. The strace induces some overhead,

which increases with an increase in workload due to the
fact that strace pauses application twice for each system
call, i.e. when a system call begins and when system call is
stopped. We capture only IO related system calls to mit-
igate the strace overhead and size of the trace file as well.
Moreover, we collect traces at low concurrencies only and
extrapolate for higher. The IO calls that we capture are
read(), write(), pread(), pwrite(), lseek(), fsync(), open(),
close(). Our trace file contains system calls with thread ids,
timestamp value, size of data read or written, offset address
and system call execution time.

3.2 Feature Extraction
Feature extraction is the most important step in this work.

The challenge lies in selecting all the important features that
represent the temporal and spatial characteristics of an ap-
plication and then extracting judiciously from the traces.
We observe that there is a n:m relationship between threads
and database files, i.e. a thread can access multiple files in
the database and multiple threads can access the same file
as well. In a worst case scenario, a thread can access all
m files in the database. Hence, for an application running
n threads would require n*m jobs in the benchmark. We
overcome this limitation by grouping threads in the trace
file based on file descriptor (FD) such that for each FD we
create two trace files,one containing read IO threads and
other containing write IO operations threads. All features
are extracted from read and write files of each FD. There
are two benchmark jobs created (read and write ops) for
each FD representing all features corresponding to that FD.
Since all database files are not opened in RW mode i.e. some
are read only and others write only, hence total number of
benchmark jobs created is equal to or less than twice the
number of unique FDs (Figure 2).

Figure 2: Thread (tn), file descriptor(fd) and benchmark
jobs mapping

The important features we captured that represent the
application characteristics and also affect the device perfor-
mance significantly are as follows [7]:
Randomness:The performance of a storage device is sig-
nificantly affected by the retrieval and the storage patterns.
The sequential read and write operations are performed faster
as compared to random read and write operations.
Thinktime: Time duration for which a job is stalled after
an IO has completed and before next IO operation is issued.
Blocksize: The distribution of chunk sizes to issue IO.
IOPS : Total number of IO (read and write) operations per-
formed per second.

3.3 Feature Extrapolation
In this work we propose use of a statistical method based

approach to predict the performance of the application at

318

No.of Users iops(writes/s)
customer.ibd (fd1) orders.ibd (fd2) stock.ibd (fd3) order line.ibd (fd4) ibdata1.ibd (fd4) ib logfile0(fd5) 10.ibd

10 1.67 2.2 8.1 2.6 1.7 2 1.8
15 2.5 3.1 12.14 3.3 1.6 3.5 2.5
20 3.2 4.1 16 4.7 2.2 5.4 3.3
.....

200(extrapolated) 30.70 (linear) 31.9(power) 154(power) 42.3(linear) 4.4(linear) 64.7(power) 24.23(power)

Table 1: Extrapolation of TPCC feature iops (writes/s) for each file descriptor

higher concurrency on the target system by extrapolating
the application features.
Each feature might exhibit a different scaling behavior. Some
features scale linearly as the workload or concurrency in-
creases while others might scale differently (e.g. power or
logarithmic). Various canonical functions can be fitted in to
different features [4]. We used four canonical forms in this
study namely linear, logarithmic, power and exponential. In
order to decide the right statistical method for extrapolating
each feature for each FD, we take traces at three different
workloads and extract all features corresponding to each FD.
We fit all four statistical methods in each feature for all FDs
and then choose the one that has largest coefficient of de-
termination (R2) value. In Table 1 we show extrapolation
of one application feature (iops). Using the feature data for
10,15,20 user workloads we extrapolate the write iops for
200 users for each FD. Likewise, we can extrapolate read
iops for each FD. Other features described in section 3.2 are
also extrapolated from both read and write trace files for
required concurrencies.

3.4 Trace Feature Replay
In addition to defining all the features that are mentioned

in the section 3.2, we also define some additional application
and system configuration specific parameters as below:
ioengine: Defines how IO is delivered to the kernel.
buffered : Set for buffered IO.
fsync: Set to sync dirty data when writing to a file.
time based : Time based criterion for a benchmark run.
runtime: Duration of the job run.
filesize: File size for each job to perform r/w ops.
filename: Name of the database file.
Benchmark jobfile is prepared by defining all the parameters
or features defined above and in section 3.2 for each FD. This
file can be migrated to any storage system where benchmark
is installed and run with ease.

