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ABSTRACT
Modern processors incorporate several performance moni-
toring units, which can be used to count events that oc-
cur within different components of the processor. They
provide access to information on hardware resource usage
and can therefore be used to detect performance bottle-
necks. Thus, many performance measurement tools are able
to record them complementary to information about the ap-
plication behavior. However, the exact meaning of the sup-
ported hardware events is often incomprehensible due to the
system complexity and partially lacking or even inaccurate
documentation. For most events it is also not documented
whether a certain rate indicates a saturated resource usage.
Therefore, it is usually difficult to draw conclusions on the
performance impact from the observed event rates. In this
paper, we evaluate whether hardware performance counters
can be used to measure the capacity utilization within the
memory hierarchy and estimate the impact of memory ac-
cesses on the achieved performance. The presented approach
is based on a small selection of micro-benchmarks that con-
stantly stress individual components in the memory subsys-
tem, ranging from caches to main memory. These work-
loads are used to identify hardware performance counters
that provide good estimates for the utilization of individual
components in the memory hierarchy. However, since access
latencies can be interleaved with computing instructions, a
high utilization of the memory hierarchy does not necessar-
ily result in low performance. We therefore also investigate
which stall counters provide good estimates for the num-
ber of cycles that are actually spent waiting for the memory
hierarchy.
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1. INTRODUCTION
High performance computing (HPC) is an indispensable

tool that is required to obtain new insights in many scientific
disciplines. While HPC systems are getting more and more
powerful from year to year, scientific applications typically
are not able to fully utilize this potential. Utilization levels
of 10% and lower are not uncommon [19].

Modern microprocessors feature multiple levels of cache—
small and fast buffers for frequently accessed data—that
improve the performance of memory accesses. Still, mem-
ory access latencies often account for a significant portion
of the average cycles per instruction [4]. Since caches and
the memory interface can be shared between multiple cores
of a processor, the contention of shared resources can limit
the scalability of parallel applications. Moreover, the physi-
cal memory is typically distributed among multiple proces-
sors of a system, leading to varying performance depending
on the distance to the accessed data. These non-uniform
memory access (NUMA) characteristics influence the per-
formance and scalability of parallel applications [15]. The
performance of memory accesses is also affected by the cache
coherence protocols [18]. Overall, the complexity of contem-
porary computer systems results in various potential bottle-
necks that can cause application performance penalties.

Our understanding of the application performance can be
improved by determining the limitations that are caused by
the various components of the memory hierarchy. This can
be achieved with the help of performance monitoring units
(PMUs), which are included in many modern processors.
Using PMUs to detect memory related performance issues
is common practice [5, 13, 25, 26]; [10, Appendix B.3]. How-
ever, the available events are often specific to a certain pro-
cessor generation and their meaning is not always obvious.
Two things are required to decide if the observed perfor-
mance counter event rates are significant: The attribution
of events to the utilization of individual components, and
reference values for peak event rates.

In this paper we contribute a portable approach for the
identification of hardware performance events that can be
used to detect performance problems that are caused by
memory accesses. We describe a method to derive metrics
for the utilization of individual components in the mem-
ory subsystem and the memory-boundedness of applications.
The applicability of our methodology is demonstrated on a
contemporary dual-socket server system.
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2. BACKGROUND AND RELATED WORK
Figure 1 depicts the basic structure of contemporary multi-

processor systems. Typically each core has dedicated level-
one caches. Per-core level-two caches also are a widely-used
feature. In contrast, last level cache and memory interface
are typically shared by multiple cores. Each level in the
memory hierarchy has different characteristics. The level-
one caches support high data rates and have very low laten-
cies. However, their capacity is very low. Each further level
in the memory hierarchy provides higher capacities along
with lower data rates and higher latencies. The compute
nodes of HPC systems often contain multiple processors in
order to increase the compute power and memory capacity.
However, the communication via the processor interconnects
results in a higher latency for remote cache and memory ac-
cesses and the data rates of the links are limited [17].

Caches are transparent for the software, i.e., they are no
directly addressable memory. Instead, caches contain du-
plicates of small blocks from main memory. Which data
is placed in the caches is determined by the hardware at
runtime based on the observed memory accesses. The used
heuristics include keeping data that has already been ac-
cessed in cache in anticipation of further accesses to the
same locations as well as various techniques that recognize
regular access patterns and prefetch data that will probably
be accessed soon. Furthermore, multiple copies of the same
memory location can exist concurrently in different caches.
Cache coherence protocols ensure that writes performed by
one core eventually become visible to all cores in order to
maintain the impression of a single copy. However, this often
requires that cached data is invalidated. Due to the inherent
unpredictability of the replacement, prefetch, and coherence
mechanisms it is virtually impossible to determine the cache
usage of an application using static code analysis.

Caches significantly reduce the average memory latency.
However, time consuming main memory accesses are not
avoided entirely and cache accesses, especially in case of
large last level caches, also have considerable latencies. There-
fore, processors used in HPC (excluding accelerators) typ-
ically have well-developed out-of-order execution capabili-
ties to fill the remaining waiting times with useful work.
Furthermore, the load-store units comprise multiple load

Multicore Processor

Core 0

Shared L3 Cache

Memory

Controller

Processor

Interconnect

L1

Core 1 Core n

L2 L2L2

L1L1

Multicore Processor

Core 0

Shared L3 Cache

Processor

Interconnect

L1

Core 1 Core n

L2 L2L2

L1L1

R
A

M

Memory

Controller

R
A

M

R
A

M

R
A

M

... ...

... ...

Figure 1: Schematic representation of contemporary
multi-processor systems. Each processor typically
contains multiple cores as well as various shared re-
sources. The processors are typically connected to
each other via point-to-point connections.

and store buffers in order to facilitate multiple concurrently
outstanding requests instead of processing memory accesses
one after another. A sufficient number of concurrently out-
standing requests is a prerequisite for achieving high data
rates [14]. The caches typically support multiple outstand-
ing misses as well to avoid being blocked by a single cache
miss. The ability to continue the program execution while
memory accesses are pending can significantly improve the
performance. However, this and the overlapping of multiple
accesses further complicates the assessment of memory re-
lated performance losses as only a fraction of the individual
access latencies causes delays in the execution.

