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ABSTRACT
Quantitative aspects of modern IT systems are often spec-
ified by service level agreements (SLAs) which relate the
maximal load of a system with guaranteed bounds for re-
sponse times and delays. These quantities are specified for
single services which are combined in a service oriented ar-
chitecture (SOA) to composed services offered to potential
users or other service providers. To derive SLAs for com-
posed services and to plan the required capacity to guaran-
tee SLAs, appropriate methods and tools have to be used
that compute results based on information given in SLAs.
In this paper it is argued that most available approaches
are not sufficient to analyze systems based on SLA informa-
tion. A new method and a tool are presented that support
the efficient calculation of bounds for delays in composed
systems based on bounds for the load and the delay of the
individual components which are specified in the SLAs of
the components. Furthermore, the presented tool can be
used to generate bounds for the required processing capac-
ity which a provider has to provide in order to guarantee the
quality of service defined in the SLAs.

The presented approach is in some sense a counterpart
to mean value analysis for queueing networks but rather
than mean values, worst case bounds for different quantities
like response times or departure processes are computed.
Analysis is based on min/+ algebra but the mathematical
approach is hidden from the user by a graphical interface
allowing a simple graphical specification and result repre-
sentation for networks of composed services.
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1. INTRODUCTION
Quantitative aspects of current software systems are spec-

ified as part of the service level agreements (SLAs). In a ser-
vice oriented world, one can distinguish between the user of
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a service and the provider of the service. The user requests
a minimal service level which is guaranteed by the provider.
An important part of the service level is the response time.
Usually systems guarantee a maximal response time for a
large percentage of the submitted load. The provider has to
supply the requested processing capacity to process the load
within the available time. However, to guarantee maximal
response times, the load has to be restricted in the SLA.
This implies that an SLA contains an upper bound for the
load which the user can submit into the system and an up-
per bound for the response time to process the submitted
load. Apart from these bounds an SLA defines various other
quantitative and functional properties of the service, which
we will not consider in our analysis. Thus, if we speak of
an SLA, we explicitly consider the bounds on arrivals and
response times or delays1.

In many cases, a service is composed of sub-services. This
can be the case if the provider uses third party services or
if the user composes his or her service from sub-services of-
fered by different providers. In such a case the SLA of the
composed service has to be derived from the sub-services.
For a provider there is additionally the need to compute the
required processing capacity from the knowledge of the SLA
to avoid an over- or under-loading of the available equip-
ment.

The definition and analysis of appropriate SLAs is a ca-
pacity planning problem. Since the environment in which
the problem has to be solved is highly dynamic and often
extremely complex, detailed analysis approaches like sim-
ulation are not adequate, because the effort would be too
high, required data is not or not completely available and
some details of the system are unknown. Therefore it is im-
portant to develop analysis techniques that can work with
the available information which means that the information
given in the SLAs is the basis for quantitative analysis and
capacity planning.

Abstract models to analyze service oriented architectures
(SOAs) are usually based on results available from product
form queueing networks. Often some variant of mean value
analysis is applied [15–17]. In some cases hierarchical models
are supported [21] but analysis is still based on product form
techniques. Overview papers describing different approaches
to analyze quality-of-service in service oriented architectures
or cloud environments are [1, 11].

There are two disadvantages of queueing network based

1The terms response time and delay will be used inter-
changeably here although they reflect different viewpoints
of the same quantity.
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analysis of SLAs. First, for analysis mean arrival rates and
service times are input parameters and response times are
outputs of the analysis. In SLAs arrival rates and response
times are input parameters and service rates have to be de-
rived. However, in the product form case, equations can
be inverted such that arrival rates and response times be-
come input parameters to compute the required service ca-
pacity [6, 7]. If numerical analysis approaches or simulation
are used for analysis, it is not clear how service capacities
are computed from arrival rates and response times. The
second disadvantage of queueing network based analysis is
more critical. Product form analysis is based on the com-
putation of mean values of result measures based on mean
values of the parameters. The specification of mean val-
ues in SLAs is usually not sufficient because deviations from
the mean can result in unacceptable delays or overload sit-
uations. Thus, SLAs usually contain some kind of upper
bound which is unavailable in mean value analysis. Thus, a
mean value based analysis approach can only over-provision
the system to avoid overload situations but it is unclear how
much overprovisioning is really required to meet the SLA. It
should be mentioned that this also holds for variants where
mean value analysis for product form queueing networks is
used and it is assumed that only bounds for the parameters
are available [14]. The bounds resulting from such an anal-
ysis are bounds for mean values, they do not consider the
worst case which is often quantified in an SLA.

