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ABSTRACT
The increasing demand for real-time analytics requires the
fusion of Transactional (OLTP) and Analytical (OLAP) sys-
tems, eschewing ETL processes and introducing a plethora
of proposals for the so-called Hybrid Analytical and Trans-
actional Processing (HTAP) systems.

Unfortunately, current benchmarking approaches are not
able to comprehensively produce a unified metric from the
assessment of an HTAP system. The evaluation of both
engine types is done separately, leading to the use of disjoint
sets of benchmarks such as TPC-C or TPC-H.

In this paper we propose a new benchmark, HTAPBench,
providing a unified metric for HTAP systems geared toward
the execution of constantly increasing OLAP requests lim-
ited by an admissible impact on OLTP performance. To
achieve this, a load balancer within HTAPBench regulates
the coexistence of OLTP and OLAP workloads, proposing
a method for the generation of both new data and requests,
so that OLAP requests over freshly modified data are com-
parable across runs.

We demonstrate the merit of our approach by validating
it with different types of systems: OLTP, OLAP and HTAP;
showing that the benchmark is able to highlight the differ-
ences between them, while producing queries with compara-
ble complexity across experiments with negligible variability.

CCS Concepts
•Information systems→Database performance eval-
uation; Relational parallel and distributed DBMSs;
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1. INTRODUCTION
We are undergoing a change in database system design.

Up until now, there has clearly been two main categories
into which systems could be classified: operational or trans-
actional systems (OLTP) and data warehousing or analyti-
cal systems (OLAP). For a long time, each system type lived
apart from each other, as each had very distinct goals. On
the one hand, transactional systems focus their operation
on providing ways to enable a high throughput of rather
small-sized transactions. Typically, during execution, each
transaction operates under a very limited space of tuples.
OLTP systems use a data schema based on reduced levels
of redundancy, resulting from normalization techniques [26]
across entities. On the other hand, analytical systems fo-
cus on performing aggregations over large sets of data. The
query centric nature of an OLAP data schema introduces
high levels of redundancy in the shape of materialized views
or precomputed aggregates [19].

As pointed out by Gartner [28], a new class of engines, ca-
pable of handling mixed workloads with high levels of trans-
actional activity and, at the same time, providing scalable
business analytics directly over production data is arising.
Such systems bypass the need to use the ETL [18] process
and are commonly referred to as HTAP - Hybrid Analyt-
ical and Transactional Processing systems. Traditionally,
both workloads are handled by separate engines, periodi-
cally feeding the OLAP with data from the OLTP engine
through an ETL process. The approach seeks to ensure the
best performance of each individual engine at the expense of
data freshness for analytics. By eschewing the ETL process,
HTAP systems are poised to reduce implementation, man-
agement and storage costs and, most importantly, enable
real-time analytics over production data. Several vendors
such as Oracle, SAP or PostgreSQL started to fill in this
gap and proposed solutions that coined variant terminolo-
gies such as OLTAP [21](Online Transactional Analytical
Processing) or OLxP [16, 22] (Online Transctional or Ana-
lytical Processing) that also aim to mix both workload types.
Other companies have started to offer Hybrid solutions such
as NuoDB [24], VoltDB [27] or Splice Machine [20].
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Given the traditional taxonomy of OLTP and OLAP sys-
tems, the industry along with independent organizations de-
fined benchmarking approaches specially tailored for either
transactional or analytical workloads, such as TPC-C [8] and
TPC-E [11] for OLTP workloads and TPC-H [9] or TPC-
DS [23] for analytical workloads. Each benchmark focuses
on the optimization challenges associated with each system
type, defining evaluation suites with very different and con-
tradicting goals. This is so as optimizing an OLTP targeted
operation would intrinsically degrade OLAP performance
and vice-versa [14]. For instance, OLTP and OLAP work-
loads generate specific sets of queries that require distinct
storage layouts in order to be efficient. They can also ac-
commodate different-sized datasets, employing the concept
of warehouse as scaling factor. Optimizing a storage layout
to support both access patterns efficiently is not a trivial
task but it must be accomplished to have efficient hybrid sys-
tems. Moreover, as further discussed in the paper, storage
accesses generated by OLTP workloads are mostly random
while OLAP workloads are mainly sequential. Likewise, a
hybrid workload will assess the ability of the system under
test (SUT) to simultaneously schedule random and sequen-
tial access patterns to storage mediums and manage both
light and intense operations regarding memory allocation
and processor time; these are some of the reasons why these
workloads have until now been evaluated independently.

Most importantly, it is not easy to combine and directly
translate results from distinct benchmarks to the effective-
ness of a system to handle an HTAP workload. Gartner
states that an HTAP system should prioritize a sustained
transactional throughput, delivering at the same time scal-
able analytical processing without disrupting the operational
activity [28]. Consequently, even if both workloads can be
run on the same engine, it is not straightforward to mean-
ingfully and consistently reconcile the results of both work-
loads in a single HTAP metric. This is so as each workload
is usually oblivious to the presence of the other, trying to
independently reach the maximum qualified throughput in
each separate workload, and therefore producing uncorre-
lated metrics.

In this paper, we present HTAPBench, a new benchmark
suite designed to evaluate hybrid systems with mixed OLTP
and OLAP workloads. HTAPBench introduces a new met-
ric that provides a reading of the analytical capability as the
system scales. The proposed benchmark introduces a hybrid
workload that simultaneously exercises a workload with op-
erational and analytical activity over the same system. It
introduces a Client Balancer that controls how analytical
clients are launched, ensuring that the OLTP activity stays
within a configured threshold and the results are kept com-
parable across runs by addressing data uniformity of the
workload. Throughout the paper we use database when re-
ferring to the stored data, engine when referring to the soft-
ware and SUT or system when referring to the composition
of software and underlying hardware.

Contributions: First, we propose a new unified metric
aimed at engines with mixed workloads. Second, we present
the design and implementation of HTAPBench supporting
such a metric. We introduce a technique for generating re-
alistic OLAP queries over a dynamically changing dataset
resulting from concurrent OLTP, with predictable complex-
ity. In addition, we propose a load balancer that relies on a
feedback control mechanism that regulates the coexistence
of the OLTP and OLAP workload execution.