The achievable application performance can be limited by
various components. Performance monitoring units (PMUs)
that collect information about the usage of these compo-
nents are included in many contemporary processors [2, Sec-
tion 2.7]; [11, Vol. 3, Section 18.1]. Typically, each core has a
number of dedicated PMUs that can be used to count events
from this core, e.g., the number of executed instructions.
Multi-core processors often implement additional PMUs that
monitor shared resources [2, Section 2.7.2]; [8]. Typically,
each PMU contains two registers, the control register and
the performance monitoring counter (PMC) register. The
former is used to specify the events that are recorded, the lat-
ter incorporates an accumulator that is incremented with ev-
ery occurrence of an event. A widely-used tool for recording
performance counter data is the Performance API (PAPI) [24],
which defines a standardized interface for accessing PMUs
of various processor architectures. Many performance mea-
surement tools, e.g., HPCToolkit [1], and Score-P [12], use
it to record performance counters in addition to information
about the application behavior.

PMUs are primarily intended for verification purposes [27].
However, they can be used to detect performance issues as
well [10, Appendix B]. This has also been studied exten-
sively by the scientific community: Eranian [5] shows that
PMUs can in principle be used to detect performance prob-
lems, although no systematic analysis of the available events
is included in his study. Treibig et al. [25] describe common
bottlenecks of specific applications and how they can be de-
tected with PMUs. Their approach requires events that cor-
rectly represent the bandwidth utilization in order to diag-
nose memory related performance problems. Levinthal [13]
and Yasin [26] present procedures that identify bottlenecks
in the memory hierarchy using PMUs. However, their stud-
ies do not include any verification whether the PMUs count
the selected events accurately. Yoo et al. [27] use micro-
benchmarks to correlate known performance pathologies,
e.g., performing random accesses on large data sets, with
PMU events on Westmere-EP and Sandy Bridge HE test
systems. The approach does not only allow to detect poten-
tial performance issues, it also categorizes them. However, it
is inherently limited to the known types of problems. While
also relying on micro-benchmarks, our approach is different
as we focus on the potential bottlenecks in the hardware in-
stead of unfavorable properties of the software. Palomares
lists PMC events that correlate to cache and memory traf-
fic in [20, Table 5.3]. However, the given events do not
distinguish read and write accesses. Furthermore, the listed
DRAM events for the Sandy Bridge, Ivy Bridge, and Haswell
architectures only measure the DRAM accesses per package.
In our work, we also investigate if the core PMUs can be used
to measure the bandwidth usage of individual cores.
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3. METHODOLOGY
Each component in the memory hierarchy can limit the

achievable application performance, either due to limited
bandwidths or due to access latencies that stall the execu-
tion. Therefore, the utilization level of the available band-
widths as well as the percentage of cycles that is spent wait-
ing for the memory hierarchy are good indicators for memory
related performance problems. In this section we describe
how these metrics can be derived from performance coun-
ters. Performance counters are architecture specific, i.e., the
evaluation of their significance has to be repeated for every
new micro-architecture. Therefore, we propose a portable
approach based on a small selection of micro-benchmarks.
We demonstrate its applicability on a dual socket Haswell-
EP system. A similar study for the Sandy Bridge micro-
architecture is presented in [16, Section 5.3].

3.1 Bandwidth Utilization
Memory intensive applications with sequential or other-

wise regular memory access patterns are typically bandwidth-
bound. As the required memory addresses are predictable,
there are enough concurrent requests to fill the load or store
buffers and the request queues for accesses to lower levels in
the memory hierarchy. This leads to a high utilization of the
data paths. The bandwidth utilizations within the memory
subsystem are easy to understand metrics that indicate if
the application behaves as expected.

In order to determine the utilization level for each com-
ponent, one needs to know the respective peak bandwidth
as well as the bandwidth usage of the application. A com-
ponent’s theoretical peak bandwidth can be calculated by
multiplying the width of the corresponding data paths with
the data rates (operating frequencies), which are typically
documented by the hardware vendors. However, the practi-
cally achievable bandwidths can be significantly lower [17].
Micro-benchmarks that stress individual components pro-
vide much better reference values for the achievable perfor-
mance. The achieved bandwidth usage of applications needs
to be recorded at runtime. Performance monitoring units
provide information about the utilization of various com-
ponents. However, they typically count accesses to certain
levels in the memory hierarchy or packages that are trans-
ferred between processors instead of directly measuring the
used bandwidth. The amount of data that is transferred
per reported event is not necessarily known. Furthermore,
prefetchers can request data before it is actually accessed,
which may disguise memory accesses. Therefore, it can be
difficult to judge if the observed event rates, e.g., for cache
misses, are indicative of a performance problem.

Our methodology requires bandwidth benchmarks that
perform sequential read and write accesses, use configurable
data set sizes, and support NUMA-aware memory alloca-
tion. Such benchmarks can be used to identify performance
counters that correlate with the utilization of individual
components and determine their respective maximal event
rates, which represent an utilization of 100 %. The proposed
workflow comprises the following steps:

1. Identify events that show high event rates if data is
transferred between the core and the L1 cache. Load
and store instructions with multiple widths are used
in this step to test if the usage of SIMD instructions
can be recognized.

2. For each further level in the memory hierarchy: iden-
tify events that show high event rates if data is read
from or written back there. This step is performed
using the widest load and store instructions that are
available. It is important to identify events that con-
sider the read for ownership (RFO) requests in case of
writes in order to capture all transfers to the L1 cache.

3. Allocate memory from another NUMA node in order
to identify events that show high event rates if data is
located in remote memory.

4. Determine the overlap between the identified counters,
i.e., check if events that correlate well with the number
of accesses to a certain location include other accesses
as well. If possible, use additional PMU events to com-
pensate the overlap in order to measure the number of
accesses independently for every location.

5. Derive upper bounds for the event rates of the identi-
fied counters based on the measured performance and
the observed number of events per memory access.

There are per core limits for the achievable bandwidths
for each level in the memory hierarchy as well as limited ag-
gregate bandwidths for the shared resources [22]. Therefore,
the analysis is performed once using a single core and once
using all cores that share a resource in order to determine the
respective upper bounds for the associated hardware perfor-
mance counters.