In performance analysis a calculus for computing bounds
on delays and buffer spaces using bounds on arrival and ser-
vice rates is known since the pioneering work of Cruz in
the early nineties [9, 10]. These results are the basis for the
network calculus [4] and real time calculus [20]. Like queue-
ing network based analysis approaches both calculi compute
response time bounds from the knowledge of arrival and ser-
vice bounds. Therefore they are not directly usable in the
SLA context. However, they provide a solid basis to ana-
lyze the worst case behavior of systems which is bounded in
SLAs.

The work presented in this paper has its foundations in the
theory of SLA calculus [6,7] and an earlier version in [23,24].
SLA calculus uses the theory developed in [9, 10] for the
analysis of software architectures based on SLAs. This im-
plies that arrival and response time bounds become input
parameters to compute bounds on arrivals, departures and
response times of composed services and to compute addi-
tionally bounds on the minimal service capacity. Like QN
analysis, SLA calculus is a mathematical approach to com-
pute the required results in a fairly efficient way. However,
without tool support, the approach will hardly be applied
because analysis algorithms have to be implemented and
models have to be specified in the mathematical formalism
which is quite far from the intuitive understanding of the
behavior of a service.

In this paper we try to put SLA calculus to work. We in-
troduce an approach to specify composed systems of services
graphically, show how an hierarchical analysis is performed
and how results are represented. The whole approach has
been implemented in a tool which is also introduced here in
some detail. The goal is, like in queueing network tools, to
hide the details of the analysis from a user by providing an
easy to use graphical interface for model specification and
result representation.

The paper is structured as follows. Sect. 2 presents some

basics of SLA Calculus, followed by a short introduction of
input parameter estimation of our models in Sect. 3. SLA
Tool is introduced in Sect. 4. Sect. 5 sketches an example
of its use. The paper ends with the conclusions and a short
outlook of future extensions.

2. THEORETICAL BASIS
We give a brief idea of the analysis approach for further

details we refer to [6]. The approach relies on the pioneer-
ing work of Cruz [9, 10] on the computation of worst case
delays in computer networks. However, in contrast to the
available technique we assume that information about the
maximal arrival rate and the maximal response time or de-
lay is available from an SLA. In the following subsection we
briefly consider how these quantities can be specified in an
SLA or can be derived from measurements.

Basically we consider services that provide some result to
a user in response to a user request. For the computation
of the result some time, denoted as response time or delay,
is needed. We begin with the specification of the arrival
stream. Service calls arrive in discrete portions and each
service call delivers a portion of load to the service. The size
of an arriving service call is measured in some application
specific unit like the number of transactions, the number of
basic operations to compute a result or the size of a data
set to be stored, to mention some examples. Let A : R≥0 →
R≥0 be the accumulated load that arrived in the interval
[0, t]. Obviously, A(t) is non-decreasing. In an SLA an upper
bound for A(t) is defined in form of an upper arrival curve
αU (t) such that A(t) − A(s) ≤ αU (t − s) for all t ≥ s ≥ 0.
Obviously αU (0) is an upper bound for the size of one service
call and αU+ = limt→∞ α

U (t)/t, if it exists, is an upper
bound for the average arrival rate. After a service call has
been processed, it leaves the service. Let C(t) be a function
describing departing processed service calls. Obviously C(t)
is also non-decreasing and A(t) ≥ C(t) because service calls
depart after they arrived. For convenience we sometimes
define functions on the real axis, then A(t) = C(t) = 0 for
t < 0.

