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ABSTRACT
Benchmark suites are an indispensable part of scientific re-
search to compare different approaches against each another.
The diversity of benchmarks is an important asset to eval-
uate novel approaches for effectiveness and weaknesses. In
this paper, we describe the memory characteristics and the
GC behavior of commonly used Java benchmarks, i.e., the
DaCapo benchmark suite, the DaCapo Scala benchmark
suite and the SPECjvm2008 benchmark suite. The paper
can serve as a useful guide to select benchmarks in accor-
dance with desired application characteristics on modern
virtual machines as well as with different compilers and
garbage collectors. It also helps to put results that are
based on these benchmarks into perspective. Additionally,
we compare Java’s current default collector to the G1 GC.

Categories and Subject Descriptors
[General and reference]: Evaluation; [General and ref-
erence]: Performance

Keywords
Java, Benchmarks, Memory Behavior, GC Behavior, Da-
Capo, DaCapo Scala, SPECjvm2008

1. INTRODUCTION
Benchmarks are a state-of-the-art method to determine

the quality of virtual machines, compiler optimizations,
garbage collection algorithms, and monitoring tools in terms
of performance. Results of such measurements are used, for
example, to argue the superiority of one garbage collection
algorithm over another, to demonstrate the benefits of a new
optimization technique, or to evaluate the overhead of a new
monitoring method.
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Considerable effort has been put into building benchmark
suites to represent diverse and real-world applications. The
most widely used Java benchmark suites are DaCapo1 in-
troduced by Blackburn et al. [2], DaCapo Scala2 introduced
by Sewe et al. [7], SPECjvm20083 analyzed by Shiv et al.
[8] and SPECjbb4. Unfortunately, those benchmarks either
lack a detailed analysis of their comprising applications or
their respective analysis is out of date. Since memory man-
agement, compilers, and GC algorithms have evolved since
the introduction of those benchmarks, their actual behavior
in modern systems is undocumented.

However, when reporting performance measurements, the
selection of benchmarks is paramount to be able to report
descriptive and comprehensive results. Moreover, interpret-
ing results is difficult if one is unaware of the significant prop-
erties of the benchmarks at hand, especially if exceptional or
unexpected behavior must be explained. Consequently, re-
searchers tediously reexamine benchmarks to find properties
that might explain observed behavior.

The goal and contribution of this work is to provide a de-
scription of commonly used benchmarks in terms of memory
behavior and garbage collection behavior. We do not want to
encourage cherry-picking benchmarks but rather enable re-
searchers and reviewers to better evaluate the work of others.
We will show important properties of popular Java bench-
marks, as well as curiosities one should be aware of when
using them and when evaluating other work based on these
benchmarks. Furthermore, we split the benchmarks into cat-
egories, depending on observed properties, such as allocated
memory, survivor ratios, live sizes, and garbage collection
times under different virtual machine configurations. We se-
lected DaCapo, DaCapo Scala and SPECjvm2008 because
they are the most popular Java benchmark suites, they are
free to use, and they are open source, which makes them
ideal for scientific evaluations.

Since the observer effect in state-of-the-art monitoring ap-
proaches distorts the application behavior significantly (cf.
Bitto et al. [1] for detailed analysis on the observer effect in
memory and GC monitoring), we will base our analysis on
AntTracks, a memory monitoring tool that is accurate at the

1http://www.dacapobench.org/
2http://www.dacapo.scalabench.org/
3https://www.spec.org/jvm2008/
4https://www.spec.org/jbb2015/
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object-level and imposing only very low run-time overhead,
first introduced by Lengauer et al. [6].

This paper is structured as follows: In Section 2 we de-
scribe our research methodology. Section 3 shows different
metrics with respect to an application’s allocation behavior
and garbage collection behavior per benchmark suite. Sec-
tion 4 presents related work, while Section 5 concludes this
paper.

2. METHODOLOGY
This section describes the research methodology, i.e., the

benchmarks we used and their configuration, the hardware
setup, as well as the method of measurement.

Benchmarks.
Figure 1 shows all benchmarks of the DaCapo (version

9.12), DaCapo Scala (version 0.1.0-20120216.103539-3) and
SPECjvm2008 benchmark suite, i.e., all benchmarks we will
examine in this paper. It also shows the input used, the
number of warmups performed before measurement, and the
live size of every benchmark. The live size is defined as the
maximum number of bytes alive at any given point in time
throughout the execution of the benchmark. The input size
is either identified by name (for DaCapo and DaCapo Scala)
or by the number of operations (for SPECjvm2008, based on
the concurrent lagom workload). The number of warmups,
i.e., the number of times we executed the benchmark be-
fore measuring results, is ideally 20, however, we increased
or decreased the warmups of specific benchmarks based on
the input. We chose 20 (modified according to the input
size) as the baseline for the warmups because the DaCapo
suite’s built-in mechanism automatically detects a steady
state after at most this amount of warmups. Furthermore,
we needed to increase the number of warmups until JIT-
compilation and GC ergonomics also stabilized. As most
benchmarks completely stabilized (i.e., DaCapo built-in con-
vergence, JIT-compilation, GC ergonomics, and heap space
resizing) after a similar number of warmups (close to 20, or a
factor thereof depending on the input size), we chose 20 as a
round number of wamups for all benchmarks. This number
also prooved useful for the SPECjvm benchmarks built-in
warmup mechanism runs for the same amount of time (the
SPECjvm warmup mechanism is based on time rather than
iterations). Some DaCapo and DaCapo Scala benchmarks
have huge and gargantuan workloads, which we used to put
more pressure on the memory system. In these cases we
were able to decrease the number of warmups. Other bench-
marks do not have large loads, or the large and default loads
crash on Java 8 (because they rely on internal classes that
do not exist any longer). In these cases we used the biggest
functioning workload, and increased the number of warmups
accordingly. The live size has been determined by finding
the lowest maximum heap setting with which the bench-
marks will execute without an OutOfMemoryError. This live
size was determined by trial and error, i.e., binary search-
ing the lowest possible heap setting with the Xmx flag with
1KB granularity. We will use a multiple of the live size to
determine a realistic heap limit.