3.2 Memory Related Stalls
Applications with irregular memory access patterns, e.g.,

dereferencing chains of pointers when traversing linked lists
or trees, may not generate enough concurrently outstanding
requests to fully utilize the data paths. Nevertheless, such
applications are clearly limited by the performance of mem-
ory accesses as well. Therefore, considering the bandwidth
utilization is not sufficient to detect all memory related per-
formance issues. However, multiplying the number of ac-
cesses to each location with the respective latency would
overestimate the total waiting time in the majority of cases.
Furthermore, a high bandwidth utilization is not necessarily
a performance problem. As long as the out-of-order engine
can keep the execution units busy with useful work, using all
the available bandwidth does not pose a bottleneck. There-
fore, we also search for performance counters that measure
memory related waiting times, i.e., periods without any use-
ful computation, in order to quantify the performance im-
pact of memory accesses.

A low instruction throughput without being bandwidth
bound indicates that there are high latency operations. This
can however be caused by slow arithmetic instructions like
div or sqrt as well as high memory accesses latencies. Fortu-
nately, performance counters for various types of stall cycles
also are a widely-used feature in contemporary processors.
With our methodology it is possible to check if memory re-
lated stalls can be distinguished from other stall reasons with
the existing PMU events. Furthermore, it can be checked if
stalls that are caused by high access latencies and stalls be-
tween consequtive data transfers in bandwidth limited sce-
narios can be differentiated.

Our methodology requires a pointer-chasing benchmark
that supports configurable data set sizes. This benchmark
needs to be modified in order to be able to distinguish mem-
ory related stalls from other stall reasons. In a first modifica-
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tion, independent arithmetic instructions have to be added
between the memory accesses. In another modified version,
the arithmetic operations have to be added in a way that
results in a single dependency chain that comprises all oper-
ations, e.g., by repeated additions of 0 or multiplications by
1. The workflow to identify meaningful counters for memory
related stall cycles comprises the following steps:

1. Use standard latency benchmark to identify stall coun-
ters that comprise all latency related stalls

2. Use modified pointer-chaising benchmarks to check if
there are counters that distinguish memory related
stalls from other stall reasons. In case of indepen-
dent operations between the loads the runtime stays
constant. A suitable counter for memory related stalls
needs to deduct the cycles that perform computations
from the reported number of stalls. If there is a single
dependency chain, it should report the same values as
for the unmodified latency benchmark.

3. Check if there are additional counters that correlate
with the number of total stall cycles reported for the
bandwidth benchmarks but do not cover the stalls dur-
ing the latency benchmark.

If useful counters are found in step two, they can be used to
check if delays caused by memory accesses account for a sig-
nificant portion of the runtime. Depending on the outcome
of step three, the memory-bound fraction can possibly be
subdivided into latency-bound and bandwidth-bound parts.

3.3 Benchmarks
We use x86-membench [16, Chapter 3], which is particu-

larly suitable to stress individual components in the mem-
ory subsystem of systems with 64 bit x86 processors. Fur-
thermore, x86-membench can record hardware performance
counters in addition to the latency and bandwidth measure-
ments via an integrated PAPI instrumentation. The con-
stant workloads in combination with the integrated hard-
ware monitoring are used to identify performance counters
that provide good estimates for the utilization of the indi-
vidual components.

The correlation of hardware performance counters with
the utilization of the memory hierarchy is evaluated using
the load and store variants of x86-membench’s throughput
kernel [16, Section 3.5.4]. These benchmarks measure the
achievable bandwidths for different levels in the memory hi-
erarchy by repeatedly accessing a buffer. The size of the
buffer determines the level in the memory hierarchy that is
evaluated. Memory can be allocated from specific NUMA
nodes. In order to determine suitable performance counters
for the bandwidth that is consumed per core the throughput
benchmark has to be configured as follows1:

• BENCHIT KERNEL CPU LIST is set to “0”, which
restricts the measurement to CPU 0.

• A CPU from another processor that is directly con-
nected to the processor that contains CPU 0 is entered
in BENCHIT KERNEL MEM BIND.

• BENCHIT KERNEL MIN is set to 50% of the L1 data
cache size or lower.

1 defaults are used for the remaining parameters, see
https:// fusionforge.zih.tu-dresden.de/ plugins/ mediawiki/
wiki/ benchit/ index.php/ X86membench

• BENCHIT KERNEL MAX is set to at least ten times
the LLC size.

• BENCHIT KERNEL ALLOC is initially set to“L”(lo-
calalloc) in order to evaluate the local memory hierar-
chy. It is changed to “B” (bind-to-core) in order to
examine remote memory accesses.

• BENCHIT KERNEL INSTRUCTION is configured to
perform loads or stores with different widths as re-
quired, e.g., “avx load pd” for 256 bit loads.

In order to investigate shared resources in multi-core pro-
cessors, the benchmark configuration is changed as follows:

• All CPUs that belong to the first socket are entered in
BENCHIT KERNEL CPU LIST.

• BENCHIT KERNEL MEM BIND contains all CPUs
from another socket that is directly connected to the
first socket.

The counter that most accurately represents the delay
caused by memory accesses can be identified with a slightly
adapted version of x86-membench’s latency benchmark [16,
Section 3.5.1]. This benchmark repeatedly dereferences a
pointer in the register RBX. It represents a worst case sce-
nario with only one outstanding memory request at a time, a
hardly predictable access pattern, and no other instructions
between the memory accesses. In order to investigate the
effect of overlapping memory accesses and computation on
the number of reported stall cycles, arithmetic instructions
are added between the loads. There are two versions of the
modified latency benchmark—one that adds multiplications
without data dependencies to the workload and one with
multiplications that are part of the dependency chain [16,
Section 5.3.2]. In the former case the added multiplications
use different registers (R8 – R15) and can therefore be re-
ordered around the memory accesses. In the latter case the
pointer itself is repeatedly multiplied by 1. Since all op-
erations form a single dependency chain, they cannot be
reordered. The parameters have to be configured as follows:

• one CPU from every processor is entered in BEN-
CHIT KERNEL CPU LIST

• settings for BENCHIT KERNEL MIN and BENCHIT
KERNEL MAX are identical to the bandwidth mea-

surements

• BENCHIT KERNEL ALLOC is set to “L” (localalloc)

