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ABSTRACT
Previous work has shown that benchmark and application perfor-
mance in public cloud computing environments can be highly vari-
able. Utilizing Amazon EC2 traces that include measurements af-
fected by CPU, memory, disk, and network performance, we study
commonly used methodologies for comparing performance mea-
surements in cloud computing environments. The results show
considerable flaws in these methodologies that may lead to incor-
rect conclusions. For instance, these methodologies falsely report
that the performance of two identical systems differ by 38% us-
ing a confidence level of 95%. We then study the efficacy of the
Randomized Multiple Interleaved Trials (RMIT) methodology us-
ing the same traces. We demonstrate that RMIT could be used
to conduct repeatable experiments that enable fair comparisons in
this cloud computing environment despite the fact that changing
conditions beyond the user’s control make comparing competing
alternatives highly challenging.

1. INTRODUCTION
Cloud computing environments [11] like Amazon’s EC2 are at-

tractive facilities on which to conduct an experimental performance
analysis. Large numbers of machines can potentially be used to
compare two or more competing alternative algorithms, designs, or
implementations of a system (simply called alternatives for the re-
mainder of the paper). Some example alternatives might include,
comparing different applications that perform the same function or
different versions of the same application. In this case, some ex-
periments may be conducted in parallel on different systems at the
same time within different portions of the cloud environment and
may also be executed at different times. Additionally, some exper-
iments may not be conducted in parallel but may be conducted by
running alternatives during different periods of time.

Unfortunately, performance measurements in cloud computing
environments can vary significantly. This may be due to being as-
signed different physical systems across different experiments at
different times. Or, the performance may be impacted due to shar-
ing, in this case variations occur due to other applications that are
executing on the same physical hosts (e.g., affecting disk through-
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put) or elsewhere in the same cloud environment (possibly affecting
network latencies or throughput).

When conducting a comparison of two or more competing alter-
natives, care must be taken to ensure that any differences in per-
formance are due only to the differences in alternatives and not
because, one alternative might be executing in a more favorable en-
vironment (e.g., in the absence of other applications running on the
same node or on a faster node). Therefore, in this paper we exam-
ine approaches that can be used to obtain repeatable performance
measurements in cloud computing environments which are a pre-
requisite for comparing the performance of competing alternatives.

In order to conduct a fair comparison of the performance evalua-
tion methodologies, we employ traces collected and analyzed by
an independent research group [14]. Schad et al. [14] reported
high levels of variation in all studied benchmarks (i.e., for CPU,
memory, disk, and network). We utilize these traces to evaluate
commonly used methodologies for conducting experimental eval-
uations in cloud computing environments (refer to Section 4 for
more details). We show that some of these techniques might lead
to flawed or misleading results despite including a measures of
variation such as confidence intervals. Finally, we describe and
evaluate a technique called Randomized Multiple Interleaved Trials
(RMIT). Although Schad et al. [14] concluded that “naive runtime
measurements on the cloud will suffer from high variance and will
only be repeatable to a limited extent”, we show than RMIT can be
used to obtain repeatable and fair comparisons between multiple
alternatives for their entire 30 day traces.

The contributions in this paper are:
• We demonstrate that commonly used approaches for compar-

ing competing alternatives have serious flaws and may lead
to incorrect conclusions.

• We show that the methodology of using randomized multi-
ple interleaved trials can be used to obtain repeatable empir-
ical measurements in the EC2 environment and therefore is a
good candidate as a methodology for comparing the perfor-
mance of competing alternatives.

We focus on the challenges of conducting repeatable experiments
and fair comparisons of multiple alternatives executed at different
periods in time. The problem of repeatable and fair comparison of
experiments conducted in parallel is discussed in Section 5 and will
be the subject of future research.

2. RELATED WORK
Studies examining the variability of measured performance when

using the EC2 cloud infrastructure show that the variance on EC2
performance is very high [14, 4, 11, 8]. Schad et al. [14] propose
a set of guidelines to reduce the performance variation while con-
ducting experimental evaluations on EC2. Despite the provided
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guidelines, the authors point out that even with such guidelines,
comparing multiple alternatives and conducting repeatable experi-
ments on EC2 might be challenging or impossible due to the high
variability. In the paper, we directly examine methodologies for
conducting experiments in such environments.