Roadmap: The remainder of this paper is organized as
follows: Section 2 presents an overview and the unified met-
ric we propose. Section 3 evaluates our proposal against
different systems, and Section 4 validates the results as well
as discusses the properties of the system. Section 5 goes
through related work and Section 6 concludes this work.

2. HTAPBench
The Hybrid Transactional and Analytical Processing Bench-

mark is targeted at assessing engines capable of deliver-
ing mixed workloads composed of OLTP transactions and
OLAP business queries without resorting to ETL. Typically,
in environments with mixed workloads, the relative weight
given to OLTP and OLAP is governed by delivering a high
OLTP throughput while still being able to simultaneously
perform analytical business queries [28]. This goal should be
met in such a way that the OLTP throughput is kept within
expected intervals. Likewise, HTAPBench focuses its oper-
ation on ensuring a stable OLTP throughput and assessing
the capability of the SUT to cope with an increasing demand
on the OLAP counterpart. To fulfill OLTP requirements,
HTAPBench requires the testing engine to grant full ACID
capabilities during all stages of the benchmark. The design
is composed of several modules as depicted in Figure 1. The
Density Consultant, the Client Balancer and the Dynamic
Query-H Generator modules provide the foundation of our
approach and are discussed in this Section.

Figure 1: HTAPBench architecture.

In a nutshell, HTAPBench decomposes the execution into
three main stages: (i) the populate stage, (ii) the warmup
stage and (iii) the execution stage. Two of the modules,
which we define as agents, will regulate the OLTP and OLAP
activity. During system start, HTAPBench will be config-
ured with a target OLTP throughput, triggering an OLTP
workload configured with the required number of clients to
meet the required throughput. Periodically, HTAPBench
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Figure 2: HTAPBench execution.
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will assess the ability of the SUT to handle an increasing
OLAP activity, as depicted in Figure 2, while ensuring that
the transactional throughput does not decrease below a con-
figured threshold.

The unified metric is central to our design, and its gene-
sis is directly translated from the need of HTAP systems to
scale without disturbing the OLTP activity. It mirrors the
ability of a given analytical worker to complete queries, in
a scenario composed of an increasing number of analytical
workers and a stable transactional activity. Analyzing this
behavior will enable us to identify situations where adding
an additional OLAP worker degrades the OLTP/OLAP en-
gine performance.

2.1 Workload
The mixed workload used in this benchmark is composed

of a transactional agent and an analytical agent that simul-
taneously instruct the system to perform operations over the
same dataset. We selected TPC-C and TPC-H as agents, as
each is able to stress the inherent characteristics of each
workload type. TPC-C was chosen as the transactional
client due to its high rate of read-write operations, being one
of the most used workloads for OLTP evaluation. TPC-C
specification models a real-world scenario where a company,
comprised of several warehouses and districts, processes or-
ders placed by clients. The workload scales according to the
number of configured warehouses.

TPC-H also specifies a real-world scenario, modeling a
wholesale supplier and employing a schema that is very
close in structure to TPC-C. Moreover, we selected TPC-
H over TPC-DS [10] since the workload in TPC-DS is data
warehouse-driven, not only relying on a star schema but also
requiring the use of ETL processes to keep data updated and
in conformity with such a schema. On the basis that analyt-
ical queries in a hybrid workload should exercise a dataset
common to the operational workload, TPC-H better fits the
requirement as it does not use a star schema, placing it closer
to the workload schema in TPC-C.

The mixed workload in HTAPBench uses all the entities
in TPC-C and TPC-H’s Nation, Region and Supplier, as
proposed in [5]. The remaining TPC-H entities were merged
into a non-intrusive way in TPC-C’s workload. The result
is a workload that matches Gartner’s recommendations for
hybrid workloads, where data should not be moved from op-
erational to data warehouses in order to support analytics,
but live under the same schema allowing drill-down analyt-
ical operations to point toward the freshest data produced
by the operational activity.

The OLTP execution in HTAPBench runs according to
a target number of transactions per second (tps). It is
thus necessary to ensure the optimal configuration regarding
some TPC-C specific parameters such as the total number of
warehouses and clients defining the number of transactions
per second (tpmC).

target(tpmC) = target(tps)× 60× %NewOrder

100
(1)

#clients =
target(tmpC)

1.286
(2)

#warehouses =
#clients

10
(3)

To compute these parameters, we refer to the TPC-C specifi-

cation [8] and use the characterization for the TPC-C’s ideal
client, considering the minimum think time for each trans-
action type, and provided that transactions do not fail and
thus no rollback operation is required. According to TPC-C,
a single client should not be able to execute more than 1.286
tpmC. Under these conditions, it is possible to extract the
target tpmC from the target tps (expression 1), as well as
the total number of clients (expression 2) and warehouses
(expression 3). The required target tps is one of the config-
urable criteria in HTAPBench and directly relates with the
expected scalability of the system and respective database
size (further details are provided in Section 2.4).

The business queries in TPC-H are built from filtering,
aggregation and grouping operations over a given result set.
Filtering operations use SQL operators such as where, hav-
ing or between. Their main goal is to limit the number of
considered rows. Since the transactional activity will feed
the analytical queries in HTAPBench, the number of rows
filtered by the latter will grow over time. If not addressed,
the results of these analytical queries are poised to become
incomparable across runs. Data distributions regulate how
the parameters for filtering operators are selected, enabling
the queries to dynamically exercise several regions of the
dataset while exhibiting comparable complexity. On the
other hand, if the queries are not dynamically generated,
the use of fixed bounds on the filters would end up travers-
ing the full domains, preventing the query planner of the
SUT to be exercised.

To verify the impact of using fixed or dynamic parameters,
we conducted an experiment where we considered the exe-
cution of the 22 TPC-H queries over 2 setups. The first used
a set of fixed parameters that would resemble full domain
searches; the second used dynamically generated parameters
without being bound to a data distribution. The configu-
ration of dynamically generated parameters created a new
set for each run, while the fixed configuration reuses the
same set across runs. Each setup considers the average of
5 independent executions. Queries are computed against a
column-oriented engine. In each run, the database is popu-
lated with one warehouse and the queries are executed with-
out any of the filtering operators in their composition, estab-
lishing a baseline comparison that represents the universe of
rows in each query.