In an SLA specification upper bounds should be defined
by simple functions which can be interpreted in terms of
the behavior of a software system. We use non-decreasing
piecewise linear functions. A non-decreasing piecewise linear
function with L segments is defined by L triplets [xi, yi, si]
(i = 1, . . . , L) such that x1 = 0, y1 > 0, si ≥ 0, xi ≤ xi+1,
and yi + (xi+1 − xi)si ≤ yi+1. The function is continuous if
yi + (xi+1 − xi)si = yi+1. A continuous function is concave
if si ≥ si+1 and convex if si ≤ si+1. The xi specify time
points, yi the load that may have entered the system up to
time xi and si the slope of the load curve between xi and
xi+1 (i.e., the arrival rate). Thus, y1 is the maximal size
of system calls and sL is an upper bound for the average
arrival rate of the load. An example for an upper arrival
curve with two segments is shown on the left side of Fig. 4.

By using more than one segment (i.e., L > 1) it is possi-
ble to specify arrival rates that decrease over time. Usually
the arrival process is described by a concave piecewise linear
function. y1 is the amount of load which can arrive immedi-
ately and s1 is the short term arrival rate until time x2. In
contrast to QN analysis where the arrival rate is constant,
SLA calculus allows one to consider short term fluctuations
in the load.

In a similar way we can define a bound for the response
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time or delay induced by arriving service calls. We de-
fine a function F : R≥0 → R≥0 that describes the accu-
mulated delay of service calls of size x. Obviously F (x) is
non-decreasing because larger calls require more effort. We
define an upper delay curve ΦU (x) such that F (x)−F (y) ≤
ΦU (x − y) for all x ≥ y ≥ 0. Again piecewise linear func-
tions are used for the specification. For example in a system
where service calls have a maximal size of 1 and the first two
service calls are allowed to have a delay which is twice their
size and afterwards the delay is proportional to the size of
the call, ΦU = {[0, 0, 2], [2, 4, 1]} would be an appropriate
upper bound. The derivative of the delay bound is given by

φU (x) =
(
ΦU
)′

(x). φU is piecewise constant if ΦU is piece-
wise linear. An example for an upper delay curve with two
segments is shown in the middle of Fig. 4.

Observe that the delay bound is a function from the load
into the time domain whereas the arrival bound is a function
from the time in the load domain. To combine both func-
tions we use the pseudo-inverse of a non-decreasing function
f(t).

f−1(x) = inf{t|f(t) ≥ x} (1)

The pseudo-inverse can be easily computed for non-decreasing
piecewise linear functions. For a strictly increasing function,
the pseudo inverse corresponds to the inverse function. It
should be mentioned that in SLA calculus sometimes an in-
verse has to be computed for more general functions such
that the definition of the inverse has to be slightly extended
for cases where the functions are not necessarily increas-
ing [6,7]. We will not consider these details here and assume
that f−1 can be computed in some way.

Additionally, we need the following operations for func-
tions which are all available in the basic approach of Cruz [9].

(f + g)(t) = f(t) + g(t)
(f ∨ g)(t) = f(t) ∨ g(t)
(f ∧ g)(t) = f(t) ∧ g(t)
(f⊗g)(t) = inf0≤s≤t (f(t− s) + g(s))
(f�g)(t) = sup0≤u (f(t+ u)− g(u))

(2)

∨ and ∧ are the pointwise maximum and minimum and ⊗,
� the min/plus convolution and deconvolution [4]. All op-
erations can be easily computed for piecewise linear func-
tions [5].