Setup.
All measurements were run on an Intel R© Core(TM) i7-

4770 CPU @ 3.40GHz x 4 (8 Threads) on 64-bit with 32 GB

Benchmark Warmups Input Live[MB]
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avrora 20 large 7.49
batik 80 small 24.74
eclipse 80 small 14.26
fop 40 default 29.57
h2 10 huge 1300.67
jython 20 large 27.93
luindex 40 default 5.03
lusearch 20 large 2.64
pmd 20 large 38.06
sunflow 20 large 11.06
tomcat 10 huge 17.02
tradebeans 10 huge 278.42
tradesoap 10 huge 110.81
xalan 20 large 5.16
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actors 5 gargantuan 17.02
apparat 5 gargantuan 66.68
factorie 5 gargantuan 558.27
kiama 40 default 6.45
scalac 20 large 71.86
scaladoc 20 large 68.44
scalap 20 large 5.76
scalariform 10 huge 19.15
scalaxb 10 huge 109.06
tmt 10 huge 39.22
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compiler.compiler 20 160ops 229.10
compiler.sunflow 20 160ops 144.32
compress 20 40ops 85.20
crypto.aes 20 16ops 41.75
crypto.rsa 20 120ops 3.19
crypto.signverify 20 96ops 18.32
derby 20 240ops 435.10
mpegaudio 20 40ops 4.49
scimark.fft.large 20 8ops 612.17
scimark.fft.small 20 80ops 16.46
scimark.lu.large 20 8ops 583.21
scimark.lu.small 20 96ops 10.78
scimark.monte carlo 20 72ops 2.93
scimark.sor.large 20 8ops 294.84
scimark.sor.small 20 65ops 6.70
scimark.sparse.large 20 8ops 446.93
scimark.sparse.small 20 16ops 11.45
serial 20 200ops 367.17
sunflow 20 120ops 19.26
xml.transform 20 56ops 35.12
xml.validation 20 320ops 92.79

Figure 1: Benchmarks and their respective
warmups, inputs (the name of the input for DaCapo
and DaCapo Scala, and the number of operations for
SPECjvm2008), and live sizes.

RAM and a Samsung SSD 840 PRO Series (DXM03B0Q),
running Ubuntu Wily Werewolf 15.10 with the Kernel Linux
4.2.0-25-generic. All unnecessary services were disabled in
order not to distort the experiments.

Measurement.
All numbers reported in this paper represent the steady-

state performance of 50 runs, based on Georges et al. [4, 5].
Every benchmark has been warmed up before measurement
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to stabilize caches as well as JIT optimization. Conse-
quently, we report peak performance only, i.e., we exclude all
warmup runs and present the best value of the 50 measure-
ments, whereupon the best run is defined as the measurment
with the minimal run time. Also, we forced a garbage col-
lection before every measurement to collect leftovers from
previous warmups. This collection is not included in the
measurement (because it would not occur naturally would
we not force it).

In order to record global performance numbers, such as
run time, compilation time, as well as garbage collection fre-
quency and time, we used a custom agent hooking into the
VM using the Java Virtual Machine Tool Interface (JVMTI)
in combination with benchmark-specific mechanisms (Da-
Capo Callbacks and SPECjvm2008 Analyzers). We were
very careful not to enable any capabilities in the VM that
would change the VM’s behavior.

To make more detailed measurements, we used AntTracks
(version 20160101), a special HotSpot-based VM (based on
OpenJDK 8u102), that records a trace of memory events
almost without changing the VM’s behavior. Based on the
generated trace, we extracted metrics such as allocated ob-
jects, survivor ratios and top allocation sites.

AntTracks is able to record memory traces almost without
changing the original behavior because it is implemented,
compared to other state-of-the-art tools, directly into the
VM and uses a very efficient trace format. It does not
have to deal with heavy-weight instrumentation that im-
pedes escape analysis and it also does not have to introduce
WeakReferences for finalizers to detect object deallocations.
The VM and especially the GC’s are modified to efficiently
generate a very compact event trace, omitting everything
that can be reconstructed offline. A dedicated offline tool
then postprocesses the trace and reconstructs everything
that has been omitted. Moreover, the trace is complete,
i.e., it does not miss a single object allocation of internal
GC operation. Thus, the only disruption that might occur
is a small overall overhead around 4%.

3. STUDY
The following sections describe the memory and garbage

collection behavior of the benchmarks with a heap that is
limited to three times the respective live size (adaptive heap
limit). For evaluating the garbage collection behavior we
used the ParallelOld GC, the current default collector in the
HotSpotTM VM. Figures for the concurrent G1 GC, the des-
ignated default collector in Java SE 9 allowing the handling
of big heaps more efficiently, can be found in the appendix.

3.1 Allocation Behavior
This section examines the allocation behavior of every

benchmark in detail. As allocations are only marginally
influenced by the GC, we report only the results with an
adaptive heap and the ParallelOld GC.

Figure 2 shows the basic allocation behavior of all ex-
amined benchmarks. It presents the number of allocations
of every benchmark (final measurement iteration only, VM
startup and warmups excluded), in number of objects as
well as in bytes. The table also shows the number of objects
and the amount of memory allocated per second, as well as
the average object layout, i.e., the average object size, the
percentage of array objects and their average length.

Total Allocations.
Measuring the total number of allocations (per iteration)

shows us that factorie, serial, tmt, sunflow (SPECjvm2008)
and derby are the 5 most allocation-intensive benchmarks.
They allocate up to 5.7 ∗ 109 objects in a single iteration,
which puts significant pressure on the GC. Looking at the
amount of memory being allocated, the 5 most memory-
intensive benchmarks are again factorie, serial, sunflow,
derby, and tmt. Please note, that factorie and sunflow
(SPECjvm2008) allocate up to 137GB and 134GB of mem-
ory respectively.

This metric is of particular interest when developing
new allocation algorithms or instrumentation-based mem-
ory monitoring tools. Memory monitoring tools often in-
strument every new instruction to record allocations. They
collect information such as the type, size, or length in case
of an array. As these tools want to distort the application’s
behavior as little as possible in order to present the user with
accurate analyses, benchmarks exhibiting a high number of
allocations are interesting to use as a baseline for overhead
measurements.

Allocation Rate.
Measuring object allocations per second (i.e., the number

of objects allocated within one iteration divided by the run
time of that iteration), the 5 most intensive benchmarks
are derby, serial, tmt, factorie, and xml.transform (please
note, that there are several other benchmarks that are only
slightly below) with up to 3 ∗ 107 new objects per second.
This number will have a direct impact on the garbage collec-
tion frequency (cf. Section 3.3). Looking at the amount of
memory allocated every second, the most intensive bench-
marks are derby, serial, sunflow (SPECjvm2008), tmt, and
xml.transform.

Similarly to the total number of allocations, this metric is
of interest for VM implementors and monitoring tool devel-
opers alike. Moreover, the allocation rate will have a signif-
icant impact if the underlying hardware is not fast enough,
i.e., memory monitoring tools may write their data to disk.
In addition, this metric is of interest for GC developers be-
cause a high allocation rate will lead to a high GC frequency.
Also, the allocation rate may be a vital basic information for
manually tuning GC parameters, i.e., to minimize the over-
all GC time or to keep the maximum pause time below a
predefined threshold.

Object Layout.
In contrast to the total number of allocations, the largest

objects are allocated by the scimark.fft.large benchmark.
However, since all scimark benchmarks have a short run
time and a small allocation rate in common, their actual
pressure on the memory is low. The ratios of instances and
arrays vary widely, ranging from 3.2 % arrays in the case
of sunflow (SPECjvm2008) to up to 97.5 % in the case of
mpegaudio.