Despite, the high variation in the performance of cloud comput-
ing systems, a number of studies [10, 4] choose to run the ex-
periment only once. More rigorously conducted evaluations in-
volve running experiments multiple times and reporting the aver-
age value. For example, some studies [7, 12, 5, 6] use an eval-
uation technique we call multiple consecutive trials (described in
Section 3). In Section 4, we show how variations in the cloud en-
vironment might lead to misleading results if these techniques are
utilized for evaluation.

We recently studied methodologies for conducting repeatable ex-
periments and fair comparisons when performing performance eval-
uations in WiFi networks [2]. This study [2] shows that many
commonly used techniques for the experimental evaluation of WiFi
networks are flawed and could result in misleading conclusions be-
ing drawn. In that work, although we propose the use of random-
ized multiple interleaved trials (RMIT) (described in Section 3) as
a methodology for coping with changing wireless channel condi-
tions, randomization was not necessary. In this paper, we examine
commonly used approaches for measuring and comparing perfor-
mance as well as the suitability of RMIT in a completely different
scenario, namely cloud computing environments. We find that ran-
domization is required, due to periodic changes in the environment,
and that RMIT can be used to obtain repeatable results.

Some work [3, 4] has proposed techniques to reduce the vari-
ability of application performance when executing in cloud en-
vironments by limiting variability of network performance. Un-
fortunately, such work only reduces but does not eliminate vari-
ability. Other shared resources such as disks can also cause per-
formance measurements to be highly variable. One study [9] re-
ports that during off-peak hours disk read bandwidths would range
from 100–140 MB/sec, while during peak hours it ranged from 40–
70 MB/sec. Moreover, even with techniques to reduce variability,
methodologies are still needed to ensure that differences in perfor-
mance of different alternatives are due to the differences in those
alternatives, rather than differences in the conditions under which
they were executed.

3. OVERVIEW OF METHODOLOGIES
We use the term trial to refer to one measurement, typically ob-

tained by running a benchmark or micro-benchmark for some pe-
riod of time (the length of the trial). An experiment can be com-
prised of multiple trials executing the same benchmark, where the
results of the experiment are reported over the multiple trials (e.g.,
the average of the measurements obtained over the trials).

Most experiments conducted in cloud computing environments
utilize the single trial or multiple consecutive trials methodologies
(referred to as commonly used methodologies in this paper). In
previous work [2], we have argued for and demonstrated the use of
Multiple Interleaved Trials and Randomized Multiple Interleaved
Trials. We now briefly explain each of these methodologies.
• Single Trial: In this approach, an experiment consists of only a

single trial. Figure 1-A shows an example of this approach with
three alternatives. The performance results obtained from sin-
gle trials are compared directly. This is the easiest methodology
for running an experiment to compare multiple alternatives.

• Multiple Consecutive Trials: All trials for the first alterna-
tive are run, followed by the second alternative and each of the

remaining alternatives. Figure 1-B shows the Multiple Consec-
utive Trials technique for 3 alternatives.

• Multiple Interleaved Trials: One trial is conducted using the
first alternative, followed by one trial with the second, and so
on until each alternative has been run once. When one trial has
been conducted using each alternative we say that one round
has been completed. Rounds are repeated until the appropriate
number of trials has been conducted (Figure 1-C).

• Randomized Multiple Interleaved Trials:
If the cloud computing environment is affected at regular in-
tervals, and the intervening period coincides with the length of
each trial, it is possible that some alternatives are affected more
than others. Therefore, the randomized multiple interleaved tri-
als methodology randomly reorders alternatives for each round
(Figure 1-D). In essence, a randomized block design [13] is
constructed where the blocks are intervals of time (rounds) and
within each block all alternatives are tested, with a new random
ordering of alternatives being generated for each block.

A A A B B B C C C

A B C A B C A B C

B A C C B A A C B

B) Multiple Consecutive Trials (MCT)

C) Multiple Interleaved Trials (MIT)

D) Randomized Multiple Interleaved Trials (RMIT)

A) Single Trial

A B C

Figure 1: Different methodologies: with 3 alternatives

3.1 Methodologies used in Practice
To illustrate that these methodologies are actually used in prac-

tice, we studied the performance evaluation methodologies used in
the 38 research papers published in the ACM Symposium on Cloud
Computing 2016 (SoCC’16). 9 papers conduct experimental evalu-
ations on public clouds (7 on Amazon EC2, 1 on Microsoft Azure,
and 1 on Google computing engine). We found that the single trial
and multiple consecutive trials (MCT) methodologies are utilized
by 7 and 4 papers respectively (some papers use both techniques).
No other evaluation methodology is used in these papers. Addi-
tionally, 9 other papers also use these two methodologies when
conducting evaluations on research clusters.