A user with load requirements that do not exceed αU
0 can

immediately use a service with an SLA with arrival and de-
lay bounds (αU

1 ,Φ
U
1 ), if αU

0 (t) ≤ αU
1 (t). In this case, the ser-

vice is analyzed under arrival bound αU
0 and the delay bound

remains as defined in the SLA. If αU+
0 = limt→∞ α

U
0 (t)/t ≤

αU+
1 = limt→∞ α

U
1 (t)/t (for piecewise linear bounds this

means sL0 ≤ sL1 in our setting), then the user does not over-
load the service in the long run, which would prohibit the
use of the service. However, temporary overload situations
may occur such that service calls may have to be delayed to
respect the arrival bound of the SLA. An appropriate delay
can be introduced by adding a smoother between user arrival
process and service. A smoother is known from network cal-
culus [4] and is realized by a leaky bucket or a set of leaky
buckets such that the service of the smoother corresponds to
αU
1 . An upper bound for the delay in the smoother is then

given by

ΦU
0 (x) =

x∫
0

(
min

{(
αU
0 �αU

1

)
⊗αU

1 , α
U
1

})−1
(y)−

(
αU
0

)−1
(y)dy

(3)

An upper bound for the delay of the service and the smoother
is ΦU∗

1 = ΦU
0 + ΦU

1 . In the sequel ΦU∗
i denotes an upper

bound of the accumulated delay of service i resulting from
the upper delay bound defined in the SLA plus the delay
which is necessary to smooth the arrival process bounded
by αU

0 to be consistent with the upper arrival bound αU
1

defined in the SLA. As long as the arrival process of the
user is unknown, it is assumed to be equal to αU

1 such that
ΦU∗

1 = ΦU
1 . If the arrival stream of the user exceeds the

capacity of the service, then ΦU∗
1 = {[0,∞,∞]}, i.e., the

service is overloaded and in the long run response time con-
verges to infinity. In practice this means that additional
capacity is required to fulfill the requirements of the user.

The provider has to compute the required service capacity
to meet the delay bound under maximal load. Under the
reasonable assumption that an increasing arrival rate results
in longer delays, a lower bound for the required service rate
is given by

σL
1 (t) =

((
φU
1 +

(
αU
1

)−1
)−1

�αU
1

)
(t). (4)

The function σL
1 resulting from piecewise linear functions

αU
1 and ΦL

1 is piecewise linear and non-decreasing but not
necessarily convex or concave. Thus, it might be substituted
by a convex or concave upper bound to specify the minimal
service requirements. On the right side of Fig. 4 the lower
bound for the service curve resulting from Eq. 4 using the
arrival and delay bound on the left and in the middle of
the same figure is shown. It can be seen that the resulting
service curve is neither concave nor convex.

It is also possible to compute the delay from a known lower
bound for the service process using the following relation
from [6,7] based on results from [25].

ΦU (x) =

x∫
0

(
min{(αU�σL)⊗σL, σL}

)−1

(y)−
(
αU
)−1

(y)dy

(5)
Equations 3 and 5 are very similar because they both de-

scribe the delay in a component with arrival process α and
service process σ under FCFS scheduling. In SOAs FCFS
scheduling of service calls is usually an appropriate approx-
imation of the real behavior.

For the presented basic relations, results for composed
services can be derived. We analyze the maximal delay in
a composed system. To compose services we consider three
composition operations of two services numbered 1 and 2.
The first is the concatenation of services, i.e., after one ser-
vice the next one is called. Thus, the input process of the
second service corresponds to the output process of the first
service. Let γU

1 be the upper bound for the output process
of the first service under maximal delay which is given by

γU
1 (t+ t∗) = αU

1 (t)
where t∗ = supt{t : ∀s ≤ t, s+ φU (αU (s)) ≥ t}. (6)

Since ΦU and αU are upper arrival and delay curves, their
derivatives are non-increasing. To define an upper bound for
the departure process which holds in general, i.e., C1(t) −
C1(s) ≤ γ̃(t− s) for all t ≥ s ≥ 0, the function γU has to be
shifted by t∗ to the left, resulting in

γ̃U (t) =

{
0 for t < 0,
γU (t+ t∗) for t ≥ 0.