Compared to the DaCapo benchmark suite and the Da-
Capo Scala benchmark suite, the SPECjvm2008 bench-
marks show a much higher average array length in general.
This is due to the fact, that many benchmarks work on either
big input data (e.g., compress, crypto.*, and mpegaudio) or
on big matrices (e.g., scimark.*), and, consequently, create
many big arrays.
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Benchmark Allocations Object layout

[103] [MB] [103 / sec] [MB / sec]
Avg obj
size [b]

Array
rate [%]

Avg
array

length
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avrora 6,710.1 204.4 828.5 25.2 30.5 31.8 12.1
batik 462.3 32.4 2,454.0 171.9 70.0 38.6 112.3
eclipse 676.6 0.0 6,346.7 0.0 61.8 49.1 120.6
fop 2,511.8 106.8 14,435.4 613.9 42.5 35.1 19.8
h2 388,081.9 14,838.3 2,498.6 95.5 38.2 38.5 10.8
jython 180,707.2 7,837.1 18,653.8 809.0 43.4 32.1 58.4
luindex 217.4 10.6 618.4 30.3 48.9 38.0 182.7
lusearch 21,904.6 2,270.3 4,565.7 473.2 103.6 44.0 553.0
pmd 15,660.6 565.4 11,231.9 405.5 36.1 40.3 25.4
sunflow 138,674.2 6,254.3 24,670.7 1,112.7 45.1 3.4 10.5
tomcat 177,454.6 9,509.6 5,724.9 306.8 53.6 48.1 106.0
tradebeans 925,570.5 38,817.5 15,678.1 657.5 40.0 40.0 14.3
tradesoap 944,162.7 45,057.8 15,178.5 724.4 47.7 36.5 92.2
xalan 103,069.1 4,989.3 5,614.9 271.8 48.4 40.3 60.9
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actors 245,235.3 6,002.2 15,843.8 387.8 24.5 3.9 6.8
apparat 399,087.3 12,837.0 4,433.0 142.6 32.2 24.9 16.3
factorie 5,716,589.7 137,521.8 37,494.4 902.0 24.1 5.4 3.9
kiama 11,384.6 0.0 25,885.9 0.0 35.0 27.4 22.5
scalac 42,252.8 1,335.0 13,752.4 434.5 31.6 18.9 21.5
scaladoc 38,065.2 1,471.3 14,958.0 578.2 38.7 30.6 34.8
scalap 3,454.1 87.4 16,201.3 409.7 25.3 12.3 39.2
scalariform 50,745.1 1,259.1 21,352.9 529.8 24.8 17.6 7.3
scalaxb 99,651.5 2,464.6 8,419.4 208.2 24.7 4.6 107.8
tmt 2,663,579.5 65,294.7 54,697.7 1,340.9 24.5 0.8 62.4
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compiler.compiler 471,781.5 15,712.4 19,408.0 646.4 33.3 13.0 41.7
compiler.sunflow 1,195,208.0 42,073.5 17,498.7 616.0 35.2 16.9 42.3
compress 36.7 64.9 6.3 11.2 1,767.8 40.8 15,220.5
crypto.aes 73.9 368.2 8.8 43.8 4,979.5 63.6 61,137.9
crypto.rsa 32,880.1 2,081.6 2,583.7 163.6 63.3 59.6 26.7
crypto.signverify 4,009.0 867.1 383.3 82.9 216.3 65.9 1,598.2
derby 2,001,219.7 77,974.7 86,931.7 3,387.2 39.0 20.6 14.9
mpegaudio 561.1 279.8 54.2 27.0 498.7 97.5 3,916.1
scimark.fft.large 1.1 72.6 0.1 9.2 66,335.2 45.6 157,485.6
scimark.fft.small 87.1 355.5 11.1 45.4 4,080.7 66.9 6,382.7
scimark.lu.large 34.5 68.5 1.0 1.9 1,985.1 98.3 2,060.3
scimark.lu.small 4,023.3 875.1 309.2 67.3 217.5 99.1 222.6
scimark.monte carlo 13.4 1.5 1.4 0.2 108.1 41.3 748.4
scimark.sor.large 17.8 34.2 2.5 4.9 1,916.6 96.9 2,021.2
scimark.sor.small 11.4 1.6 1.7 0.2 141.5 70.1 477.0
scimark.sparse.large 1.1 53.9 0.1 4.8 50,820.6 48.6 141,717.1
scimark.sparse.small 6.2 38.1 1.9 11.4 6,154.3 66.0 12,441.3
serial 3,361,406.2 134,122.4 64,576.1 2,576.6 39.9 48.6 16.2
sunflow 2,047,771.6 93,002.4 29,547.1 1,341.9 45.4 3.2 9.7
xml.transform 253,054.8 9,716.2 30,966.1 1,189.0 38.4 39.1 38.6
xml.validation 807,942.9 27,876.6 30,325.7 1,046.3 34.5 33.5 12.9

Figure 2: Allocations total and per second as well as the average object layout (size, array rate, array length)
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3.2 Allocating Subsystems
Figure 3 shows the percentage of objects allocated by VM-

internal code (e.g., native code or filler objects for keeping
the heap unfragmented), of objects allocated by interpreted
code (i.e., code that has not been deemed worth compiling
yet), of objects allocated by C1-compiled code (i.e., code
that has been compiled by the client compiler), and of ob-
jects allocated by C2-compiled code (i.e., code that has been
compiled by the server compiler). It also shows the overall
compile time ratio, i.e., the time the application spent on
compiling in relation to the overall run time.

Allocating Code.
When executing a method for the first time, the VM

starts interpreting the code without applying any optimiza-
tions. During interpretation, statistics about the method are
recorded, e.g., execution counters, branch frequencies, and
value ranges for variables. Using these statistics, the method
will eventually be compiled by the client compiler. This
compiler applies some optimizations and also inserts code
to continue recording statistics about executions. Finally, if
the method is used often enough, it will be compiled by the
server compiler. The server compiler will apply more ag-
gressive optimizations and makes assumptions based on ob-
servations made by the interpreter or by the client-compiled
code. Should an assumption turn out to be wrong, the com-
piled code will be discarded and the VM will fall back to
the interpreter for this method and start over recording new
statistics. Eventually, the VM will retry compilation.

Looking at how much of the allocating code is compiled
can tell us how well the benchmark is warmed up because
we do not want the VM to execute unoptimized methods or
to spend time on compiling while we are measuring. Our
measurements show that all benchmarks except some of the
SPECjvm2008 scimark.* benchmarks have been properly
warmed up with our configuration.

The scimark benchmarks perform mathematical compu-
tations that are not very allocation intensive. They consist
of small amounts of code operating only on primitive ma-
trices as data structures if any. Consequently, they have an
unusually big memory-to-object ratio. Moreover, as they
have many long-running methods doing number crunching
in loops, it takes some time until they reach an execution
frequency that is high enough for triggering compilation.
However, because they have neither a lot of total alloca-
tions nor a large allocation rate, they are not very useful for
examining allocation behavior anyway.

The lusearch benchmark reports 13.7% VM-internal allo-
cations due to the unlucky use of Exceptions in normal con-
trol flow. Creating an object of type Throwable (superclass
of all exceptions and errors) results in a call to the native
method fillInStackTrace. This method walks the stack,
creates several Object, short, and int arrays containing the
objects, methods, and the corresponding bci offsets on the
stack, and finally puts those arrays in the Throwable ob-
ject. The lusearch benchmark allocates more than 99.9% of
all VM-internally allocated objects by filling the stack trace
of an unnecessary exception, the rest are mostly application
domain objects created by cloning. Figure 4 shows the stack
of an exception used to indicate the end of a character-based
stream.