The fundamental problem is that researchers often incorrectly
assume that the characteristics of the systems and networks being
used and workloads that are simultaneously executing during their
experiments, do not change in ways that impact the performance of
the artifacts they are evaluating. Previous work has demonstrated
that performance is in fact impacted [14, 11]. In this paper, we ex-
amine methodologies commonly used for comparing performance
in cloud environments and describe our RMIT methodology that is
designed to handle environments in which performance measure-
ments are variable due to circumstances which can not be con-
trolled. To the best of our knowledge, ours is the first work that
studies the (randomized) multiple interleaved trials methodologies
in the context of the repeatability of experiments in cloud comput-
ing environments.

4. EVALUATION
For our evaluation, we utilize traces, collected from benchmark

measurements by other researchers [14], conducted over extended
period of time on Amazon EC2 servers. The authors of that paper
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have granted us permission to make the data publicly available [1].
We use these traces to simulate the execution of applications which
are utilized by researchers to conduct performance evaluation stud-
ies. Note that although these traces were collected in 2010, they
are still useful for this study because we do not perform any perfor-
mance evaluation, instead we evaluate the efficacy of performance
evaluation methodologies. Therefore, the age of traces is not very
relevant if the performance of cloud computing environments are
still variable. A recent study [11] shows that the performance of
CPU, memory, and disk benchmarks are highly variable on EC2,
specially for I/O-bound applications. The coefficient of variation
(CV) reported for the studied benchmarks is as high or even higher
(i.e., greater than 0.4) than that of the 2010 study [14].

In the original study [14] a batch of CPU, memory, disk, and
network benchmarks are run every hour for one month. The bench-
marks used are Unix Benchmark Utility (Ubench) for CPU and
memory speed experiments and Bonnie++ for disk I/O experiments
Two types of virtual machines used for collecting the measurement
data, namely, small and large machine instances. The configura-
tions of these instances are summarized in Table 1. We make use
of two different traces collected on servers residing in the United
States and in Europe, represented by US and EU, respectively.

Instance Memory Cores Storage 32/64
Small 1.7 GB 1 160 GB 32-bit
Large 7.5 GB 2 850 GB 64-bit

Table 1: Instances configurations
Schat et al. [14] report that EC2 performance varies so much

that wall clock experiments must be conducted with “considerable
care”. Figure 2 shows the CPU benchmark results for large in-
stances located in the US, collected over one month from their
study. Each point shows the benchmark score for a single trial
(there is one trial per hour). Despite the identical configuration
of the virtual machines used for this experiment, the CPU perfor-
mance varies considerably. The memory and disk performance
benchmarks illustrate similar behavior with large variations over
the duration of the experiment.
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Figure 2: CPU performance, large instance, US [14].

Table 2 summaries the statistical properties of all traces we uti-
lize in this paper. For each combination of benchmark, instance
size, and region, we report minimum, maximum, mean, standard
deviation (SD), and coefficient of variation (CV). These measures
are presented to better understand how measured performance can
vary from one experiment to another. The minimum and maxi-
mum measured values for all benchmarks show that the benchmark
scores cover a wide range relative to mean. For instance, in the
CPU benchmark of large instances located in the US, the bench-
mark score varies from 116,243 to 558,446. The mean and the
standard deviation also confirm that CPU benchmark scores are
highly variable in this trace. We also present the coefficient of
variation (i.e., SD/mean) in order to compare the level of variation
across different traces. The coefficient of variation indicates that

the CPU and Memory benchmarks suffer from the most and the
least variations, respectively. Interestingly, as we see in the follow-
ing sections, commonly used performance evaluation methodolo-
gies (i.e., single trial and multiple consecutive trials) fail to provide
valid comparisons between multiple alternatives even for the mem-
ory benchmark traces which are the most stable experiments.