The experiment observes the average difference of result
set row count in consecutive executions of each run for a
given setup, as a percentage of the baseline result. When
using fixed parametrization, the result set cardinality did not
change across consecutive runs, and in most cases, queries
ended up selecting a considerably broader space of tuples.
When we used dynamically generated filters in the TPC-H
queries, a variation of up to 77% in result set cardinality was
observed in comparison with the previous approach. This is
due to not using a distribution to feed the date fields during
the population stage of the benchmark. By not using a
distribution to regulate how these fields are generated, it
becomes likely that the items inserted during the populate
stage of the benchmark present uneven time distributions
when compared with the ones created during the execution
stage. The next Section introduces a way to generate a
workload distribution that ensures analytical queries with
comparable complexity across runs.
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2.2 Result Set Homogeneity
The analytical queries composing a hybrid workload are

fed with data created or manipulated by the transactional
agent, either during the initial populate stage, or during the
transactional execution part of the hybrid workload. The
engine qualifying as HTAP must operate under an isolation
criterion that enables the analytical queries to observe data
committed by the transactional agent at the time the an-
alytical queries started. Likewise, a given analytical query
should freely access the entire dataset, spanning from the
first to the last committed transaction.

Figure 3: Timestamp density difference.

As discussed in the previous Section, the absence of a
regulating mechanism would result in the use of randomized
query boundaries, producing incomparable results across runs.
The same may happen when analytical queries observe data
generated in the populate and execution stages of the hy-
brid workload. Figure 3 depicts an example of the patterns
that data is created or changed by the transactional agent.
On the one hand, the OLTP populate stage (Figure 3a) pro-
motes bursts of transactions inserting data, causing a high
concentration of timestamps in a short time period. On the
other hand, during the OTLP execution stage, the OTLP
transaction rate is regulated by TPC-C.

What is desirable is that the pattern generated by the
OLTP execution within TPC-C is also observed by analyt-
ical queries whenever they traverse the data loaded during
the populate stage. To mitigate this issue, we introduce a
density extraction mechanism that ensures the same data
pattern across stages. Briefly stated, our approach observes
the amount of generated date fields during the execution
stage of TPC-C, allowing the system to apply the extracted
density during population.

Density Function
The populate and execution stages of TPC-C generate dif-
ferent date densities across the whole dataset, varying ac-
cording to the configured transaction mix within TPC-C.
Moreover, as not all transaction types generate the same
number of new timestamps, we configured our density func-
tion to reflect that behavior.

txnMix =
%NewOrder + %Payment + 10×%Delivery

100
(4)

d(TS/s) = tps× txnMix (5)

Both the New Order and Payment transactions generate one
timestamp each, while each Delivery transaction generates
ten. The Order Status and the Stock Level transactions
do not generate any timestamps. It is then possible to ex-
press density as a function between the target number of
transactions per second and the ratio of New Order, Pay-

ment and Delivery transactions, as defined by expression 5.

In the following, we set up an experiment that allowed us to
observe the expected density.

This experiment was conducted on a server with an Intel
Xeon x3220 2.4 GHz QuadCore, 8GB of memory and 128GB
Solid State Drive. For the purpose of this test, we relied on
a Hybrid system, which we set up according to Table 1 to
reflect workloads with more than 70GB in total size. In
each experiment, the database was dropped and populated.
Afterwards, we ran TPC-C under the standard transaction
mix in runs that lasted 60 minutes.

tpmC clients warehouses
635 495 49
741 576 58
886 689 69

Table 1: Workload Configuration - Ideal TPC-C client.

The results depicted in Table 2 are the average of five
independent runs regarding each target. The results depict
an increasing amount of newly issued timestamps (T ) as the
defined target increases, thus reflecting a density function
that also presents an increasing trend. The results also show

tpmC
Total Expected Experimental

Observed (Ts) d(Ts/s) d(Ts/s)
635 108,051 30.24 30.01
741 125,500 35.14 34.86
886 150,114 42.02 41.69

Table 2: Density Observation Results.

that the density function provides results that are only 3%
apart when comparing with the experimental observation.

The timestamp density will introduce a change in the stan-
dard TPC-C specification. It is worth noting that this mod-
ification does not introduce any change in TPC-C business
logic. The individual TPC-C results are kept comparable
with a same-sized TPC-C installation.

2.3 Component Design

Unified Metric
The disparity in workload complexity and structure between
OLTP and OLAP workloads is a major hurdle when trying
to define a unified metric for an HTAP system. So far, one of
the main disadvantages of previous approaches was the fact
that they would enable both OLTP and OLAP executions
to grow in order to achieve the maximum throughput for
each. The non-regulated growth induced by OLTP execu-
tion would inherently degrade OLAP performance since an-
alytical queries would have to scan more data. HTAPBench
removes one axis of variability by regulating the OLTP work-
load. The assurance of a constant transactional execution
also leads to a sustained and known database growth; that
is, the rate at which OLAP queries observe new data is fixed
and predictable, bypassing the need to normalize the OLAP
results in terms of the observed growth.

QpHpW =
QphH

#OLAPworkers
@tpmC (6)

Expression 6 defines the metric we propose, QpHpW or
”Queries of type H per Hour per Worker”. It reads as the
number of analytical queries executed per OLAP worker re-
garding a system that is able to sustain the configured tps.
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It is defined by the ratio between TPC-H’s metric and the
total number of registered OLAP workers induced by the
Client Balancer. A higher QpHpW maps a system where
each OLAP worker is able to compute more queries per an-
alytical worker, thus representing a higher overall through-
put. Achieving the best configuration for a given installation
becomes a multi-run optimization problem regarding a given
target tps.

Client Balancer
The Client Balancer module is responsible for monitoring
and deciding whether or not to launch additional OLAP
workers. When the OLTP agent ensures that the target
tps is stable, the Client Balancer will periodically assess
whether or not the SUT is capable of handling an extra
OLAP worker. This assessment relies on a proportional-
integral feedback controller.

output = KP ∆tps + KI

∫
∆t (7)

The feedback control mechanism (expression 7) is charac-
terized by a proportional (KP ) and an integral (KI) gain
adjustment. The gain parameters are used over the found
system deviation (∆tps = target tps − measured tps) to
compute the output value. The correct adjustment of either
gain factor is vital to ensure that the feedback controller
does not exceed too quickly the SUT’s capabilities, which
in turn would launch a higher number of OLAP workers,
causing disruption on the throughput of the OLTP execu-
tion. We tuned the proportional-integral feedback controller
by experimentation to use the gain adjustment characterized
by KP = 0.4 and kI = 0.03. The individual study on how to
reach these parameters is left out of the scope of this paper.
Algorithm 1 presents the Client Balancer decision process.