(7)
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Observe that the output process of a service can be more
bursty than the input process because the maximal delay of
an arriving call may become smaller for calls arriving later
when the upper delay bound converges towards the average
delay of the system.

The upper delay bound results from the upper bound for
the arrival process plus the service calls that are delayed in
the service as long as possible. Without knowledge of the
concrete input process for the first service, the upper arrival
bound for the service is used. Using γ̃U

1 as upper bound
for the input process of the second service, the delay and
output process of the second service in the sequence can be
computed. The delay for load x and of the composed service
is

ΦU∗
12 (x) = ΦU∗

1 (x) + ΦU∗
2 (x). (8)

In a parallel fork-join like composition, also denoted as &-
composition, two services are called in parallel and the call
terminates when both results are available. Thus, both ser-
vices receive the full input and the upper bounds for delay
and output process of the composed service become

ΦU∗
12 (x) =

∫ x

y=0

φU∗
1 (y)∨φU∗

2 (y)dy and γU
12(t) = γU

1 (t)∧γU
2 (t).

(9)
The last composition is the parallel choice, also denoted as ‖-
composition, where an arrival stream is distributed among
two services. We assume that p ∈ (0, 1) is the portion of
the load that is routed to the first service and p̄ = 1 − p
is the portion that is routed to the second service. Since
service calls arrive as discrete portions of load that cannot
be split, we have to take into account that complete calls
are routed to a service. Let Ω be the maximal size of a call
which often equals αU

0 (0) the maximal load that can arrive
instantaneously. Then pαU

0 (t) + p̄Ω and p̄αU
0 (t) +pΩ are the

upper bounds for the arrivals at service 1 and 2, respectively.
Using (6) γU

1 (t) and γU
2 (t) can be computed and the upper

bounds for delay and output process of the composed service
become

ΦU∗
12 (x) =

∫ x

y=0
φU∗
12 (y)dy

where φU
12(x) = max

{
φU
1 (p(x− Ω)+), φU

2 (p̄(x− Ω)+)
}

and γU
12(t) = min

{
γU
1 (t) + γU

2 (t), αU
0

}
.

(10)
where (a)+ stands for max(a, 0). It should be mentioned
that the behavior of the parallel choice is completely differ-
ent from a choice in QNs. In a QN is it always advantageous
to split load since the delay grows faster than linear with the
load. In SLA calculus it is better to route load to one service
as long as the service is not overloaded because the delay for
the first calls can be longer than the average delay that is
achieved after a large number of arrivals. Splitting load and
distributing it to more than one service implies then that
more calls may have a long delay. A more detailed deriva-
tion and interpretation of the bounds can be found in [6,7].

The bounds can be easily computed for piecewise linear
bounds of the arrival and service process. Observe that all
compositions result in a composed service with upper bound
for the arrival process αU

12, an upper delay bound ΦU
12, and

an upper bound for the departure process γU
12, which can be

used in further compositions.
We have presented the whole approach here using upper

bounds for arrivals and delays. The computations can be
extended by also integrating lower bounds in a similar way

(for details see [6, 7]). The availability of additional lower
bounds often improves the behavior of a system since it be-
comes more predictable. Examples will be given below.

3. INPUT PARAMETER ESTIMATION
The set of parameters which is necessary to analyze net-

works of composed services is limited to upper bounds for
arrival rates and delays. In contrast to real time systems or
even computer networks the bounds need not be strict, i.e.,
a small percentage of violations is acceptable. However, this
does not necessarily make it easier to specify appropriate
bounds. The first and mainly used approach is to use the
information available in SLAs. If this is not the case, then
bounds have to be estimated ideally based on some data.
We will briefly outline both approaches.