Bench Inst Reg Min Max Mean SD CV

CPU
S

US 55,444 122,831 103,643 23,918 0.23
EU 55,670 123,010 108,890 19,526 0.18

L
US 116,243 558,446 471,584 112,044 0.24
EU 115,972 558,143 459,467 111,811 0.24

Mem
S

US 50,856 77,030 69,544 6,712 0.10
EU 52,357 76,744 71,693 5,050 0.07

L
US 119,696 320,642 290,211 31,345 0.11
EU 181,566 321,758 293,390 28,472 0.10

Disk
S

US 7,972 84,267 59,551 11,875 0.20
EU 10,489 78,693 61,757 8,388 0.14

L
US 33,684 98,034 80,896 18,288 0.23
EU 37,908 95,956 82,220 15,688 0.19

Net M
US 158 836 579 117 0.20
EU 378 886 720 88 0.12

Table 2: Traces statistical data. S: Small, L: Large, M: Mixed1

4.1 Single Trial
The single trial methodology is a very common approach for

conducting experiments in cloud computing environments due to
its simplicity. For example, 11 papers (out of 38) published in
SoCC’16 utilize this technique. However, changes in the cloud en-
vironment may render this approach unreliable when comparing
multiple alternatives. Figure 2 shows an example of how measured
application performance can change from one trial to the next (each
point is the benchmark score of a trial and should all be identical).
Therefore, if comparisons are done using this methodology, it is not
clear whether the observed differences are due to the difference in
alternatives being studied or changes in the environment.

To better understand the performance variation between two con-
secutive trials, we compute the percentage difference between those
trials (i.e., difference of consecutive trials divided by the minimum
of these trials) for the CPU, memory, disk, and network traces col-
lected for large instances located in the EU. In Figure 3, a value
on the y-axis shows the ratio of consecutive trials that experience
a difference less than or equal to the value on the x-axis for a
given benchmark. For example, in the CPU benchmark, 20% of
the consecutive trials experience more than a 100% change in per-
formance. As depicted in the figure, for all traces, there are in-
stances were the difference between two consecutive trials is more
than 50%. Although the memory benchmark has the lowest varia-
tion, 17% of consecutive trials have a percentage difference of more
than 20%. As a result, a reliable comparison of multiple alterna-
tives cannot be performed using the single trial methodology for
any of the studied traces.

4.2 Multiple Consecutive Trials
In the Multiple Consecutive Trials (MCT) methodology, experi-

menters often conduct all of the trials for a given alternative, before
proceeding to the next. This is convenient, as there is generally
some setup time involved in switching between alternatives (e.g.,
changing software configuration).

1Small and large instances use the same network interface, there-
fore, the instance size is irrelevant in the networking benchmarks.
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Figure 3: Single trial: falsely reported differences

To evaluate this approach, we combine 20 trials of a benchmark
to constitute an experiment. For two alternatives, 20 trials for al-
ternative A are run followed by 20 trials for alternative B and their
results are compared. We compare results by computing the aver-
age of the 20 trials along with 95% confidence intervals. Since in
each case A and B are identical benchmarks (two different labels for
each alternative), a sound measurement methodology should show
no statistical performance differences between them (i.e., no non-
overlapping confidence intervals). However, if any performance
difference is observed, it indicates that the measurement methodol-
ogy might falsely associate the observed differences to differences
in alternatives, while differences are rooted in the variable cloud
computing environment. Therefore, the measurement technique
can potentially lead to erroneous conclusions. When comparing
the performance of alternatives A and B, we consider them statis-
tically different if the confidence intervals do not overlap. On the
other hand, the two alternatives are considered statistically similar
if the confidence intervals do overlap.

Figure 4-a shows the results of applying the multiple consecu-

 0
 20000
 40000
 60000
 80000

 100000
 120000

 0  100  200  300  400  500  600  700

U
be

nc
h 

sc
or

e

Time (Hour)

Alternative (A)
Alternative (B)

(a) MCT

 0
 20000
 40000
 60000
 80000

 100000
 120000

 0  100  200  300  400  500  600  700

U
be

nc
h 

sc
or

e

Time (Hour)

Alternative (A)
Alternative (B)

(b) MIT

 0
 20000
 40000
 60000
 80000

 100000
 120000

 0  100  200  300  400  500  600  700

U
be

nc
h 

sc
or

e

Time (Hour)