Algorithm 1 Client Balancer

1: procedure
2: wait(∆t)
3: error ← target tps−measured tps
4: integral← integral + error × 1

∆t
5: output← KP × error + KI × integral
6: previous error ← error
7:
8: if output > (target tps×margin) and ¬saturated

then
9: start OLAP worker

10: else
11: saturated← true

The Client Balancer will periodically (∆t) poll the engine re-
garding the current number of transactions being delivered.
This information is then fed into the feedback controller. To
launch another OLAP worker, the Client Balancer ensures
that the output value produced by the feedback mechanism
is within a given error margin of the configured target tps
and that the system is not saturated. The point of satu-
ration is reached when the current number of OLTP trans-
actions per second being delivered drops below the chosen
threshold.

Density Consultant & Loader
HTAPBench follows the standard TPC-C transaction mix.
The Density Consultant computes the correct density ac-

cording to the chosen target tps and transaction mix. Dur-
ing the populate stage, in order to generate timestamps that
follow the required density, the Loader is equipped with a
clock that initiates with the system time at which the pop-
ulate stage is initiated. The clock then computes how much
time should elapse between clock ticks (∆TS) in order to
fulfill the required density, as defined by expression 8.

∆TS(ms) =
1

d(TS/s)
× 1000 (8)

The HTAPBench Loader will proceed to create and load
all the table entities represented in the hybrid data schema,
built from merging TPC-H’s schema into TPC-C’s. The fi-
nal installation will scale in size according to the computed
number of warehouses. When loading tables with references
to date items, the Load worker makes use of the clock, in-
creasing one tick for each new date field to be loaded. After
completion, applying the density function ensures that the
temporal density in the date fields matches the observed
density during execution of the transactional workload.

Dynamic Query-H Generator
The analytical queries within HTAPBench are constructed
according to the TPC-H specification, which requires them
to be built with randomized parameters within given bound-
aries. The Dynamic Query-H Generator module is respon-
sible for building the SQL statements for the queries, ensur-
ing that the random values comply with the TPC-H spec-
ification. This module integrates with the Client Balancer
module that will launch the analytical workers, with its out-
put afterwards fed into the TPC-H worker. The Dynamic
Query-H Generator computes the time window frames that
should be considered for query execution, and introduces a
feature that enables the window frame generation to reflect a
sliding window behavior. In the specification for each query,
TPC-H requires static time frames. Take as an example
query Q6 that computes the total revenue for orders placed
within a given period.

Listing 1: TPC-H Query 6

select sum( ol amount ) as revenue from
o r d e r l i n e where o l d e l i v e r y d between

[Date ] and [Date + 1 year ] and
o l quan t i t y between [ Amount a ] and [ Amount b ]

This particular query restricts the result set to orders placed
within a one-year time frame, starting on January the first of
a randomly selected year between 1993 and 1997, and end-
ing in the following year. In TPC-H, this is attainable since
it does not consider database growth. However, in HTAP-
Bench, the database grows at the pace dictated by the OLTP
execution of the benchmark. Thus, if window frames were to
be kept static, the new regions on the dataset would never
be queried. To produce a homogeneous result set that is
representative of the whole dataset, the Dynamic Query-H
Generator ensures that queries comply with the time range
imposed by the specification while simultaneously leveraging
the Density Consultant module to shift the starting date of
the range to meet the speed at which the OLTP execution
is making the database grow. Hence, the sliding window be-
havior not only ensures that the entire dataset is considered
but also that consecutive executions of the same query are
kept comparable.
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Results Monitor
The Results Monitor collects the execution results produced
by each worker. The final measurements are only collected
after the configured execution time elapsed and all the work-
ers finalized all procedures. The transactional activity is
characterized according to TPC-C’s metric (tpmC ) while,
the analytical activity is characterized by TPC-H’s metric
(QphH ). Together with both metrics, this module also out-
puts data from the Client Balancer, characterizing each run
in terms of how many OLAP workers were launched and
when as well as the result set volume and latency for each
analytical query executed.

Implementation
HTAPBench is available as an open source project 1. It
was implemented in Java for improved portability and in-
cludes all the aforementioned components. The current pro-
totype was implemented as an extension of OLTPBench [13],
a framework that enables the execution of several bench-
marking approaches. Moreover, OLTPBench’s implementa-
tion of TPC-C does not consider the think time used during
transaction execution. The TPC-C specification requires a
time in which each transaction simulates (by entering a sleep
stage) the time required by the terminal user to insert data,
as well as the terminal’s processing time (TPC-C’s simula-
tion of a real-world scenario). Consequently, as part of our
extension to OLTPBench to implement HTAPBench, we in-
troduced the think time processing stage for each transac-
tion of TPC-C.

HTAPBench relies on JDBC to establish a connection
with the engine. Since JDBC defines a standard interface
to connect with several engines, it is possible to use HTAP-
Bench with a wide range of engines, provided that they sup-
port JDBC.

2.4 Benchmark Configuration
HTAPBench has several system requirements. The ma-

chine running HTAPBench should be provisioned with a
Java distribution and the appropriate database engine driver.

HTAPBench requires the user to provide the engine JDBC
connection URL, the fully qualified name of engine driver
class and the target number of transactions per second (tps).
The required target tps for a given configuration derives
from an expectation regarding the performance compliance
for the SUT. The user should start with a small target tps
value and progressively increase the target tps until the SUT
is saturated, as it happens with the warehouse scalability
in TPC-C. Other configurations are allowed, enabling cus-
tomization of the workload, namely: the Client Balancer ∆t
and error margin, the TPC-C transaction mix, the TPC-H

query mix and the Execution time. Hereafter, we briefly
describe the impact of the mandatory parameters on the
system.

• Client Balancer ∆t: This parameter configures the pe-
riod in seconds used by the Client Balancer module to
assess if further OLAP workers should be launched. As-
signing the appropriate evaluation period has a direct im-
pact on the convergence time and precision of the bench-
mark. Choosing a small value may cause the system to
converge to quickly, but overestimate the number of ad-
missible OLAP clients. On the other hand, choosing a

1https://github.com/faclc4/HTAPBench.git

large value improves the client balancer decision by ex-
posing it to a larger number of samples, but delays the
overall process. This parameter defaults to 60 seconds,
configuring a trade-off between scalability and assured-
ness.