4. EXPERIMENTAL SETUP
We have validated our approach using a well know TPC-C

benchmark and web based application JPetStore [1]. TPC-
C is a benchmark for comparing online transaction process-
ing (OLTP) performance on various software and hardware
configuration. IO intensive TPC-C has a complex database
and consists of five concurrent complex instructions. JPet-
Store is an eCommerce J2EE application benchmark which
emulates an online pet store. For replaying the application
characteristics on target systems we use flexible IO (FIO) [2]
tester synthetic benchmark due to flexibilty it provides for
detailed workload setup. MySQL is used as a back-end for
both the benchmarks. The storage systems used in this
study are HDD and SSD (Table 2). IO traces are captured
at multiple concurrency levels on the database server for 20
minutes including 3 minutes warm-up time.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40

H
D

D
 U

til
iz

at
io

n(
%

)

No. of users

Actual Application
FIO run

(a)

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500

H
D

D
 U

til
iz

at
io

n(
%

)

No. of users

Actual Application
FIO run

(b)

Figure 3: FIO vs application run on HDD for (a) TPCC
and (b) JPetStore

5. RESULTS
We performed tests to validate our thesis for replicating

the application behavior using synthetic benchmark FIO and
also extrapolating the features for higher concurrency levels.
The resemblance in storage device utilization is used as an
evaluation criterion.

5.1 Feature Replay on HDD
Our first objective is to generate representative workloads

for IO intensive applications. We show that using appli-
cation feature with the FIO synthetic benchmark, we are
able to recreate the application behavior. Results for two
applications that we used are as below:

5.1.1 TPCC on HDD
We run TPCC at multiple concurrency levels 5, 10, 15,

20 and 30. Trace files are captured for all these concurren-
cies. We also record the disk utilization for each of these
concurrencies when strace is not running. These trace files
are supplied to feature extraction component. The output
of feature extraction component is a jobfile for FIO. We run
FIO with each of these files on the same storage device and
record resource utilization. As shown in Figure 3a, the FIO
run results in resource utilization comparable to actual ap-
plication run for most of the concurrencies.

5.1.2 JPetStore on HDD
Similar behavior is seen with the JPetStore application as

well. We collect traces for 500, 1K, 1500 and 2K users. After
extracting features from these traces, we feed in FIO jobfile
and run for same duration (Figure 3b). We see some differ-
ence in the device utilization only at higher concurrency i.e.
1500 and 2K. This can be attributed to the strace overhead
while collecting traces as discussed earlier.

5.2 HDD to SSD Migration and Extrapolation
Another objective of this work is to predict the perfor-

mance across platforms and extrapolate for higher concur-
rency levels. We run our applications on HDD first and
replay the features using FIO on SSD. Since SSD shows sig-
nificant improvement in resource utilization over HDD, we

319

Storage type Disk Model RPM No. of Disks IO Schedular File System Interface System Config Linux Kernel
High-end HDD HP 10000 1 CGQ ext4 Dual Port,SAS 6GB/s 16 Core Xeon CPU @ 2.4 GHz,12MB L2 cache CentOS 6.6,2.6.32

SSD
Virident Systems Inc.

FlashMAX Drive Micron-slc-32
- 1PCIe Default ext3 - 16 Core Xeon CPU @ 2.4 GHz

”
12MB L2 cache CentOS 6.6,2.6.32

Table 2: Storage systems used in our study

 0

 5

 10

 15

 20

 25

 30

 0 50 100 150 200 250

SS
D

 U
til

iz
at

io
n

No. of users

Application
FIO

(a)

 0

 5

 10

 15

 20

 0 5000 10000 15000 20000

SS
D

 U
til

iz
at

io
n(

%
)

No. of users

Application
FIO

(b)

Figure 4: FIO vs application run on SSD for (a) TPCC
and (b) JPetStore

should be able to extrapolate for larger concurrencies.