4. EVALUATION OF HASWELL-EP
We conduct our experiments on a Bull SAS bullx R421 E4

system, which is described in Table 1. As depicted in Fig-
ure 2, each processor contains twelve cores with dedicated L1

Table 1: Dual socket Haswell-EP test system
Processors 2x Intel Xeon E5-2680 v3

Cores / threads 2x 12 / 2x 24
Core clock 2.5 GHz (2.1 GHz AVX freq. [9])

Uncore clock up to 3.0 GHz
L1 / L2 cache 2x 32 KiB / 256 KiB per core

L3 cache 30 MiB per chip
Memory 128 GiB (8x 16 GiB) PC4-2133P-R

QPI speed 9.6 GT/s (38.4 GB/s)

Operating System
Ubuntu 16.04 LTS,

kernel 4.4.0-21-generic
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Figure 2: Xeon E5-2680 v3 package

and L2 caches as well as various shared resources. Each core
has a dedicated performance monitoring unit that monitors
the activity of the execution units, cache hits and misses,
and so-called offcore requests, which supply data that is not
found in the core’s local L1 and L2 cache. Furthermore,
there are multiple PMUs for the shared resources, which re-
side in the so-called uncore [8, Figure 1-2]. The L3 cache
is partitioned into twelve slices. Each slice has a dedicated
caching agent (CA) with an associated performance moni-
toring unit called C-Box. Memory accesses are monitored by
the home agent (HA) counters that observe memory accesses
on the coherence protocol level as well as the integrated
memory (IMC) counters that record information related to
the actual DRAM accesses. Since each processor contains
two memory controllers, there are two HA and two IMC
PMUs per processor. Data transfers between the processors
are covered by the QPI counters—separately for each link.

We are using PAPI version 5.4.3 to access the PMUs. The
recorded events are configured via x86-membench’s BEN-
CHIT KERNEL PAPI parameter. We use the event names
as they are reported by the papi native avail command.

Haswell is an aggressive out-of-order micro-architecture [10,
Section 2.2]. The large reorder window enables the proces-
sor cores to continue executing instructions while multiple
outstanding memory requests are processed. However, main
memory accesses that are not anticipated by the hardware
prefetchers can take several hundreds of cycles and the band-
widths supported by the memory hierarchy are limited [18].
This eventually stalls the execution once a required resource,
e.g., the load or store buffers, is fully used.

4.1 Bandwidth Usage of a Single Core
Since uncore counters record aggregate performance data

that can hardly be attributed to actions of a single core, the
evaluation is restricted to the core counters. However, there
are still numerous memory related events.

The event perf::L1-DCACHE-LOADS counts all load in-
structions. This can be used to determine how many times
the load ports are used. However, no distinction is made
between loads of different widths. As long as the data set
fits into the L1 cache, the number of reported perf::L1-
DCACHE-LOAD-MISSES is close to zero. For larger data
sets the number of events per load instruction depends on
their width. One out of eight 64 bit loads generates a miss

event. 128 bit loads cause a miss on every fourth access.
In case of 256 bit wide loads every second load instruction
misses the L1 cache. This means that the perf::L1-DCACHE-
LOAD-MISSES increases by one for every cache line that
is transferred to the L1 cache. Writes to lower cache levels
also generate one load miss per cache line, i.e., RFO requests
are included in the measurement. Therefore, the perf::L1-
DCACHE-LOAD-MISSES provide a good estimate for the
number of cache lines that are brought into the L1 cache.
Analogous events for write accesses are available as well.
The event perf::L1-DCACHE-STORES counts all write ac-
cesses. The event perf::L1-DCACHE-STORE-MISSES is
not defined by the Linux kernel and is therefore not func-
tional. However, the number of cache lines that are written
back to lower levels of the memory hierarchy can be counted
using the L2 TRANS:L1D WB.

The remaining challenge is to find events that distinguish
accesses to different memory hierarchy levels and local from
remote memory accesses. As depicted in Figure 3, the MEM
LOAD UOPS RETIRED events are not suitable to deter-
mine the origin of the data in case of sequential loads. Half
of the accesses hit the L1 cache or the line fill buffers (LFB).
This can be explained by the fact that the benchmark per-
forms two loads per cache line. Therefore, only every second
access causes a data transfer from a lower level. The sum of
the reported L2 HIT, L3 HIT, and L3 MISS events is equal
to the number of perf::L1-DCACHE-LOAD-MISSES. How-
ever, the individual values do not correlate well with the
number of cache lines that are delivered from the L2 cache,
L3 cache, and main memory, respectively. The L2 HIT
sub-event shows a non-negligible number of false positives
if data is read from the L3 cache and main memory. Like-
wise, sequential memory accesses also cause a high num-
ber of L3 HIT events. Thus, using the L3 MISS events
can severely underestimate the number of memory accesses.
The discrepancy between the values reported by the perfor-
mance counters and the actual number of accesses is pre-
sumably caused by the hardware prefetchers. Furthermore,
reads that are caused by read for ownership (RFO) requests
are not covered by MEM LOAD UOPS RE-TIRED.

Figure 3: Date source according to MEM LOAD
UOPS RETIRED (MLUR) events: This event dis-
tinguishes load operations with respect to the origin
of the accessed data. However, it does not correctly
represent the number of data transfers from the in-
dividual levels in the memory hierarchy.
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Figure 4 depicts performance counter readings that sub-
divide the L1 misses according to the data’s prior location
within the memory hierarchy. If the data is located in the L2
cache, loads cause L2 TRANS:DEMAND DATA RD and
L2 RQSTS:DEMAND DATA RD HIT events while stores
generate L2 TRANS:RFO events. The event rates are close
to the number of lines requested by the L1 cache as reported
by perf::L1-DCACHE-LOAD-MISSES, i.e., approximately
one event per accessed cache line is recorded. Surprisingly,
the L2 RQSTS:RFO HIT event does not record any RFO
requests as long as all data fits into the L2 cache. In con-
trast, L2 RQSTS:ALL RFO −L2 RQSTS:RFO MISS cor-
rectly represents the number of RFOs that hit the L2 cache
(not depicted). For data sets that exceed the L2 capacity
the values reported by L2 TRANS and L2 RQSTS differ
significantly. Apparently, the sub-events of L2 TRANS also
capture accesses to lower levels of the memory hierarchy.
However, the values are significantly higher than the corre-
sponding number of misses in the L1 cache, especially in case
of loads. This indicates that additional cache lines from the
L2 cache are requested by the L1 cache’s prefetchers while
waiting for the data from lower cache levels. The L2 RQSTS
readings seem to only consider cache lines that are actually
delivered by the L2 cache. However, as it is the case for the
MEM LOAD UOPS RETIRED events, a significant num-
ber of false positives are reported when data is streamed
from lower levels in the memory hierarchy.