• Client Balancer error margin: This parameter config-
ures how sensitive to change the Client Balancer should
be, setting up the range of allowed tps computed in per-
centage of the target tps. It has a default value of 20%,
which by experimentation we consider to be a reason-
able trade-off of loss OLTP throughput in favor of having
OLAP capability.

• Execution time: This parameter configures the duration
of time that each run of the execution stage of the bench-
mark should last. This parameter defaults to 60 minutes,
configuring a reasonable execution time after the warmup
stage for the Client Balancer to exercise the SUT.

The execution of HTAPBench is divided into three main
stages, as previously introduced. After system configura-
tion, the user should run the populate script that gener-
ates the appropriate Comma-Separated-Values (CSV) files
for the configured tps. Afterwards, the user should consult
the documentation of the engine to be tested in order to
use the correct procedure to load the CSV files (optionally,
it is possible to directly populate the SUT, but this oper-
ation usually takes longer, since it does not load data in
batch mode). To start the execution stage, which includes
the initial warmup, the user should use the execution script,
automatically deploying the required number of clients. The
execution will run for the configured time and will afterwards
produce result files, characterizing the OLTP and OLAP ex-
ecutions and computing the unified metric.

3. BENCHMARKING CAMPAIGN
The benchmarking examples presented in this Section re-

sult from an extensive study intended to evaluate the key
properties of HTAPBench. As such, the main purpose of
the presented scenarios is not to quantitatively compare dif-
ferent SUTs, but rather to demonstrate the expressiveness
of the benchmark suite and its metrics.

Three different SUT were selected, namely: (i) an OLTP
system, (ii) an OLAP system and (iii) a Hybrid system.
Besides the target tps and the Client Balancer error mar-
gin, the same HTAPBench configuration was used across
experiments. The Client Balancer was set to use an evalu-
ation period (∆t) of 60 seconds and the OLTP activity was
regulated by the standard transaction mix within TPC-C.
For the OLAP activity, we set up HTAPBench so that each
business query would be chosen according to a uniform dis-
tribution. Across experiments, we configured HTAPBench
to inject 100 transactions per second, which according to
our density extraction mechanism amounts to 2,099 active
OLTP clients and 210 warehouses, a total of 117GB of data.
The selected target tps was chosen as the number of config-
ured warehouses generate a dataset with over 100GB, which
is above the third recommended scale factor for the OLAP
agent (e.g., 1GB, 10GB, 100GB). All the following experi-
ments reflect the average of 5 independent 60 minute runs.
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(a) OLTP SUT.
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(b) OLAP SUT.
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(c) Hybrid SUT.

# OLAP workers QpH QpHpW
OLTP 50 7 0.14 @ 756
OLAP 4 123 30.75 @ 217
Hybrid 12 169 14.14 @ 530

(d) Overview of results for different SUT.

Figure 4: Registered progress between OLTP throughput and induced OLAP scalability. The optimal trade-off between
OLTP and OLAP performance is achieved when the OLTP throughput goes below the gray area, at which point the OLAP

activity is not further increased. The table in (d) summarizes the OLAP results, showing that the Hybrid SUT is more
balanced for an HTAP workload.

3.1 OLTP System
The current experiment used a server with an Intel Xeon

E5-2670 v3 CPU with 24 physical cores (48 virtual) at 2.3
GHz and 72GB of memory, running Ubuntu 12.04 LTS as
the operating system. We deployed an OLTP row-oriented
engine and configured the level of memory that would allow
the required number of clients. The Client Balancer within
HTAPBench was configured to consider the default error
margin of 20%. The admissible loss of OLTP throughput
induced by the configuration of the error margin is depicted
as a gray area in Figures 4(a), 4(b) and 4(c). HTAPBench
was launched from the same machine.

The results in Figure 4(a) depict that HTAPBench was
able to launch and sustain the required target tps through-
out the entire execution time. This is read by looking at
the OLTP line that is the linear interpolation of the plot-
ted points. The required target tps was reached on the first
minute of execution and, from that moment on, the Client
Balancer started its configuration by launching an OLAP
worker at each minute. The evolution regarding when and
how many OLAP workers exist is read by looking at the
plotted line resembling a staircase.

With a configured error margin of 20%, the bottom tps
barrier was only surpassed after 50 minutes, saturating the
system at that point in time, and therefore not launching
further OLAP workers. Please consider that by default
HTAPBench’s Client Balancer introduces a single OLAP
worker in each evaluation period (∆t). Even though we do
not present this evaluation for lack of space, it is possible
to configure HTAPBench’s Client Balancer to deploy more
than one OLAP worker at a time.

Throughout the test, a declining trend in the OLTP through-
put becomes evident. In what strictly concerns the OLAP
activity, the engine under test was able to hold up to 50
OLAP clients. As previously stated, the main premise in
HTAPBench’s evaluation scheme is to discover how many
OLAP workers are required to stress out a given SUT, while
ensuring that the transactional activity does not degrade
beyond a configurable threshold. In addition to providing
a temporal evaluation of both OLTP and OLAP workers
within the system, HTAPBench outputs the unified metric
we propose, but also the standard TPC-C tpmC and TPC-
H QphH metrics. Within this setup, this SUT was able to
sustain 756 tpmC and 7 QphH, resulting in 0.14 QpH in
each OLAP worker (7 QpH / 50 OLAP workers). As such,
the unified metric, QpHpW , amounts to 0.14 @ 756 tpmC.

3.2 OLAP System
The current experiment reused the previous configuration.

We deployed an OLAP column-oriented engine, only setting
up the required level of clients allowed in the engine.