Even if SLAs contain information about maximal arrival
and delay rates, this information has to be translated into
an appropriate bounding curve. The specification of SLAs
is not standardized and many different informal and semi-
formal approaches to formulate SLAs in different environ-
ments exist [13, 22]. Usually an SLA contains a maximal
arrival rate of service calls and a maximal size of the calls.
If this is the only available information, then curves with one
linear segment can be defined. For the response time usually
an upper bound plus the percentage of jobs that does not
exceed this bound is defined. If only the upper bound is used
to define the response time bound, then the model becomes
more conservative than the SLA but without knowing the
distribution of response times it is impossible to define an
upper bound which is met with a given probability. Often
the specification of QoS parameters in SLAs is more detailed
than just the definition of an upper bound for the mean ar-
rival rate and response time. Most times an interval and
an increased rate are defined such that the arrival or de-
lay process can exceed the long time upper bound for some
time. Such a specification can be immediately translated in
a function with two linear segments. Usually it is sufficient
to use functions with only two or three linear segments to
capture the information from SLAs. Without a formal spec-
ification of SLAs, quantitative information from the SLAs
has to be translated manually into appropriate arrival and
delay curves.

In some cases, the SLA contains no sufficient information
or no SLA is available for a service. Then the bounds have
to be estimated. If measurements are available, then these
measurements can be used to define an appropriate upper
bound. However, in this case some statistical evaluation
becomes necessary. We briefly outline the basic approach.
Similar ideas have been proposed for real time and network
calculus [4, 12].

If TA(t) denotes the load brought into the system by an
arrival event at time t, then A(t) =

∑
s≤t TA(s). A trace

from a measurement contains a finite sequence TA(s) with
s ∈ [0, T ] where T is the length of the measurement interval.
A tight upper bound is given by

αU (t) = max
s≥0
{A(s+ t)−A(t)}. (11)

Similar bounds can be derived for delays, if departure events
can be linked with corresponding arrival events. The curves
for A(t) and C(t) resulting from traces are step functions
giving also step functions for the upper bounding curves.
However, curves resulting from longer traces will have an
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enormous number of segments and are an example for over-
fitting a model. Thus, we have to find an upper bound with
a few linear segments. Let ti (i = 1, . . . ,m, 0 ≤ t1 ≤ t2 ≤
. . . ≤ tm ≤ T ) be the times when system calls arrive to the
system in the interval [0, T ] resulting from some measure-
ment taken over the whole interval. ai is the size of the ith
arriving call. Alternatively, we can consider departure times
ti of service calls from the system and di is the delay of the
departing call. Now assume that [xi, yi, si] (i = 1, . . . , L)
is a bounding curve. Then the ith arrival (or departure)
violates the bounding curve if and only if

∃j < i :

i∑
k=j

ak > yl + sl(ti − tj − xl) (12)

where l = arg maxh∈{1,...,L} (xh ≤ ti − tj). If dk instead of
ak is used, a condition on delays is defined. For a given
bounding curve, the number of arrivals or delays that violate
the bound can be computed. Let V be the corresponding
number, then V/L is the violation probability.

For a given measurement, a predefined number of seg-
ments and a predefined bound of the violation probability,
a curve is better than another if the area under the curve
is smaller. Thus, the finding of an appropriate curve can
be formulated as a linear mixed integer program which is
in most cases much too large to be solved exactly such that
heuristic optimization algorithms have to be applied. Usu-
ally a small percentage of violations should be allowed for ar-
rivals and more important delays since this helps to remove
outliers resulting from very long delays. After the bounding
curve is available it should be validated against some other
measurement of the same system which means to evaluate
Eq. 12. If the violation probability for these values is below
the required threshold, then the bounding curve can be used.
Other more sophisticated techniques for validation can also
be applied if sufficient data from measurements is available.

In the following we describe the SLA tool and assume that
appropriate bounds for the services have been determined.