Alternative (A)
Alternative (B)

(c) RMIT
Figure 4: CPU performance, small instance, US.

tive trials technique on the CPU benchmark trace obtained in the
US. The x and y axes represent the time and average of 20 bench-
mark scores, respectively. Note that Figures 4 and 5 are missing
a few data points. There is no valid measurement score for these
times in the provided trace (see [14]). The gray area highlights the
time window where the non-overlapping confidence intervals are
observed for one of the methodologies for a given trace. Note that
in practice only two average values are used to compare A and B.
However, we continue applying MCT to obtain more points in or-
der to observe what the outcome would be if the experiments were
conducted at different times of the day.

As seen in the figure, there are a few instances of non-overlapping
confidence intervals between time 350 and 450 (highlighted with
the gray box). In these cases, the alternative A is statistically dif-
ferent from the previous or next alternative B measurement. A sim-
ilar problem is observed for the memory benchmark trace shown
in Figure 5-a. Despite smaller variations in these measurements
(i.e., smaller confidence intervals), there are a few non-overlapping
confidence intervals for some consecutive experiments. Recall that
A and B are identical, therefore, these statistically significant dif-
ferences are a sign that the measurement technique is flawed. We
repeated the CPU and memory speed experiments with 5 and 10
trials, instead of 20 trials, and similar results (i.e., non-overlapping
confidence intervals) were observed.

The confidence intervals obtained using this technique may pro-
vide a false sense of rigor and validity when comparing different
alternatives. The differences are in reality due to differences in the
environment rather than the different alternatives.
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Figure 5: Memory performance, small instance, US.
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We repeat the same evaluation using all traces we introduced in
Table 2 and summarize the results in Table 3. For each trace, we
report the Ratio of Flawed Experiments to the total number of ex-
periments (RFE) (presented in percentage). For instance if RFE =
10%, it means that 10% of comparisons have non-overlapping con-
fidence intervals. Note that it is not possible to tell prior to or af-
ter running experiments whether or not the measurement is flawed,
as a result any non-zero value for the RFE is not acceptable for
a methodology. In Table 3, we also present the maximum differ-
ence incorrectly reported by a flawed methodology. This measure
is the ratio of the difference between the two mean values to the
minimum of the two mean values (also presented in percentage).

Table 3 shows that, except for two disk I/O traces, the ratio of
flawed experiments (RFE) is at least 4% when using the MCT
methodology, rendering this technique error-prone. The maximum
difference metric is also alarming. In the CPU benchmark exper-
iments, the MCT methodology falsely reports a difference of up
to 37.8% as being statistically significant (with a confidence level
of 0.95) for two identical alternatives. In other words, the MCT
methodology determines that a system is 37.8% better than itself!
In addition to these traces, we also applied the MCT methodol-
ogy on a networking trace collected using Microsoft Azure’s cloud
computing environment in 2013 by the authors of [14]. We found
that the networking benchmark had a RFE of 14.3% and max differ-
ence of 16.6%. Our findings demonstrate that the MCT methodol-
ogy must be avoided when performing any performance evaluation
in cloud computing environment.

Benchmark Instance Region RFE Max Diff

CPU
Small US 10.2 37.8

EU 9.8 27.3

Large US 7.9 30.1
EU 14.9 36.5

Memory
Small US 9.8 15.1

EU 6.7 8.8

Large US 10.2 16.8
EU 7.0 11.1

Disk I/O
Small US 4.0 15.3

EU 0.0 NA

Large US 5.9 23.8
EU 0.0 NA

Network Mixed US 6.1 19.6
EU 5.1 12.5

Table 3: Efficacy of the MCT methodology

4.3 Multiple Interleaved Trials
The intuition behind the Multiple Interleaved Trials (MIT) method-

ology is that by interleaving alternatives, over time, trials of the
different alternatives are closer together in time. As a result, the al-
ternatives will be exposed to conditions that are more similar than
when using multiple consecutive trials.

Figures 4-b and 5-b show the results of applying the multiple
interleaved trials technique to the CPU and memory benchmark
traces, in the hope of addressing the shortcomings of the MCT tech-
nique. As illustrated in these figures, the MIT methodology suc-
cessfully avoids any non-overlapping confidence intervals. There-
fore, based on the obtained results, alternatives A and B are statisti-
cally the same, as they should be.