The results in Figure 4(b) depict that the SUT sustained
the OLTP throughput for a shorter period. This behav-
ior is not unreasonable since the focus of this engine is not
on OLTP activity. From the moment the threshold was bro-
ken (6th minute), the Client Balancer stopped releasing new
OLAP clients. From this time on, albeit at a lower through-
put, the OLTP activity was kept stable until the end of the
run time. The SUT was able to register 217 tpmC while sus-
taining 4 individual OLAP clients. Cumulatively, the OLAP
activity reached a peak of 123 QphH. As such, the unified
metric we propose, QpHpW , reaches 30.75@217 tpmC.
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Compared with the previous system, we observe that the
latter system can enable a larger number of analytic queries,
despite the fact that this particular system was only able to
launch 4 OLAP streams, compared to 50 OLAP streams
with the first SUT. This may seem counter-intuitive, con-
sidering that we are working atop a column-based engine
specifically designed for an analytical workload. However,
the 4 OLAP streams in the current SUT are much more
efficient when compared with the 50 OLAP streams in the
OLTP SUT.

3.3 Hybrid System
Next, we use HTAPBench to characterize a Hybrid engine.

As such systems are designed to scale out, they are usually
made available over a distributed architecture.

We deployed the Hybrid system over 10 nodes, 9 of which
are responsible for handling and storing data, and the re-
maining node provides coordination and other global ser-
vices. Each node has an Intel i3-2100-3.1GHz 64 bit pro-
cessor with 2 physical cores (4 virtual), 8GB of RAM mem-
ory and 1 SATA II (3.0Gbit/s) hard drive, running Ubuntu
12.04 LTS as the operating system and interconnected by a
switched Gigabit Ethernet network.

The results depicted in Figure 4(c) reveal that the OLTP
throughput reached the assigned target in the first minute
of execution. From the first minute onward, the Client
Balancer started to deploy OLAP streams until the OLTP
throughput degraded beyond the considered error margin,
which happened after 20 minutes, registering a grand total
of 12 OLAP streams. From that moment on, the OLTP
throughput slowly degraded over the remainder of the test
duration. Cumulatively, the SUT was able to sustain 530
tpmC and 169 QphH. Therefore, our unified metric QpHpW ,
presents as 14.14@530 tpmC.

3.4 Discussion
The results of these three tests are summarized in the

table in Figure 4(d). Although the OLTP SUT achieved
the highest number of OLAP workers, the results in Fig-
ure 4(d) also show that it achieved the lowest OLAP per-
formance (0.14). The OLAP workers in the OLTP engine
spend most of their time waiting for the OLAP queries to
be processed and therefore complete relatively few OLAP
queries. On the other hand, the OLAP engine processes
significantly more analytical queries, but fails to cope with
the required OLTP throughput that is used by the Client
Balancer to launch additional OLAP workers. Overall the
OLTP engine completed 7 QpH and the OLAP engine com-
pleted 123 QpH. This results show that the OLAP SUT was
better at handling the OLAP workload, but its inability to
cope with the OLTP workload in the hybrid configuration
harmed the overall scalability. The favored hardware con-
figuration for the Hybrid SUT is significantly different from
the OLTP system or the OLAP system, which undermines a
direct comparison among them. Nevertheless, HTAPBench
was able to evaluate the Hybrid SUT, enabling 12 OLAP
streams and achieving a total of 169 OLAP queries. The re-
sults reveal that the Hybrid SUT can sustain a considerable
OLTP throughput with a moderate OLAP scalability.

4. VALIDATION
In order to validate the expressiveness of our metrics, we

studied the system’s representativeness, workload accuracy,

homogeneity, error margin variability and cost. Moreover,
we discuss the benchmark portability, reproducibility and
repeatability. For that matter, we used all the previous SUT
configurations.

First, we show that the proposed metric can either identify
systems with similar or very different goals. Second, we an-
alyze HTAPBench’s accuracy by verifying the storage traces
produced in three distinct scenarios. Third, we verify that
the produced query result sets are homogeneous as specified.
Fourth, we conduct a variability analysis which presents the
consequences of varying HTAPBench’s error rate. Finally
we discuss the cost of using the suite.

4.1 HTAP Unified Metric
The unified metric we propose allows us to establish a

comparison across two dimensions. Figure 5 uses a quadrant
field plot to visually compare the relationship between our
proposed metric and the target OLTP throughput.
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Figure 5: Quadrant field plot for the unified metric.

While an increase in the vertical axis translates into a
higher OLTP throughput, the horizontal axis evaluates the
capability to perform more analytical queries per OLAP
worker. The best result would be a reading on the up-
per right quadrant. The analysis depicts that while the
SUT labeled OLTP 1 registered a QpHpW of 0.14@756
tpmC, the OLAP observed 30.75@217 tmpC and the Hybrid
14.14@534.1 tpmC. Overall, we can state that the analyzed
systems follow the trend in which the increase of OLTP ac-
tivity diminishes the OLAP capability. The hybrid system
reached a position close to the middle of the plot, indicating
better support for the mixed workload with simultaneous
OLTP and OLAP activity.

So far, the presented results allow us to conclude that the
benchmarking suite is able to compare systems with very
distinct work plans. In order to verify if the suite is able to
distinguish systems designed for similar workloads, we repro-
duced the same experimental scenario as in Section 3.1 but
changed the SUT to a different engine designed for OLTP
workloads. We evaluated its performance and plotted it in
Figure 5 with the label ”OLTP 2”. The results place OLTP
system 2 very close to system OLTP 1 with enough precision
so as not to overlap both results.

All of the previous experiments were integrated in a statis-
tical study from where we were able to compute the variation
coefficient of the computed metrics, pointing to a variation
of 1.2%. As such, if the evaluation of 2 different systems,
or system configurations produce variabilities with less than
1.2%, the systems should be considered indistinguishable.

4.2 Error Margin Variability
The Client Balancer in HTAPBench controls whether fur-
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(c) HTAP access pattern.

Figure 6: Traces collected through the blktrace tool during a HTAPBench execution over an (a) OLTP, (b) OLAP and (c)
HTAP SUT. The trace represents read (black marks) and write (red marks) patterns induced on the storage medium by the

workload. The vertical axis represents the storage medium offset. The horizontal axis represents time in seconds.

ther OLAP streams are deployed or not, evaluating at each
point in time if the current OLTP throughput does not go
below a threshold defined by the error margin configura-
tion. Intuition leads us to believe that by increasing the
error margin, the Client Balancer will naturally allow more
OLAP clients to be deployed, thus increasing the overall
amount of analytical queries performed.

Error Rate QpH tpmC OLAP Clients
10 % 70.99 130.64 1
20 % 168.9 131.36 5
40 % 265.99 138.30 11

Table 3: Client Balancer error rate variance.