The OFFCORE RESPONSE events observe requests that
miss in the L2 cache and provide numerous filters to isolate
data transfers from a certain location. Events are specified
in the following format: OFFCORE RESPONSE {0|1}<re-
quest type><response type> where the response type is ei-
ther ANY RESPONSE or <supplier><snoop>. The re-
quest type is set to ANY DATA:ANY RFO in order to in-
clude read only requests as well as the RFOs caused by
stores. The supplier field in the response type can be used
to distinguish L3 cache and main memory accesses. If it is
set to L3 HIT, all L3 accesses that hit cache lines in state
Modified, Exclusive, Shared, or Forward are considered. The

number of cache lines requested from local main memory can
be counted using L3 MISS LOCAL as supplier. Remote ac-
cesses can be counted via L3 MISS REMOTE HOP{0|1|2P}
(not depicted). The SNP ANY setting used for the snoop
field includes cache lines that are forwarded from other caches
in the measurement (not relevant in the used benchmark).
SNP MISS:SNP NO FWD: SNP NOT NEEDED can help
to exclude forwarded cache lines from the measurement.
However, SNP ANY is the most cautious choice for mea-
suring the utilization since on-chip transfers include a L3
lookup. Furthermore, cache lines that are forwarded from
caches in other processors are typically delivered from mem-
ory as well or involve a directory lookup in the home node.

If data is delivered by the L3 cache, there are as many
L3 HIT events as there are L1-DCACHE-LOAD-MISSES.
In contrast, the number of L3 MISS LOCAL events does
not match the number of L1 cache misses if data is deliv-
ered from main memory. Therefore, the proportion of main
memory accesses is severely underestimated by the OFF-
CORE RESPONSE events. However, the sum of the L3 hit
and L3 miss events is very close to the number of L1 misses
in both cases, so the number of cache line transfers from the
uncore to each core can be measured quite accurately.

Figure 4(b) shows a write bandwidth measurement, but
the recorded events only cover the read for ownership trans-
fers that place the data in the L1 cache prior to the modifica-
tion. Indicators for the write backs are depicted in Figure 5.
The total number of cache lines that are written back from
the L1 cache can be counted via the L2 TRANS:L1D WB
event. Write backs from the L2 cache to lower levels of the
memory hierarchy are represented by the values reported by
L2 TRANS:L2 WB. Core counter events that indicate the
number of write backs to main memory have not been found.

Table 2 shows the bandwidths that can be achieved by a
single thread for read and write accesses to the local memory
hierarchy as well as remote memory. The measured band-
widths are used to calculate the resulting number of trans-
fers per second. The maximal event rates are derived from
the performance counter readings presented in this section.

(a) 256 bit loads (b) 256 bit stores

Figure 4: The Utilization of the L2 cache can be measured via the L2 TRANS and L2 RQSTS events. L3
cache and main memory accesses can be recorded using the OFFCORE RESPONSE events. The correlation
with the amount of accessed data is far from perfect. However, it is possible to gain important insight.
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Figure 5: Write bandwidth (256 bit stores) and
write back events: The L2 TRANS:L1D WB and
L2 TRANS:L2 WB events represent write backs
from the L1 and L2 cache, respectively.

Most of them are identical to the number of transfers. Un-
fortunately, the number of transfers per second cannot be
used to derive the bandwidth utilization of the L1 cache.
With 64 bit instructions it is possible to reach the maximal
event rates while using only 25% of the available bandwidth.
However, this could still be defined as 100% load as all L1
load or store ports are active each cycle. The numbers re-
ported by the L2 TRANS:DEMAND DATA RD HIT and
L2 TRANS:RFO events are higher than the actual number
of requested cache lines that miss the L1 cache—presumably
as some prefetcher requests are included as well. Further-
more, the OFFCORE RESPONSE counters for L3 misses
underestimate memory accesses. Nevertheless, the maximal
event rates provide reference values for the 100% utilization
of the corresponding components, which allows us to esti-
mate the degree of capacity utilization for application runs.

4.2 Utilization of Shared Resources
The last level cache, the memory bandwidth, and the

links between the processors are potential bottlenecks that
may limit the application performance. In this section it
is evaluated if the processor’s uncore performance coun-
ters [8] can be used to measure the utilization of these shared
resources. The uncore performance monitoring is imple-

mented by multiple per-component performance monitoring
units (also called “boxes”) [8, Figure 1-2]. Uncore events are
specified in the format: hswep unc <comp>::<event name>
where comp selects a component, e.g. a L3 slice (C-Box),
and the event name specifies the events that are counted.
The “hswep unc ” prefix is omitted here. X86-membench
records performance counters only on one CPU and derives
the event ratios by dividing the recorded number of events
by the number of memory accesses performed by this CPU.
This is sufficient for the collection of core counters since the
workload is homogeneous, i.e., all cores would report very
similar values. It also avoids conflicts between the CPUs if
uncore counters are recorded as only a single CPU is access-
ing the uncore PMUs. However, in this case all events are
attributed to a single CPU, which needs to be considered in
the interpretation of the results. In case of the Xeon E5-
2680 v3 processor the uncore is shared by twelve cores, i.e.,
the reported event ratios have to be divided by twelve to get
the correct result.