Like lusearch, the pmd benchmark allocates about 90%
of all VM-internal objects by filling the stack trace of an

Allocated by [%] Comp. [%]
Benchmark VM Int. C1 C2
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avrora 1.1 0.0 0.5 98.3 0.11
batik 0.6 0.1 1.8 97.5 1.06
eclipse 4.6 0.0 2.4 93.0 0.00
fop 0.2 0.1 0.9 98.9 24.48
h2 1.0 0.0 0.0 99.0 3.64
jython 2.1 0.0 0.0 97.9 0.85
luindex 1.6 0.3 0.8 97.3 0.70
lusearch 13.7 0.0 0.1 86.2 0.12
pmd 11.6 0.0 0.1 88.3 2.91
sunflow 0.2 0.0 0.0 99.8 0.01
tomcat 1.8 0.0 0.5 97.7 6.80
tradebeans 0.5 0.0 0.0 99.5 3.33
tradesoap 0.4 0.0 0.0 99.6 0.25
xalan 1.8 0.0 0.0 98.2 0.01
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actors 0.2 0.0 0.0 99.7 0.39
apparat 0.1 0.0 0.1 99.8 0.37
factorie 0.0 0.0 0.0 100.0 0.18
kiama 0.0 0.0 0.3 99.7 9.37
scalac 0.1 0.3 0.6 99.0 23.59
scaladoc 0.2 0.0 0.7 99.1 13.09
scalap 0.1 0.0 0.6 99.3 10.14
scalariform 0.0 0.0 0.5 99.5 4.72
scalaxb 0.0 0.0 0.1 99.9 1.54
tmt 0.0 0.0 0.0 100.0 0.02
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compiler.compiler 0.1 0.0 0.0 99.9 0.11
compiler.sunflow 0.2 0.0 0.0 99.8 0.00
compress 1.4 0.3 29.4 68.9 0.05
crypto.aes 4.3 0.3 8.9 86.5 0.08
crypto.rsa 2.6 0.0 0.0 97.4 0.07
crypto.signverify 1.9 0.0 0.1 98.0 0.01
derby 0.0 0.0 0.0 100.0 0.06
mpegaudio 5.1 0.0 1.3 93.6 0.12
scimark.fft.large 4.9 39.1 42.3 13.7 0.05
scimark.fft.small 5.8 0.2 4.2 89.8 0.11
scimark.lu.large 2.0 48.7 1.4 48.0 0.03
scimark.lu.small 20.3 0.0 0.1 79.6 0.05
scimark.monte carlo 1.6 1.0 34.7 62.7 0.09
scimark.sor.large 2.7 94.3 2.1 0.8 0.42
scimark.sor.small 8.1 18.9 30.8 42.2 0.01
scimark.sparse.large 9.0 38.5 31.3 21.2 0.02
scimark.sparse.small 20.3 5.2 21.6 53.0 7.23
serial 0.0 0.0 0.0 100.0 0.00
sunflow 0.2 0.0 0.0 99.8 0.02
xml.transform 0.1 0.0 0.0 99.9 0.36
xml.validation 0.6 0.0 0.0 99.4 0.02

Figure 3: Objects allocated by VM-internal code,
interpreted code, C1 compiled code, or by C2 com-
piled code respectively (green: 1st top allocator, yel-
low: 2nd top allocator, red: 3rd top allocator), as
well as the time spent compiling in relation to the
overall run time
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java.lang.Throwable.fillInStackTrace ():16
java.lang.Throwable.<init >():24
java.lang.Exception.<init >():2
java.io.IOException.<init >():2
org.apache.lucene.queryParser.

FastCharStream.refill ():156
org.apache.lucene.queryParser.

FastCharStream.readChar ():12
org.apache.lucene.queryParser.

FastCharStream.BeginToken ():9
org.apache.lucene.queryParser.

QueryParserTokenManager.getNextToken ()
:7

...

Figure 4: Stack of an exception used to steer control
flow in the lusearch benchmark, resulting in about
2,629,000 objects for representing the stack traces

exception. The other 10% of VM-internal allocations are
Strings and the corresponding char[] that are used to look
up classes using an URLClassLoader. Figures 5 and 6 show
the stack of an exception when using the URLClassLoader.

java.lang.Throwable.fillInStackTrace ():16
java.lang.Throwable.<init >():24
java.lang.Exception.<init >():3
java.lang.ReflectiveOperationException.<

init >():3
java.lang.ClassNotFoundException.<init >()

:3
java.net.URLClassLoader.findClass ():41
java.lang.ClassLoader.loadClass ():70
org.dacapo.harness.DacapoClassLoader.

loadClass ():24
java.lang.ClassLoader.loadClass ():38
java.lang.ClassLoader.loadClass ():3
net.sourceforge.pmd.typeresolution.

ClassTypeResolver.processOnDemand ():56

Figure 5: Stack of an exception used to steer control
flow in the pmd benchmark, resulting in 1,598,438
objects for representing the stack traces

java.lang.ClassLoader.findLoadedClass ():12
java.lang.ClassLoader.loadClass ():10
sun.misc.Launcher$AppClassLoader.loadClass

():81
java.lang.ClassLoader.loadClass ():38
org.dacapo.harness.DacapoClassLoader.

loadClass ():24
java.lang.ClassLoader.loadClass ():3
net.sourceforge.pmd.symboltable.

ScopeAndDeclarationFinder.
createClassScope ():23

Figure 6: Stack of class loading by the URLClass-

Loader, resulting in 193,682 objects for looking up a
class by name

Compile time.
The JIT compile time ratio (i.e., the summed up compile

time of all compilation threads within an iteration divided

by the cpu time of that iteration) shows that, if the appli-
cation has been warmed up properly, the compile time is
negligible in most benchmarks. Some benchmarks, however,
i.e., fop, scalac, and scalap, show a high compilation time
although almost all allocations are already executed by com-
piled code. This indicates, that these benchmarks should
probably be warmed up better if run time performance is
measured. However, in these cases we stuck to the selected
methodology to be still comparable.

3.3 Garbage Collection
This section examines the garbage collection behavior of

every benchmark in detail. For comparability we provide
figures for a heap limited to three times the benchmark’s
live size (see Figure 7). For a fixed heap size of 1GB and for
a heap that is unlimited, please refer to Figures 9 and 10 in
the Appendix.

Figure 7 shows the garbage collection count, the total
garbage collection time, and the average pause time for the
ParallelOld GC and the G1 GC. All metrics are split into
values for minor (-) and major (+) collections. In a major
collection, the entire heap is collected, whereas a minor col-
lection collects only parts of the heap (the young generation
in case of the ParallelOld GC, any subset of regions in case
of the G1 GC).

GC Count.
The benchmarks differ widely in terms of GC count, from

scimark.fft.large without any collection, to lusearch with
7041 collections. Only some benchmarks perform major col-
lections with the ParallelOld GC.