The current experiment assesses if in fact such behavior
translated into the actual behavior of the benchmark. For
this purpose, we set up the OLAP SUT as in Section 3.2 but
varied the error margin across runs.

First, by analyzing Table 3, the reader should be aware
that the consecutive executions registered similar OLTP through-
puts as expected. Moreover, as we increase the allowed error
rate, we verify that more analytical queries were performed,
which is a consequence of having more OLAP clients on the
system, thus increasing the registered QpH and consequently
the QpHpW.

4.3 Workload Representativeness
Database systems must be evaluated with representative

workloads that test realistically the storage back-end ca-
pabilities. To better understand the representativeness of
HTAPBench we analyzed the storage traces produced. The
3 previously tested SUT were evaluated with these work-
loads and the resulted storage traces were collected and an-
alyzed with the blktrace2 tool. This tool allows us to collect
storage traces for a given block device. With these traces
it is possible to extract useful information, such as the ac-
cess patterns of storage requests, the ratio of storage reads
and writes, the throughput and latency of each request, etc.
Each SUT was deployed in a single machine as in Section 3.1.

Figure 6 depicts the access patterns registered by the stor-
age medium for an HTAP SUT. The figures plot the offset
of the storage medium (vertical axis) being accessed dur-
ing execution time of the benchmark (horizontal axis). The
analysis of the traces collected allowed us to confirm that
OLTP workloads are dominated by random storage accesses
(Figure 6(a)) while OLAP workloads do mostly sequential
storage accesses (Figure 6(b)) dominated by read-only re-
quests. On the other hand, mixed workloads generated by
HTAPBench present a mix of these access patterns, as ex-
pected (Figure 6(c)). Moreover, the ratio of storage reads
and writes is according to the specification of each workload.
In summary, these results show that HTAPBench is able to
simulate a realistic storage load for a hybrid SUT that pro-

2blktrace manual: http://linux.die.net/man/8/blktrace.
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cess both OLAP and OLTP workloads simultaneously. Con-
sequently, HTAPBench’s representativeness of the analytical
capability on top of a sustained transactional operation is en-
sured by the experimental data, but also by the individual
representativeness of the TPC workloads used. Moreover,
the results show that current proposals for hybrid SUT must
be aware that processing simultaneously OLAP and OLTP
workloads generates a mix of random and sequential storage
accesses. This challenge can drive novel research proposals
for both hybrid engines and the back-end storage systems
supporting them.

4.4 Homogeneity and Reproducibility
The present experiment validates the effectiveness of our

density mechanism. Figure 7 depicts 2 different scenarios,
where we compare a distribution using random field gener-
ation with the density approach we propose. The depicted
results relate to a baseline comparison where all queries were
executed without any of their filtering operators, thus allow-
ing us to extrapolate the total universe of rows considered
in each analytical query. The value presented for each query
is the absolute difference in produced result set rows in two
consecutive executions: first, with random parameters that
do not follow any distribution and, second, with the density
mechanism proposed in HTAPBench.

In the first scenario, the analytical queries ran with the in-
troduction of randomized parameters; the results show that
consecutive executions of such queries produced variable re-
sult sets. The measured variability of result set lines across
all query executions for this setup amounted to 12%, with
a registered maximum of 20%. For the second scenario, we
used HTAPBench’s density mechanism to generate the ran-
dom parameters to be used in all analytical queries. Queries
Q13, Q21 and Q22 produce variabilities of 0% as the consec-
utive runs always produced the same number of result set
rows.

The results show that by using our approach, we were able
to produce query result sets with comparable costs. Consec-
utive executions of the same query registered a variability of
just 0.17% on average across the different SUT and differ-
ent configuration settings. These results confirm a very high
level of reproducibility of results for a given configuration.

4.5 Benchmark Adoption Effort
The benchmarking suite proposed in this paper derives

from two industry standard benchmarks with added func-
tionality. The available suites offer implementations that are
individually deployed to collect separate metrics, and they
typically require the implementation of connector mecha-
nisms between the benchmarking suite and the engine driver.

HTAPBench follows the trend of a few other suites, rely-
ing in the native JDBC driver of the SUT to communicate

all the operations of the workload. Concerning the required
time to run the benchmark, the setups considered in this
paper are the result of 5 independent runs. In each one of
them, the SUT had to be populated with data and then
tested with the hybrid workload. The time spent during
the populate stage greatly depends on the configured tar-
get of transactions per second and the SUT used. In the
setups considered, we observed an average of 4 hours to
populate the files for the engine. Afterwards, before sub-
sequent executions, the engine would dump and restore the
initial populate data, taking an average of 15 minutes. This
technique is also valid for setups with terabytes of data. Re-
garding the execution stage, each setup ran for 60 minutes.
Consequently, the overall cost for each SUT was 10 hours.
Considering other suites, the total cost per SUT is relatively
the same.

5. RELATED WORK
There are several organizations that propose benchmark-

ing standards to assess either transactional or analytical sys-
tems, namely: the Transaction Performance Council (TPC) [12],
the Standard Performance Evaluation Council (SPEC) [7]
and the Storage Performance Council (SPC) [6]. We cate-
gorize several systems into OLTP, OLAP or Hybrid and we
briefly present their main characteristics and shortcomings.

5.1 OLTP
Online Transactional Benchmarking systems, such as TPC-

C [8], focus on assessing a system’s ability to cope with a
large amount of small-sized transactions. Usually, OLTP
systems rely on row-oriented data stores, in which the trans-
actions operate over a restricted space of tuples, ensuring at
the same time properties such as consistency and isolation
in what is commonly referred to as ACID [17].

The TPC-C specification models a real-world scenario where
a company, comprised of several warehouses and districts,
processes orders placed by clients. The workload is defined
over 9 tables operated by a transaction mix comprised of five
different transactions, namely: New Order, Payment, Order-
Status, Delivery and Stock-Level. Each transaction is com-
posed of several read and update operations, where 92% are
update operations, which characterizes this as a write heavy
workload. The benchmark is divided into a load and an ex-
ecution stage. During the first stage, the database tables
are populated and, during the second stage, the transaction
mix is executed over that dataset. TPC-C defines how these
tables are populated and also defines their size and scaling
requirements, which is indexed to the number of configured
warehouses in the system. The outcome of this benchmark
is a metric defined as the maximum qualified throughput of
the system, tpmC, or the number of New Order transactions
per minute.
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The TPC-E [11] benchmark builds on TPC-C, introducing
a variable number of client terminals. It models a scenario
where a brokerage firm receives stock purchase requests from
customers, trying to acquire the correspondent stock bonds
from a Stock pool. The purchase orders placed by clients
are based on asynchronous transactions while stock requests
between the Brokerage firm and the Stock Exchange are
based on synchronous transactions. Compared with TPC-
C, this benchmark builds a much wider and more complex
system as it is composed of 33 tables and 10 transactions,
6 of which are read-only and the remainder are read-write
transactions; the latter accounting for 23% of all requests.