Figure 6 depicts the correlation between accesses to dif-
ferent levels in the memory hierarchy and C-Box events.
The UNC C LLC LOOKUP and UNC C TOR INSERTS
events can be used to measure the aggregated L3 band-
width. As shown in Figure 6(b), RFOs are not covered
by the UNC C LLC LOOKUP:DATA READ event. There-
fore, UNC C LLC LOOKUP:ANY has to be used in order
to capture all loads, although this event also includes stores
and the event rates are higher than expected in case of L2 ac-
cesses as well as reads from the L3 cache. Furthermore, most
main memory accesses are also counted as LLC lookups.
The UNC C LLC LOOKUP:WRITE events correlate well
with the number of cache lines written to the L3 cache.
UNC C TOR INSERTS events also count L3 accesses. In
contrast to UNC C LLC LOOKUP:ANY events, the reads
(:OPC DRD and :OPC RFO) also include all main mem-
ory accesses, which simplifies compensating for the overlap
with the DRAM counters. Unfortunately, different types of
UNC C TOR INSERTS events cannot be counted concur-
rently.

Reads from and writes to the main memory can be ob-
served via the UNC H REQUESTS events in the home agent
PMUs, which report one event per accessed cache line. Writes
can also be counted via UNC H IMC WRITES:FULL, which
explicitly excludes partial writes. The PMUs in the inte-

Table 2: Suitable indicators for bandwidth usage per core

access type
achievable million most appropriate indicator for bandwidth utilization maximal
bandwidth transfers/s (including transfers from lower levels) events/s

L1D
read 159.8 GB/s 4,993 (32 byte) perf::L1-DCACHE-LOADS 4,993 million
write 79.9 GB/s 2,496 (32 byte) perf::L1-DCACHE-STORES 2,496 million

L2
read 75.0 GB/s 1,171 (64 byte) L2 TRANS:DEMAND DATA RD + L2 TRANS:RFO 1,546 million
write 25.5 GB/s 398 (64 byte) L2 TRANS:L1D WB 398 million

L3
read 29.9 GB/s 467 (64 byte) OCR L3-HIT + OCR L3-MISS-loc + OCR L3-MISS-rem 467 million
write 15.0 GB/s 277 (64 byte) L2 TRANS:L2 WB 277 million

local read 10.4 GB/s 162 (64 byte) OCR L3-MISS-loc 61 million
DRAM write 7.7 GB/s 120 (64 byte) n/a n/a
remote read 8.0 GB/s 125 (64 byte) OCR L3-MISS-rem 63 million
DRAM write 5.5 GB/s 85 (64 byte) n/a n/a

OCR L3-HIT = OFFCORE RESPONSE {0|1}:ANY DATA:ANY RFO:L3 HIT:SNP ANY
OCR L3-MISS-loc = OFFCORE RESPONSE {0|1}:ANY DATA:ANY RFO:L3 MISS LOCAL:SNP ANY
OCR L3-MISS-rem = OFFCORE RESPONSE {0|1}:ANY DATA:ANY RFO:L3 MISS REMOTE HOP0:L3 MISS REMOTE HOP1

:L3 MISS REMOTE HOP2P:SNP ANY
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(a) 256 bit loads (b) 256 bit stores

Figure 6: Last level cache counters: All C-Boxes report very similar results, i.e., the data is evenly distributed
across the L3 slices. For the purpose of clarity only the results from a single C-Box are shown. This also
compensates the incorrect attribution of events caused by twelve CPUs to a single CPU as only one twelfth
of the events is considered. Thus, the shown event ratios are correct.

grated memory controller (IMC) record additional DRAM
specific information (precharges, refreshes, ECC errors, etc.).
However, the home agent events are sufficient to measure
the bandwidth utilization per socket. The traffic between
the sockets can be measured separately for each of the two
QPI links. The UNC Q RXL FLITS G1:DRS DATA and
UNC Q TXL FLITS G1:DRS DATA events observe incom-
ing and outgoing traffic, respectively. These events record
eight flits (flow control unit—the link layer’s unit of trans-
fer [7]) per cache line. This matches the expectation of 64 bit
data per flit (80 bits including CRC and control [7]). It
is also possible to count the snoop requests and response
caused by the coherence protocol via the :DRS NONDATA
subevent.

Table 3 summarizes the results of this section. If the max-
imal event rates are reached the respective component is
100% occupied. In contrast to the core counters, the uncore
counters recognize all cache lines that are read from or writ-
ten to memory. Therefore, the bandwidth in GB/s can be
derived from the recorded event rates with a high accuracy.

4.3 Memory Related Stalls
In this section, we analyze if the stall counters that are

available on Intel Xeon E5 v3 processors correctly represent
the fraction of time that is spent waiting for the memory
hierarchy. Multiple events correlate well with the execution
time of the latency measurements. A selection of the avail-
able events is depicted in Figure 7. The event CYCLE AC-
TIVITY:STALLS LDM PENDING perfectly matches the
measured latency. The same is true for the :CYCLES
NO EXECUTE subevent as well as the UOPS {ISSUED,
EXECUTED,RETIRED}:STALL CYCLES events (not de-
picted). However, the latency benchmark does not include
any operations other than the memory accesses. Therefore,
it is unclear if the various events comprise other stall reasons
as well. The CYCLE ACTIVITY:STALLS L1D PENDING
and :STALLS L2 PENDING events report fewer stall cycles
as they do not include the L1 and L2 lookup, respectively.

Figure 8 shows how the performance counter readings
change if arithmetic operations are added between the loads.
If independent operations are added (see Figure 8(a)), the

Table 3: Indicators for bandwidth usage per processor: The maximal event rates for the UNC C * events
refer to the sum of the events reported by the twelve C-Boxes (hsw unc cbo*). Likewise, the UNC H * and
UNC Q * refer to the sum of both home agent (hsw unc ha*) and QPI Boxes (hsw unc qpi*), respectively.