In general, there is an easy-to-see 97% correlation (lin-
ear Pearson correlation) between the number of collections
(minor and major) of the ParallelOld GC and the G1 GC.
However, the G1 GC usually performs less collections than
the ParallelOld GC with only a few exceptions, i.e., com-
piler.sunflow, crypto.rsa, scimark.fft.small, scimark.lu.*, sci-
mark.sor.large, and serial. This is due to the fact, that G1
can select which heap regions to collect. Consequently, G1
selects regions with a lot of garbage, resulting in more mem-
ory being freed. Moreover, G1 can include regions of the old
generation in a minor collection, whereas the ParallelOld
GC can collect the old generation only with a major collec-
tion. This behavior can reduce floating garbage (old dead
objects keeping young objects alive) significantly.

In contrast to the ParallelOld GC, where a major collec-
tion normally occurs after some minor collections, the G1
GC uses major collection only as an emergency action. For
this reason, G1 major collections are so rare and occur only
in 4 benchmarks, i.e., lusearch, xalan, scimark.fft.small, and
scimark.lu.small. These benchmarks have a very small live
set, and consequently a very low heap limit. This shows that
G1, although performing well in most cases, is not built to
handle small heaps efficiently.

For evaluating garbage collection algorithms which de-
pend on the number of live objects, only allocation-intensive
benchmarks with short-living objects are advisable, e.g., tmt
and serial. Allocation-intense benchmarks with long-living
objects, e.g., derby, are recommendable to test the perfor-
mance of compaction algorithms, e.g., Mark & Compact.

This metric is interesting to test monitoring tools and
GCs which introduce overhead per collection. Especially
considering stop-the-world GCs may introduce a significant
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ParallelOld GC G1 GC
Benchmark Count [#] Time [%] Pause [ms] YR [%] Count [#] Time [%] Pause [ms] YR [%]

- + - + - + - + - + - +

D
a
C

a
p

o

avrora 68 0 1.5 - 1 - 50 48 0 0.7 - 1 - 76
batik 10 0 11.7 - 2 - 49 3 0 6.5 - 3 - 89
eclipse 1 0 1.8 - 2 - 531 2 0 3.4 - 2 - 376
fop 10 0 24.1 - 4 - 58 5 0 12.1 - 3 - 112
h2 28 0 5.4 - 300 - 94 28 0 1.4 - 81 - 129
jython 468 0 11.3 - 2 - 111 255 0 5.8 - 2 - 231
luindex 11 0 7.5 - 2 - 37 5 0 2.3 - 1 - 91
lusearch 6,979 62 56.0 12.7 0 9 36 4,748 1,431 23.9 64.2 0 7 82
pmd 50 0 17.8 - 4 - 66 20 0 5.5 - 3 - 137
sunflow 771 8 15.9 1.6 1 11 53 559 0 12.5 - 1 - 129
tomcat 1,234 0 4.4 - 1 - 114 680 0 1.9 - 0 - 293
tradebeans 178 1 14.2 1.0 47 590 49 105 0 5.0 - 29 - 103
tradesoap 961 12 46.0 4.9 29 254 50 981 0 25.4 - 14 - 93
xalan 4,607 422 45.8 30.5 1 13 31 3,369 337 32.7 29.8 1 13 50

D
a
C

a
p

o
S
ca

la

actors 388 1 1.9 0.0 0 14 53 264 0 1.2 - 0 - 143
apparat 259 0 1.7 - 6 - 73 148 0 0.8 - 4 - 148
factorie 272 0 41.1 - 253 - 180 171 0 1.4 - 9 - 100
kiama 28 0 43.9 - 6 - 59 23 0 22.0 - 3 - 69
scalac 46 0 25.2 - 16 - 112 22 0 7.4 - 9 - 146
scaladoc 53 0 26.8 - 12 - 138 26 0 7.6 - 6 - 149
scalap 40 0 31.6 - 1 - 90 13 0 12.7 - 1 - 276
scalariform 127 0 21.0 - 3 - 124 48 0 6.8 - 3 - 204
scalaxb 50 0 2.2 - 5 - 176 35 0 1.2 - 4 - 160
tmt 2,326 0 4.5 - 0 - 100 1,597 0 3.7 - 1 - 123

S
P

E
C

jv
m

2
0
0
8

compiler.compiler 155 11 50.2 10.9 78 243 41 119 0 32.7 - 54 - 95
compiler.sunflow 612 54 49.4 13.9 55 175 43 638 0 40.9 - 35 - 68
compress 14 0 0.1 - 0 - 49 4 0 0.0 - 1 - 177
crypto.aes 163 2 2.8 0.2 1 8 49 64 0 2.6 - 3 - 6
crypto.rsa 1,047 2 3.6 0.1 0 7 35 1,078 0 3.7 - 0 - 171
crypto.signverify 715 32 7.0 2.2 1 7 39 407 0 5.0 - 1 - 21
derby 181 0 3.5 - 4 - 95 103 0 1.4 - 3 - 184
mpegaudio 683 7 2.8 0.4 0 6 46 458 0 2.2 - 0 - 109
scimark.fft.large 0 0 - - - - - 1 0 0.0 - 1 - 0
scimark.fft.small 322 0 2.5 - 0 - 108 381 1 4.4 0.0 0 6 15
scimark.lu.large 2 0 0.1 - 33 - 191 13 0 0.2 - 7 - 54
scimark.lu.small 1,738 377 14.5 20.1 1 6 34 2,353 44 16.4 2.6 0 8 45
scimark.monte carlo 3 0 0.0 - 0 - 115 1 0 0.0 - 1 - 261
scimark.sor.large 2 0 0.4 - 17 - 190 12 0 0.7 - 4 - 39
scimark.sor.small 3 0 0.0 - 0 - 74 4 0 0.0 - 1 - 77
scimark.sparse.large 3 0 0.5 - 20 - 127 1 0 0.0 - 1 - 0
scimark.sparse.small 70 2 1.4 0.3 0 6 34 45 0 1.4 - 1 - 74
serial 384 0 0.9 - 1 - 128 1,156 0 1.6 - 0 - 47
sunflow 5,500 40 10.2 1.0 1 18 51 3,929 0 10.2 - 1 - 132
xml.transform 562 9 13.1 3.0 1 27 50 333 0 7.8 - 1 - 126
xml.validation 608 27 23.2 13.8 10 136 51 442 0 16.3 - 9 - 68

Figure 7: GC count, GC time relative to the total run time (green: less than 5%, yellow: less than 15%, red:
more than 15%), and average pause time for minor (-) and major (+) GCs for the ParallelOld GC and the
G1 GC respectively (green: less than 10ms, yellow: less than 100ms, red: more than 100ms)
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overhead when all application threads need to be suspended
repeatedly. Also, this metric can be used to tune the GC
behavior.