As mentioned earlier, if the cloud computing environment is af-
fected at regular intervals, it is possible that some alternatives could
be affected more than others. We have found that scenarios do ex-
ist where periodic changes in the cloud computing environment ad-

versely affect the multiple interleaved trials technique. Figure 6
shows how the multiple interleaved trials technique is unable to
provide statistically similar results for alternatives A and B. A few
instances of non-overlapping confidence intervals were observed
between time 100 and 200.

To ensure that periodic changes cause this behavior, we plot the
raw measurement data between time 100 and 180 (roughly cor-
responding to the shaded area). If two alternatives are compared
using the MIT technique, the performance of each alternative is
measured using only odd or even trials. In Figure 7, which shows
the raw measurement data, we mark the odd and even trials dif-
ferently in an attempt to find a particular pattern that explains the
non-overlapping confidence intervals. As seen in this figure, a pe-
riodic pattern is observed for this particular time window which
causes odd trials to have a lower performance score in general. As
a result, 3 experiments in this time window (shaded area in Fig-
ure 6-b) obtain non-overlapping confidence intervals. The only ex-
ception is the time window between 140 and 160 where there is no
obvious superior or inferior performance for the odd and even tri-
als. In Figure 6-b, the corresponding experiments at time 160 (the
second experiment from the right in the shaded area) obtains over-
lapping confidence intervals. This demonstrates that trials must be
randomized to avoid such problems.

4.4 Randomized Multiple Interleaved Trials
As we saw in Section 4.3, the multiple interleaved trials method-

ology can not be used if the environment changes occur regularly
with a period that overlaps with the length of the trials. Therefore,
it is critical to randomize the order of trials to avoid this problem.
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Figure 6: CPU performance, large instance, US.
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The Randomized Multiple Interleaved Trials (RMIT) technique re-
orders the trials randomly during each round to avoid ensure that
the same alternatives are not affected by periodic changes in the
cloud computing environment.

We apply the RMIT methodology to the CPU performance bench-
mark and the results are shown in Figure 6-c. A comparisons be-
tween Figure (c) and (b) shows that the RMIT technique produces
no non-overlapping confidence interval and correctly shows that
there is no statistical difference between alternatives A and B. Fig-
ures 4-c and 5-c, also show that comparisons between alternatives
A and B are statistically correct.

These results show that, RMIT can be used in highly variable
cloud environments to compare multiple alternatives and that this
methodology inherently captures the variability in performance met-
rics across runs. We note that if the variations are large, it may not
be possible to distinguish relatively small differences between two
or more alternatives. The applicability of this technique depends
on the variations in the environment and the significance of the dif-
ference between alternatives.

Note that it is not possible to tell prior to or after running ex-
periments whether or not the performance metrics may have been
affected by changes in the cloud computing environment, nor if
changes in the cloud computing environment may be periodic. There-
fore, it is critical that randomized multiple interleaved trials be
used when comparing alternatives.

5. DISCUSSION
In this work, we focus on the sequential execution of trials on a

single VM. However, it is possible to run multiple trials in parallel
on multiple VMs. Suppose that we compare N alternatives which
require M VMs each (M > 1 means we are running a distributed
application). All of the N alternatives are assigned to a total of
N ×M VMs. Because the N ×M VMs might not be identical, and
because some VMs might be affected by other applications that
are running on the same physical hosts or on the same physical
rack, one can randomly reassign the alternatives to the VMs for
each trial. This procedure can be continued for the desired number
of trials. As a result, different alternatives will all experience the
same conditions. The complete design and evaluation of such a
methodology is left for future work.

6. CONCLUSIONS
Using cloud computing environments for experimental perfor-

mance evaluations is fraught with difficulties because of the pos-
sibly highly variable nature of the environment. We utilize CPU,
memory, disk, and network performance traces obtained from Ama-
zon EC2 servers and find that commonly used methodologies for
conducting experiments like using single trial or multiple consecu-
tive trials could lead to erroneous conclusions. We found that these
methodologies are used by many papers published in the SoCC’16

conference. However, we do find that the randomized multiple in-
terleaved trials methodology can be used to obtain repeatable per-
formance metrics and should form a basis for the fair comparison
of competing alternatives by appropriately randomizing the time at
which trials of each alternative are conducted.
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