resource
access peak million most appropriate indicator maximal

type bandwidth transfers/s for bandwidth utilization events/s

L3 cache
read 342 GB/s 5,343 (64 byte) UNC C TOR INSERTS:OPCODE:OPC DRD / OPC RFO* 5,279 million

write 209 GB/s 3,265 (64 byte) UNC C LLC LOOKUP:WRITE 3,212 million

memory read 63.1 GB/s 985 (64 byte) UNC H REQUESTS:READS 985 million

controller write 25.8 GB/s 403 (64 byte) UNC H IMC WRITES:FULL 403 million

QPI links
read 16.3 GB/s 254 (64 byte) UNC Q RXL FLITS G1:DRS DATA 2,032 million

write 11.0 GB/s 171 (64 byte) UNC Q TXL FLITS G1:DRS DATA 1,368 million

*: cannot be measured together since the same filter register is used [8, Table 2-40], alternatively: UNC C LLC LOOKUP:ANY −
UNC C LLC LOOKUP:WRITE, but this does not include all DRAM accesses that pass through the L3 cache
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Figure 7: CYCLE ACTIVITY events for latency
benchmark: The pending loads and outstanding
misses correlate well with the measured latency.

multiplications fill the gaps between the loads. Thus, the
execution time remains constant if the latency is higher
than the time required for the additional arithmetic oper-
ations. A useful indicator for the cycles lost due to mem-
ory accesses should only include the cycles that cannot be
used for any other operations. This is the case for CY-
CLE ACTIVITY:CYCLES NO EXECUTE and :STALLS
LDM PENDING. They both report 29 instead of 53 cycles
per memory access for data sets that fit into the L3 cache
while the execution time is 53 cycles per load instruction
with and without the multiplications. The 24 cycle reduc-
tion is identical to the number of operations added (through-
put of 1 instruction per cycle [10, Table C-17]). If the
multiplications are part of the dependency chain (see Fig-
ure 8(b))), the situation changes. In this case, the arithmetic
operations depend on the result of their respective predeces-
sor. Thus, the instruction latency (3 cycles [10, Table C-17])
also contributes to the execution time. These delays are
clearly not caused by memory accesses and should therefore
not be counted as memory related stalls. The results of an

ideal memory stall counter would be identical to the latency
measurements from Figure 7. However, such a counter does
not exist. The CYCLE ACTIVITY:STALLS LDM PEND-
ING / CYCLES NO EXECUTE and UOPS {ISSUED,EX-
ECUTED,RETIRED}:STALL CYCLES events report an in-
creased number of stall cycles in this scenario, i.e., they in-
clude the delays caused by data dependencies between the
multiplications. Therefore, they have to be excluded as in-
dicators for memory related stalls. Only the STALLS L1D
PENDING event looks promising. For accesses to the lo-
cal L2 and L3 cache, the reported number of stalls is very
close to the measured latency. The values reported for local
and remote memory accesses are reasonably close as well.
However, accesses to the L1 cache are not included.

There are two flavors of memory-boundedness—latency
bound and bandwidth bound. In the former case the data
waited upon is required to continue execution, i.e., the fol-
lowing instructions have a data dependency from the re-
quested data. In the latter case independent instructions
are available, but the data paths are used to their capacity,
which restricts the processing speed of memory accesses. It
is important to distinguish both cases as there are different
optimization strategies for them, e.g., adding prefetch in-
structions in latency bound code or introducing cache block-
ing in bandwidth bound programs. The out-of-order execu-
tion cores are decoupled from the memory hierarchy via load
and store buffers [10, Section 2.2.4.1]. Furthermore, sev-
eral request queues exist that handle outstanding requests
at various levels in the memory hierarchy. Bandwidth bound
applications—which issue many independent requests—tend
to fully utilize the available request buffers. Therefore, a
high utilization ratio of the request queues is an indicator
for bandwidth-boundedness.

Figure 9 shows the event rates reported by several stall
counters for bandwidth measurements. All stalls can be at-
tributed to the memory accesses as the measurement rou-
tines do not include any other instructions. Therefore, the
event CYCLE ACTIVITY:CYCLES NO EXECUTE is used
as a reference. The remaining events show no significant
event rates for the latency measurement. Thus, they can be
used to detect bandwidth-boundedness.

(a) 24 independent multiplications per load (b) 24 data dependent multiplications per load

Figure 8: Correlation of stall cycles with adapted latency benchmark: Both events deduct the cycles
required for performing the calculations from the reported number of stall cycles (left). However, the
STALLS LDM PENDING event also includes delays caused by data dependencies (right).
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(a) one thread, 256 bit loads (b) one thread, 256 bit stores

Figure 9: Indicators for bandwidth-boundedness: In contrast to latency-bound scenarios, bandwidth-bound
applications issue multiple concurrent requests. Typically, the cores can issue requests faster than they can
be serviced. The execution is stalled eventually when the required buffers are filled.

Unfortunately, none of the events count the number of
stall cycles accurately. L1D PEND MISS:FB FULL and
OFFCORE REQUESTS BUF-FER:SQ FULL do not cover
bandwidth bound accesses in the L2 cache, but show high
event rates in case of misses in the L2 cache. Unfortu-
nately, even their sum is lower than the total number of
stall cycles caused by the resulting L3 and memory accesses.
However, it is the best available estimate for bandwidth
bound loads. The event RESOURCE STALLS:SB does not
capture load accesses but correlates well with the stall cy-
cles caused by stores. Unfortunately, it also overlaps with
CYCLE ACTIVITY:STALLS L1D PENDING in case of
mixed memory accesses (not depicted). The event CY-
CLE ACTIVITY:STALLS L1D PENDING, for example,
includes cycles that are stalled for other reasons if there are
loads outstanding at the time.

Based on these observations presented above, the stall cy-
cles can be decomposed as shown in Figure 10. The memory
bound fraction is determined as the maximum of the load re-
lated (CYCLE ACTIVITY:STALLS L1D PENDING) and
the store related (RESOURCE STALLS:SB) stall cycles due
to the potential overlap in mixed workloads. However, this
can lead to an underestimation of the memory-boundedness

CPU_CLK_UNHALTED

CPU_CLK_UNHALTED 

– CYCLE_ACTIVITY:CYCLES_NO_EXECUTE

CYCLE_ACTIVITY:CYCLES_NO_EXECUTE

stall cycles – memory bound

memory bound – bandwidth bound

max(RESOURCE_STALLS:SB,

CYCLE_ACTIVITY:STALLS_L1D_PENDING)

max(RESOURCE_STALLS:SB,

L1D_PEND_MISS:FB_FULL

+ OFFCORE_REQUESTS_BUFFER:SQ_FULL)

active cycles

productive cycles

stall cycles

other stall reason

memory bound

bandwidth bound

latency bound

Figure 10: Decomposition of stall cycles

if a measurement interval includes discrete load bound and
store bound phases. The bandwidth bound metric also uses
the maximum as the events that capture loads also include
RFOs caused by stores as depicted in Figure 9(b). The
miss-prediction of branches is not considered here, i.e., “pro-
ductive cycles” does not mean that the processed instruc-
tions are on the correct path. Ineffective speculation can
be detected as described in [10, Appendix B.3.2]. Front-
end stalls—including instruction cache misses—are also not
covered by the approach presented here.