Both specifications build benchmarking suites strictly in-
tended to evaluate OLTP engines. Despite their represen-
tativity of OLTP workloads, the characteristic short oper-
ational transactions prevent the workload from exercising
OLAP requirements. Engines designed to provide a high
OLTP throughput are typically row oriented as the nature
of a single transaction induces I/O bound operations in sev-
eral attributes per transaction. This behavior translates into
random access patterns to the storage medium and does not
produce CPU and memory bound operations as do OLAP
workloads.

5.2 OLAP
Online Analytical Systems such as TPC-H [9, 25] or TPC-

DS [10] focus on assessing a system’s ability to perform
multi-dimensional operations, usually on top of column-oriented
data stores.

TPC-H builds a workload that does not require ETL,
modeling a real world-scenario where a wholesale supplier
must perform deliveries worldwide. The business queries
perform complex data operations (e.g., aggregations) across
large sets of data. The workload defines a query mix com-
prised of 22 business queries that access 8 different tables.
The execution is divided into three stages. The first stage
loads the database. During the second stage, a single user
executes all 22 business queries, while during the third stage,
a multi-user setup is used in order to evaluate the system’s
ability to schedule concurrent operations. TPC-H does not
consider any growth factor during runtime, which means
that the dataset does not change in terms of its total size.
The outcome of this benchmark is computed through a met-
ric that accounts for the total number of completed queries
per hour (QphH ).

TPC-DS builds a workload that requires ETL, namely
to ensure data freshness. It models a scenario where orders
must be processed from physical and online stores of a whole-
sale supplier, mapping it into a star schema composed of 7
fact tables and 18 dimensions. The workload holds 4 differ-
ent query types, namely Reporting, Iterative, Data Mining
and Ad-hoc queries. The database populated for TPC-DS,
as in TPC-H, does not consider any growth factor; still, the
initial population is regulated in terms of a scale factor that
has direct influence over the data size. The output metric
is defined as the number of queries per hour at a given scale
factor, QphDS@ScaleFactor.

TPC-DS is seen as an evolution of TPC-H, addressing
oversimplifications that prevent the proper evaluation of OLAP
systems. However, the need to use ETL to promote updates
on the star schema prevents us from using it as an OLAP
agent in our hybrid workload.

The high prevalence of read operations in these workloads

mostly generate sequential accesses to storage mediums, and
therefore are not able to simulate the short and cross at-
tribute nature of OLTP workloads that also live in a hybrid
workload.

5.3 Hybrid
Hybrid workloads should capture both access patterns ob-

served in the previous individual specifications [15]. There
are a few benchmarking suites that use both access patterns,
namely CH-benCHmark [5] and CBTR [4, 2, 1, 3].

CH-benCHmark creates a mixed workload also based on
TPC standard benchmarks, enabling two types of clients.
A transactional client provides a TPC-C agent, while an
analytical client provides a TPC-H agent. To allow the
analytical workload across the transactional relations, CH-
benCHmark merged both schema into a single one, com-
prising relations from TPC-C and TPC-H. The relations ac-
cessed by the OLTP execution scale according to TPC-C’s
specification. Relations accessed by the OLAP execution
are kept unchanged. However, CH-benCHmark neglects as-
pects within TPC-H’s specification. Namely, the analytical
queries should hold random parameters in order not to con-
stantly transverse the same regions of the dataset. It also
disregards the required distributions for date fields, impact-
ing the produced analytical results.

CBTR defines a benchmarking system aimed at mixed
workloads, which does not account for any previous stan-
dardized specifications, considering them too predictable. It
introduces a workload built from real enterprise data that
models an order-to-cash workflow. For that matter, a new
schema and the respective transactional activity is presented.
By using real data, CBTR bypasses the need to use nu-
merical distributions to populate or to generate data during
benchmark execution.

The major differentiator of HTAPBench when compared
with the previous approaches lies specifically in its Client
Balancer module that governs how both workloads coexist.
Both CH-Benchmark and CBTR use naive approaches to
find the maximum qualified throughput for both the trans-
actional and analytical workloads. The main concern that
arises is that neither workload agent in each benchmark-
ing suite is aware of the other agent, creating a dispute
for resources as each agent tries to saturate the SUT. The
Client Balancer in HTAPBench follows Gartner’s recom-
mendation to specify how the transactional and analytical
agents coexist; instructing the transactional agent to sus-
tain a configured throughput and allowing the analytical
agent to saturate the SUT up to the point when the trans-
actional throughput is affected. Moreover, HTAPBench also
addresses the issues found in CH-Benchmark relating to non-
uniform result sets by using the density mechanism to reg-
ulate that behavior.

6. CONCLUSION
This paper proposed HTAPBench, a benchmarking suite

for engines that support hybrid workloads composed of high
levels of transactional activity and, at the same time, provide
business analytics directly over production data.

As our main contributions, we proposed a unified met-
ric that enables the quantitative comparison of very similar
systems, as well as very different systems. We also propose
solutions to the key challenges of a hybrid benchmark, such
as the Client Balancer.
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Moreover we provide homogeneous and comparable re-
sults across executions. We validated our prototype on top
of OLTP, OLAP and Hybrid systems, demonstrating the
inherent expressiveness of HTAPBench’s metrics to char-
acterize such systems. We show that HTAPBench is able
to distinguish different classes of systems (i.e., OLTP from
OLAP), as well as distinguish systems within the same class
with high precision. We ensured that HTAPBench exercised
the storage layout as expected for each workload type. The
results allowed us to conclude that by using the proposed
approach we were able to introduce the required workload
randomness while keeping the results comparable by ensur-
ing equal query execution costs across the whole dataset.
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