5.2.1 TPCC on SSD
We take traces of TPCC application for three concurrency

levels i.e. 10, 15, 20 on HDD. Features are extracted and ex-
trapolated for 30, 100 and 200 and run with FIO on SSD. For
concurrencies 10,15,20 (no extrapolation), we see same re-
source utilization by FIO and actual application (Figure 4a).
There is some deviation from the actual resource utilization
due to strace overhead amplification but within 20% error
bound at large concurrencies.

5.2.2 JPetStore on SSD
For JPetStore application we collect IO traces for 1K,1500

and 2K users on HDD. All significant features are extrapo-
lated for higher concurrencies 5K,10K and 15K. These fea-
tures are replayed with FIO on SSD and results are as shown
in Figure 4b. We observe a small difference in resource uti-
lization only at large concurrencies due to strace overhead
amplification.

6. CONCLUSION AND FUTURE WORK
We have presented a method that can be used for gener-

ating representative workloads for IO intensive applications
by extracting features from IO traces. We also proposed a
methodology for extrapolating the application features us-
ing canonical functions. Using synthetic benchmark FIO, we
have faithfully replayed the representative workload of two
applications on HDD. Also, we have successfully tested the
application behavior on SSD for higher concurrencies using
extrapolated features.
We have seen that the trace closely matches the application
utilization behavior w.r.t concurrency. This means that the
trace can be trusted to emulate the real application I/O be-
havior. The trace can then be used on any server with a
different storage device without having to install the appli-
cation or generate concurrent user workload. The utiliza-
tion generated by the trace at a certain concurrency level
can be divided by the throughput to derive the service de-
mand of the application on the new storage device. Also,
throughput(IOPS) can be easily converted to application
transactions per second metric by comparing the applica-
tion performance and trace data at the source system. This

a can be fed along with other resource demands into an an-
alytical or simulation model to predict performance of the
application on the target system with a different storage de-
vice than the source while other things being the same. We
intend to validate with experiments few more accuracy met-
rics (e.g. response time) using resource utilization and IOPS
data.

7. REFERENCES
[1] iBATIS JPetStore.

http://sourceforge.net/projects/ibatisjpetstore/.

[2] J. Axboe. FIO-Flexible I/O Tester.
http://freshmeat.net/projects/fio/.

[3] D. Capps. Iozone file system benchmark.
www.iozone.org.

[4] L. Carrington, M. A. Laurenzano, and A. Tiwari.
Inferring large-scale computation behavior via trace
extrapolation. In Parallel and Distributed Processing
Symposium Workshops & PhD Forum (IPDPSW),
2013 IEEE 27th International, pages 1667–1674.
IEEE, 2013.

[5] C. Delimitrou, S. Sankar, K. Vaid, and C. Kozyrakis.
Accurate modeling and generation of storage i/o for
datacenter workloads. In Proceedings of the 2nd
Workshop on Exascale Evaluation and Research
Techniques, EXERT, Newport Beach, CA (March
2011), 2011.

[6] I. Jo, D.-H. Bae, A. S. Yoon, J.-U. Kang, S. Cho,
D. D. G. Lee, and J. Jeong. Yoursql: A
high-performance database system leveraging
in-storage computing. Proc. VLDB Endow.,
9(12):924–935, Aug. 2016.

[7] Q. Noorshams, R. Reeb, A. Rentschler, S. Kounev,
and R. Reussner. Enriching software architecture
models with statistical models for performance
prediction in modern storage environments. In
Proceedings of the 17th international ACM Sigsoft
symposium on Component-based software engineering,
pages 45–54. ACM, 2014.

[8] OSDL. Iometer project. www.iometer.org.

[9] B. C. Tak, C. Tang, H. Huang, and L. Wang.
Pseudoapp: Performance prediction for application
migration to cloud. In Integrated Network Management
(IM 2013), 2013 IFIP/IEEE International Symposium
on, pages 303–310, May 2013.

[10] M. Tarihi, H. Asadi, and H. Sarbazi-Azad. Diskaccel:
Accelerating disk-based experiments by representative
sampling. In ACM SIGMETRICS Performance
Evaluation Review, volume 43, pages 297–308. ACM,
2015.

[11] Z. Weiss, T. Harter, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. Root: Replaying multithreaded
traces with resource-oriented ordering. In Proceedings
of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, SOSP ’13, pages 373–387, New
York, NY, USA, 2013. ACM.

320