5. APPLICABILITY FOR ENERGY EFFI-
CIENCY OPTIMIZATION

One possible application of the findings presented so far
are energy efficiency optimizations. Researchers use the
detection of memory boundedness to determine program
phases where power-saving mechanisms can be used. Based
on the assumption that the memory performance is not
linked to the processor frequency, they use dynamic volt-
age and frequency scaling (DVFS) to slow down processor
cores [23]. However, this approach is not viable for all pro-
cessor architectures [22]. We used our model to optimize the
OpenMP parallel NAS benchmark bt [3] in version 3.3.1.

We gather the metrics that are described in Figure 10 by
using Score-P. A profile of the executed parallel regions is de-
picted in Figure 11(a). An excerpt of the trace is visualized
in Figure 11(b). During the execution of the parallel regions
defined in add.f and rhs.f the processor cores spend less
than 50 % of their time in productive cycles. The remaining
cycles are mostly stalls due to memory bandwidth limita-
tion. Thus, these regions can be optimized using dynamic
voltage and frequency scaling.

We used the Score-P substrate plugin interface to call the
optimization library libadapt [21]. This library is able to
optimize the hardware software environment based on pre-
defined rules that are passed via a configuration file. In this
file, we stated that the frequency should be reduced to 1300
MHz when the parallel region in add.h is started and that
the frequency should be reset when the parallel region in
rhs.f is left.
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(a) Runtime share and absolute
runtimes of parallel regions

(b) Four compute iterations and respective metrics “active cycles”, “produc-
tive cycles”, and “bandwidth bound cycles”.

Figure 11: VAMPIR visualization of the OpenMP parallel NAS benchmark bt at reference frequency. The
parallel regions in add.f and rhs.f have a high share of non-productive bandwidth bound cycles.

The resulting runtime profile and the recorded metrics are
depicted in Figure 12. To verify the optimization results, we
collect power consumption information from the test system
using a ZES-ZIMMER LMG 450 power meter. This highly
accurate device is attached to the power plug of the server
and returns power consumption samples every 50 ms [6].
The average power consumption while executing the unop-
timized version of the benchmark is 284 Watts. After reduc-
ing the frequency in the selected parallel regions, the overall
average power consumption is reduced to 271 Watts, which
is a reduction of 4.6 % based on the reference measurement.
The runtime is increased by 0.2 %. However, the optimiza-
tion only targets 25 % of the runtime and does not change
the frequency of the uncore, which represents a significant
share of the overall power consumption of the processor.
Thus, the potential for energy efficiency optimizations with
DVFS is limited for the given application.

6. CONCLUSIONS
Knowing the maximal achievable performance of individ-

ual components in the memory hierarchy is an essential
prerequisite to detect memory related performance issues.
In order to determine the impact of the memory hierar-
chy on the achieved application performance, the waiting
times caused by memory accesses have to be measured at
runtime. This creates several challenges: While the perfor-
mance degradation due to resource limitations is often re-

flected by certain hardware events, raw performance counter
values are usually difficult to understand. Furthermore,
modern processors support numerous events that monitor
memory accesses. Selecting the relevant ones is not a trivial
task. The fact that many events do not work as one might
expect further complicates the performance analysis task.

To tackle these challenges, we present a portable method-
ology that derives meaningful metrics for the resource uti-
lization from hardware performance counters. The practi-
cally achievable bandwidths (e.g., via QPI) can be lower
than the theoretical peak performance. Thus, even if suit-
able events for measuring the achieved bandwidth do ex-
ist, the resource utilization can be severely underestimated
if the theoretical peak performance is used as a reference.
We therefore base our utilization metrics on the achievable
bandwidth, which we measure with highly optimized micro-
benchmarks. Furthermore, we present a novel approach to
verify if the various stall events that can be counted by the
core PMUs are able to distinguish memory related stall cy-
cles from other stall reasons. We also describe how events
that differentiate bandwidth bound and latency bound stall
cycles can be identified.

We demonstrate the applicability of the approach on a
Haswell-EP based system. We show that the available core
counters can be used as indicator for a high utilization, but
are not very useful for accurately measuring the bandwidth
usage of shared resources. In contrast, the uncore counters
provide events that measure the bandwidth usage quite ac-

(a) Runtime share and absolute
runtimes of parallel regions

(b) Four compute iterations and respective metrics “active cycles”, “produc-
tive cycles”, and “bandwidth bound cycles”.

Figure 12: DVFS optimization of add.f and rhs.f where a frequency of 1300 MHz is applied. The overall
cycles and the number of bandwidth bound cycles are reduced by approx. 50 % during these functions.
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curately. We show that the CYCLE ACTIVITY:STALLS
LDM PENDING event, which is intended to detect mem-

ory related stalls, also includes stalls that are caused by
data dependencies between register-only operations. It is
therefore not applicable to reliably detect memory bound
program phases. Based on our verified set of performance
counters, the adequate combination of multiple counter val-
ues and a visualization of the performance counter data, we
demonstrate that complex memory performance problems
can be found by the non-expert user.

As our experiments have shown, some performance counter
events do not deliver the expected results. Therefore, it can-
not be recommended to rely on performance counter read-
ings without validating that they correlate with the charac-
teristic that should be measured. X86-membench is ideally
suited to perform such validations. The presented workflow
is portable to other architectures. However, our benchmarks
only support the x86 instruction set at the moment. The
results obtained on one architecture cannot easily be trans-
ferred to other architectures as the set of available events
as well as their definition and functionality can be different.
Analyzing a new processor architecture currently is a time
consuming task with many manual steps. The automatic
detection of (potentially) useful counters and the generation
of the corresponding metrics is subject to future work.
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