GC Time.
The GC time, i.e., the percentage the application spends

on garbage collection relative to its entire run time, depends
on the number of collections as well as on the length of every
collection. For G1, which marks concurrently, this metric
only includes the time the application was paused (the G1
GC is not fully concurrent but pauses the application to
move objects). The measurements show that a benchmark
can easily spend more than 50% of its total run time on
garbage collection. This illustrates that, even if memory
performance is not one’s primary concern, it must be dealt
with.

Again, the G1 GC performs better in most cases with the
same exceptions as for the GC count. Especially, in some
cases with a high GC time, the G1 performs a lot better
(e.g., factorie 41% vs 1.4%).

Obviously, this metric is of interest for GC developers
for optimizing garbage collection algorithms. Also, memory
monitoring tools that rely on detecting deallocations with
the help of WeakReferences or finalizers can make good use
of benchmarks with a high GC time. As WeakReferences
and finalizers introduce a lot of additional work for the GC,
benchmarks with an already high GC time will be interest-
ing for overhead measurements.

GC Pauses.
The length of a GC pause depends on the complexity of

the underlying collection algorithm. The ParallelOld GC
and the G1 GC use different algorithms for minor and major
collections respectively.

The complexity of a minor collection (in the ParallelOld
GC as well as in the G1 GC) mostly depends on the number
of live objects residing in the collected regions, as they must
be evacuated to the survivor space or promoted to the old
generation. The complexity of a major collection (in the
ParallelOld GC as well as in the G1 GC) depends on the
total number of objects, as both algorithms walk the entire
heap to compact live objects towards its beginning.

On average, the minor pause time of the G1 GC is only
71% of the pause time of the ParallelOld GC. In addition, G1
has less spikes in the pause times (e.g., the h2 benchmark
has an average pause time of 300ms with the ParallelOld
GC, and only 81ms with the G1 GC) . This is mostly due
to the fact that G1 can select which regions to collect and
consequently can control its pause time as well as the amount
of memory that will be freed.

Also, the G1 GC has less and shorter major GCs because
a major GC is seen as an emergency that is to be avoided
at any cost. The most extreme example is the tradebeans
benchmark with a major GC pause time of 590ms in the
ParallelOldGC and no major collection in the G1 GC.

Long GC pauses impede the application’s availablity. For
example, UI applications will need to react within at most
half a second on user-input so that the user is not hindered.
Similarly, server applications also must react within some
time interval to client requests. Long GC pauses will effec-
tively freeze applications. Thus, more concurrent GC algo-
rithms emerge trying to minimize GC pauses, some even try

to guarantee a maximum pause time. Benchmarks with long
GC pauses are ideal to test these algorithms.

Young Generation Ratio.
The young generation ratio shows the maximum amount

of memory before a collection in the young generation in
relation to the maximum amount of memory before a col-
lection in the old generation. A value below 100% indicates
that the young generation is only a fraction of the old gen-
eration, whereas a value larger than 100% indicates that the
young generation was bigger. This ratio shows us, whether
the GC is able to handle most objects as young objects or
if it has to keep a lot of them in the old generation.

Please note, that scimark.fft.large has no such ratio, as
there was no collection and the VM consequently did not
have the chance to adjust the generation sizes. Also, bench-
marks without a major collection might have not yet reached
the full capacity of the old generation. Consequently, the ra-
tio is a high estimate in those cases.

It is interesting to see, that the ParallelOld GC and the
G1 GC do not always agree on what generation is dominant
(i.e., whether the young generation ratio is below or above
100%). In general, the young generation is bigger in the G1
GC. Thus, the G1 GC keeps potentially dead objects longer
in the young generation compared to the ParallelOld GC.

This metric tells us what part of the garbage collection al-
gorithms are under more pressure and enables focused test-
ing and debugging for new collection algorithms.

3.4 Object References
Figure 8 examines the object pointers that were recorded

by AntTracks during garbage collections. Since AntTracks
records pointers only during a collection, the recorded point-
ers depend on the number of garbage collections (initially
introduced in Figure 7). While usually the average number
of pointers per object is monadic, DaCapo xalan and luin-
dex, DaCapo Scala factorie and kiama, as well as SPECjvm
serial stand out in terms of this metric. All these bench-
marks make use of few, but very large arrays to store objects.
This results in a high average pointer ratio. The DaCapo
database h2 is especially useful for all kind of pointer-related
measurements due to its high amount of pointers.

4. RELATED WORK
In 2006, Backburn et al. released the DaCapo benchmark

suite. At the same time, they published an analysis paper
(Blackburn et al. [2]), where they compared their bench-
mark suite against SPECjvm98 and a modified version of
SPECjbb2000. For doing so, they evaluated the DaCapo
benchmark suite across different architectures and JVMs.
However, 10 years later, Java, JVMs and their components
have changed significantly. When they published their pa-
per, the used the Jikes RVM version 2.4.4+. In version 2.9
the Jikes RVM has been substantially rewritten to support
Java SE 5. Moreover some benchmarks of the initial release
have been completely removed in 2009. New benchmarks,
such as avrora, h2, sunflow, are therefore not covered in the
paper at all.

In 2006, the DaCapo Scala benchmark suite has been re-
leased. In 2011, Sewe et al. [7] analyzed this suite, with
a primary focus on the design of the applications. More-
over, they demonstrated the main difference between Java
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Object Pointers (ParallelOld GC)

Benchmark GCs [#] Ptrs / GC [#]
Avg ptrs
/ object

[#]

Null rate
[%]

Old-to-young
rate [%]

D
a
C

a
p

o

avrora 68.4 157,143.4 5.1 12.7 6.4
batik 10.0 161,875.6 4.3 43.1 3.8
eclipse 1.0 77,906.3 3.0 40.5 4.8
fop 10.0 351,025.9 3.5 45.4 1.0
h2 27.6 37,958,744.0 5.8 28.8 8.9
jython 468.4 1,674.8 3.8 34.6 15.9
luindex 11.0 83,738.7 14.8 79.1 5.4
lusearch 7,041.0 11,497.7 9.0 79.0 9.1
pmd 50.4 443,487.8 3.6 44.9 5.5
sunflow 774.5 80,871.7 3.3 45.0 15.4
tomcat 1,234.3 33,188.4 4.9 67.2 15.0
tradebeans 179.2 4,809,331.3 6.9 50.1 6.7
tradesoap 973.2 885,545.1 8.3 54.3 6.9
xalan 5,028.0 339,669.5 26.3 93.2 4.3
actors 387.5 9,185.8 2.7 25.9 13.8
apparat 259.8 324,520.0 2.4 23.5 8.1
factorie 271.9 10,287,986.8 27.8 59.0 9.5
kiama 28.5 822,980.2 13.0 49.5 6.2
scalac 45.9 1,623,276.1 5.5 31.3 6.9
scaladoc 53.0 1,133,381.0 6.1 40.7 6.5
scalap 40.3 87,220.5 2.8 33.9 6.7
scalariform 127.8 149,652.0 2.3 8.9 13.3
scalaxb 48.5 189,187.9 1.5 8.8 0.2
tmt 2,325.5 7,510.2 3.7 24.5 9.8
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E
C
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m

2
0
0
8

compiler.compiler 165.6 8,521,325.4 3.4 28.5 12.2
compiler.sunflow 665.9 5,843,973.8 3.3 27.7 10.1
compress 14.1 1,290.0 3.2 43.2 4.3
crypto.aes 165.6 2,083.5 2.9 45.3 3.1
crypto.rsa 1,048.6 1,069.7 2.5 40.2 6.9
crypto.signverify 752.5 5,589.5 2.7 44.1 1.0
derby 181.0 445,557.6 8.2 15.1 13.6
mpegaudio 691.0 1,776.3 2.2 38.1 5.0
scimark.fft.large 0.0 -
scimark.fft.small 322.6 240.7 2.1 46.8 19.8
scimark.lu.large 2.0 24,170.5 1.3 24.5 0.2
scimark.lu.small 2,116.4 24,004.2 2.4 38.9 0.4
scimark.monte carlo 3.0 1,293.0 3.3 46.2 7.3
scimark.sor.large 2.0 16,820.6 1.8 42.9 0.4
scimark.sor.small 3.0 3,231.7 1.9 25.6 4.4
scimark.sparse.large 2.8 906.1 3.6 51.0 5.4
scimark.sparse.small 71.8 3,257.0 2.7 45.7 1.0
serial 384.4 51,066.1 10.6 82.8 6.3
sunflow 5,540.5 88,540.0 4.2 34.5 15.6
xml.transform 571.3 138,410.2 4.2 54.4 4.4
xml.validation 638.4 1,201,517.9 3.8 41.8 0.9

Figure 8: Object pointers per GC of all benchmarks
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and Scala code. However, they did not provide information
regarding memory, pointer, or garbage collection behavior.

The SPECjvm2008 benchmark suite has been evaluated in
2009 by Shiv et al. [8]. While on the one hand they provide
a detailed description of all benchmarks, they also present
performance numbers for different hardware and software
setups. They used Sun’s Hotspot JVM (Java SE 6) to per-
form their evaluations. Though they do not explicitly state
the kind of collector they used, we assume from their de-
scription that they already used the ParallelGC. While they
also present numbers for allocations and garbage collections,
their evaluation focuses on hardware-related performance is-
sues, e.g., performance counters on processors, the effect of
SMT (simultaneous multi threading). Therefore, their eval-
uation does not provide insights into the applications’ mem-
ory behavior, e.g., in terms of allocations, pointers and GC
impact.

Dieckmann et al. [3] published a study on the SPECjvm98
benchmark suite in 1998. For their evaluation they used
Sun’s Hotspot JVM (Java SE 5) and a tracing algorithm to
log all memory-related information. However, their monitor-
ing tool performs additional garbage collections and there-
fore clearly distorts memory behavior. Apart from that,
they provide a detailed analysis of heap sizes, object life-
times and object layout, as well as object references.

5. CONCLUSION
In this paper, we described the memory characteristics

and the GC behavior of common Java benchmark suites, i.e.,
the DaCapo benchmark suite, the DaCapo Scala benchmark
suite and the SPECjvm2008 benchmark suite. We showed
what benchmarks are best suited when looking for bench-
marks with a large total amount of allocations, a high al-
location rate, many large objects and large arrays, a high
GC count, a high overall GC time, high GC pauses, many
young or many old objects, as well as a high pointer density
per object. We also showed some curiosities, for example
that even though all benchmarks have been warmed up ac-
cording to the instructions of the respective publishers, the
scimark benchmarks allocate most of their objects in code
that has not been fully compiled yet, and that the lusearch
and pmd benchmarks steer a large part of their normal con-
trol flow via exceptions. We want to emphasize that we do
not encourage cherry picking benchmarks. However, both
researchers and reviewers need to understand whether a se-
lected benchmark meets the characteristics one is trying to
test or benchmark.

All tests were applied under modern, state-of-the-art pro-
cessors, virtual machines, garbage collection algorithms and
compilers. We based our analysis on AntTracks, a memory
monitoring tool which aims to not distort memory behavior
by using a lightweight, VM-internal logging approach.

By revealing internals and curiosities of commonly used
benchmarks, this paper provides a basis for explaining out-
liers in measurement. It can be further used for selecting
benchmarks with specific memory characteristics.
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ParallelOld GC G1 GC
Benchmark Count [#] Time [%] Pause [ms] YR [%] Count [#] Time [%] Pause [ms] YR [%]

- + - + - + - + - + - +

D
a
C

a
p

o

avrora 1 0 0.0 - 6 - 9,597 13 0 0.4 - 2 - 223
batik 0 0 - - - - 147 0 0 - - - - 131
eclipse 0 0 - - - - 771 2 0 3.4 - 2 - 398
fop 0 0 - - - - 2,891 3 0 6.8 - 3 - 545
h2 oom oom oom oom oom oom oom 296 6 6.7 6.8 43 21,888 16
jython 35 0 1.0 - 2 - 1,588 38 0 1.0 - 2 - 1,839
luindex 0 0 - - - - 604 1 0 1.0 - 3 - 184
lusearch 31 0 3.6 - 1 - 16,592 33 0 4.1 - 1 - 20,528
pmd 3 0 3.7 - 14 - 1,448 7 0 3.2 - 5 - 622
sunflow 18 0 1.1 - 2 - 6,593 34 0 1.8 - 2 - 2,458
tomcat 55 0 0.4 - 2 - 2,045 49 0 0.4 - 2 - 3,821
tradebeans 138 0 11.8 - 54 - 54 92 0 3.2 - 21 - 149
tradesoap 301 0 45.0 - 82 - 123 216 0 25.1 - 53 - 125
xalan 27 0 3.0 - 3 - 8,715 37 0 2.3 - 2 - 3,041

D
a
C

a
p

o
S
ca

la

actors 35 0 0.2 - 1 - 6,058 72 0 0.4 - 0 - 342
apparat 50 0 1.1 - 19 - 519 50 0 0.5 - 8 - 396
factorie 421 0 51.9 - 256 - 117 267 1 1.4 0.8 6 978 66
kiama 1 0 3.9 - 9 - 581 2 0 2.4 - 3 - 504
scalac 6 0 9.9 - 41 - 10,076 10 0 4.4 - 11 - 885
scaladoc 8 0 13.9 - 3 - 10,891 10 0 5.1 - 10 - 986
scalap 0 0 - - - - 5,815 4 0 3.2 - 1 - 2,210
scalariform 6 0 0.9 - 2 - 11,451 16 0 2.4 - 3 - 12,931
scalaxb 13 0 1.1 - 10 - 14,787 23 0 0.9 - 4 - 219
tmt 312 0 0.8 - 1 - 378 495 0 1.4 - 1 - 456

S
P

E
C

jv
m

2
0
0
8

compiler.compiler 96 5 51.2 6.5 115 284 41 57 0 27.0 - 77 - 126
compiler.sunflow 226 7 41.3 3.0 78 183 45 97 0 10.5 - 31 - 152
compress 2 0 0.0 - 1 - 278 4 0 0.0 - 1 - 177
crypto.aes 9 0 0.2 - 2 - 1,587 7 0 1.4 - 16 - 1
crypto.rsa 22 0 0.1 - 0 - 2,916 718 0 2.5 - 0 - 150
crypto.signverify 24 0 0.4 - 1 - 2,886 31 0 3.1 - 8 - 11
derby 220 0 3.8 - 5 - 78 144 0 1.6 - 2 - 133
mpegaudio 14 0 0.1 - 0 - 3,911 98 0 0.8 - 0 - 479
scimark.fft.large 1 1 0.5 0.2 47 18 71 1 0 0.0 - 0 - 1
scimark.fft.small 18 0 0.2 - 1 - 2,373 9 0 2.0 - 15 - 1
scimark.lu.large 4 0 0.2 - 24 - 65 15 0 0.3 - 7 - 24
scimark.lu.small 20 0 0.6 - 1 - 2,529 35 0 1.1 - 1 - 1,226
scimark.monte carlo 0 0 - - - - 1,337 2 0 0.0 - 1 - 144
scimark.sor.large 2 0 0.5 - 20 - 187 12 0 0.7 - 4 - 42
scimark.sor.small 0 0 - - - - 1,409 5 0 0.0 - 1 - 82
scimark.sparse.large 4 0 0.5 - 16 - 90 1 0 0.0 - 1 - 1
scimark.sparse.small 1 0 - - 0 - 7,780 42 0 1.6 - 1 - 80
serial 387 0 0.9 - 1 - 125 955 0 1.4 - 0 - 56
sunflow 274 1 5.1 0.0 10 21 49 363 0 2.0 - 3 - 2,776
xml.transform 42 0 2.3 - 3 - 209 49 0 2.0 - 2 - 1,867
xml.validation 136 4 22.4 2.6 34 139 48 71 0 10.6 - 31 - 138

Figure 9: GC count, GC time relative to the total run time (green: less than 5%, yellow: less than 15%, red:
more than 15%), and average pause time for minor (-) and major (+) GCs for the ParallelOld GC and the
G1 GC respectively (green: less than 10ms, yellow: less than 100ms, red: more than 100ms) (heap limited
to 1GB)
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ParallelOld GC G1 GC
Benchmark Count [#] Time [%] Pause [ms] YR [%] Count [#] Time [%] Pause [ms] YR [%]

- + - + - + - + - + - +

D
a
C

a
p

o

avrora 2 0 0.1 - 6 - 7,251 37 0 0.7 - 1 - 179
batik 0 0 - - - - 120 0 0 - - - - 113
eclipse 0 0 - - - - 719 2 0 4.0 - 2 - 406
fop 0 0 - - - - 2,828 3 0 6.7 - 3 - 772
h2 8 0 1.7 - 353 - 264 16 0 1.1 - 116 - 112
jython 20 0 0.6 - 2 - 2,457 31 0 0.9 - 2 - 2,453
luindex 0 0 - - - - 539 2 0 2.1 - 3 - 245
lusearch 10 0 2.7 - 2 - 38,857 37 0 3.4 - 1 - 15,363
pmd 3 0 3.6 - 14 - 1,409 5 0 2.4 - 6 - 1,336
sunflow 15 0 1.0 - 2 - 8,567 26 0 1.4 - 2 - 4,697
tomcat 61 0 0.5 - 2 - 1,721 14 0 0.2 - 5 - 29,220
tradebeans 10 0 3.3 - 197 - 1,320 90 0 2.8 - 20 - 152
tradesoap 13 0 41.8 - 1,680 - 754 64 0 14.6 - 193 - 61
xalan 11 0 2.3 - 6 - 25,235 21 0 0.1 - 3 - 25,056

D
a
C

a
p

o
S
ca

la

actors 44 0 0.3 - 1 - 1,680 68 0 0.3 - 0 - 3,418
apparat 22 0 0.5 - 21 - 9,099 31 0 0.3 - 11 - 7,080
factorie 17 0 5.9 - 381 - 1,787 44 0 1.2 - 33 - 604
kiama 1 0 3.5 - 9 - 518 2 0 1.8 - 2 - 496
scalac 3 0 5.6 - 45 - 15,515 10 0 4.0 - 10 - 3,269
scaladoc 3 0 6.3 - 41 - 21,921 7 0 4.0 - 12 - 2,699
scalap 0 0 - - - - 5,686 3 0 3.9 - 2 - 4,169
scalariform 8 0 1.5 - 3 - 9,271 14 0 1.9 - 2 - 13,395
scalaxb 16 0 1.3 - 10 - 2,034 19 0 0.7 - 4 - 462
tmt 271 0 0.7 - 1 - 695 220 0 0.7 - 1 - 1,517

S
P

E
C

jv
m

2
0
0
8

compiler.compiler 2 0 1.9 - 93 - 9,525 11 0 6.6 - 69 - 967
compiler.sunflow 6 0 1.2 - 51 - 14,019 23 0 2.3 - 28 - 3,877
compress 1 0 0.0 - 1 - 373 4 0 0.0 - 0 - 175
crypto.aes 3 0 0.1 - 2 - 14,930 17 0 0.3 - 1 - 6,812
crypto.rsa 11 0 0.0 - 0 - 4,906 301 0 1.4 - 0 - 381
crypto.signverify 10 0 0.1 - 1 - 8,820 34 0 0.5 - 1 - 2,803
derby 8 0 0.6 - 16 - 2,516 33 0 0.5 - 4 - 802
mpegaudio 7 0 0.0 - 0 - 6,605 249 0 1.5 - 0 - 251
scimark.fft.large 0 0 - - - - 17,221 1 0 0.0 - 1 - 3
scimark.fft.small 7 0 0.1 - 1 - 9,910 341 0 2.8 - 0 - 302
scimark.lu.large 0 0 - - - - 25,817 12 0 0.3 - 11 - 70
scimark.lu.small 7 0 0.2 - 1 - 21,669 25 0 0.8 - 2 - 3,125
scimark.monte carlo 0 0 - - - - 1,163 0 0 - - - - 0
scimark.sor.large 0 0 - - - - 11,629 11 0 1.4 - 9 - 22
scimark.sor.small 0 0 - - - - 1,214 1 0 0.0 - 3 - 438
scimark.sparse.large 0 0 - - - - 13,222 3 0 0.0 - 3 - 6
scimark.sparse.small 1 0 0.0 - 1 - 6,805 34 0 1.1 - 0 - 448
serial 263 0 0.7 - 1 - 307 804 0 1.1 - 0 - 94
sunflow 81 0 0.7 - 5 - 1,570 265 0 1.4 - 3 - 2,808
xml.transform 1 0 0.1 - 5 - 43,979 18 0 0.7 - 2 - 6,853
xml.validation 4 0 1.3 - 55 - 9,426 22 0 2.4 - 21 - 1,442

Figure 10: GC count, GC time relative to the total run time (green: less than 5%, yellow: less than 15%, red:
more than 15%), and average pause time for minor (-) and major (+) GCs for the ParallelOld GC and the G1
GC respectively (green: less than 10ms, yellow: less than 100ms, red: more than 100ms) (heap unlimited)
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