4. SLA TOOL
For the analysis of systems using min/plus or max/plus

algebra different tools are available. Some software systems
support functions in max/plus algebra [8, 18] and can be
used as building blocks for system analysis. More appro-
priate are tools that support modeling in a specific domain.
The Real Time Calculus Toolbox [26] is a collection of Mat-
lab functions and Java classes that support system analysis
in Real Time Calculus. The specification of the system has
to be made at the level of the mathematical functions. Dis-
coDNC [3] is a Java-based tool for network calculus. Again
models are specified at a language level and the mathemati-
cal functions have to be used to compute results. The avail-
able functions for min/plus analysis cannot be used to per-
form the analysis of SLAs without significant modifications
because it has to be switched between time and load domain
several times and as shown in [6,7] the generalized inverse is
not sufficient to perform this step in general. To the best of
our knowledge all available tools for system analysis based
on max/plus algebra are very near to the mathematical basis
of the approach which means that the resulting models are
very abstract and the tools are hard to use for unexperienced
users from the application area.

The goal of SLA tool is to provide a simple interface to the

GUI

DataModel

SLAMediator

JavaOctave

Octave

OctaveScripts

Java

Figure 1: A block diagram showing the tool architecture.
Solid lines represent function calls, dashed lines show return
of results.

analysis approach which is based on the system model rather
than on the mathematical functions. Such an approach is
also the base of many queueing network analysis tools like
JMT [2] where queueing models are specified graphically or
in parameter tables and the approach becomes usable also
by unexperienced users. Thus, a Service Oriented Architec-
ture (SOA) is specified graphically as a network of services.
Services are connected by the three connection operations,
sequential concatenation, parallel ‖-connection and paral-
lel &-connection. In this way an acyclic graph similar to a
feedforward queueing network model is generated. Before
we introduce the different elements and the composition of
models in some more detail, some information about the
software structure of the tool will be provided.

Fig. 1 shows the part of the tool’s architecture that is re-
sponsible for interacting with Octave. The OctaveScripts
block represents a set of Octave functions that implement
the mathematical functions as described in Sec. 2. These
functions are used for all mathematical operations on curves,
such as system analysis or calculating coordinates for plot-
ting curves. As mentioned, curves in our approach are spec-
ified by piecewise linear functions and the corresponding ob-
jects in Octave are lists of three dimensional vectors [x, y, s]
defining a line segment.

JavaOctave provides an interface to Octave for the Java
part of the application and allows the execution of strings as
commands as well as providing methods to get the results
back to Java. For each Octave function exists a correspond-
ing Java method in the SLAMediator that uses parameter
objects to generate a command string that can be evalu-
ated by Octave. These commands are forwarded to Octave
using JavaOctave. Afterwards the SLAMediator translates
the resulting lists back to the Object oriented data model
of the tool and returns the final object. The functions pro-
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Sequential

preproc Sequential

Parallel And

hotels Parallel Or

Sequential

DB Check Avail

Sequential

DB Check Avail
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Figure 2: Structure of binary tree for travel agency example
(cf. Fig. 6)

vided by the SLAMediator are called from the DataModel
and the GUI of the tool. The GUI calls them to plot curves
or to check input validity while the DataModel uses these
functions to analyze systems. The main difference between
the information about the system that is stored in the GUI
and the information stored in the DataModel is as follows:
While the GUI compositions are directed graphs (as shown
in Fig. 5), the data model is a binary tree that can be calcu-
lated if the structure of the composition graph is valid. The
system analysis uses this tree in order to calculate the result-
ing curves, which are then returned to the GUI for display.
As an example for system analysis we consider the travel
agency model of Sect. 5 (cf. Fig. 6). When the tool starts to
analyze the composition it generates the corresponding bi-
nary tree (cf. Fig. 2). In order to analyze a node of the tree,
all its leaves have to be analyzed first. The resulting order
of nodes to be analyzed is similar to a depth-first search (see
Algorithm 1).

<source id="id_0" x="10.5" y="110.5">

<alphaUpper>{[0,0,1]}</alphaUpper>

<alphaLower>{[0,0,0]}</alphaLower>

...

</source>

<sink id="id_1" x="310.5" y="110.5" />

<service id="id_2" x="110.5" y="110.5" name="Service">

<alphaLower>{[0,0,0]}</alphaLower>

<alphaUpper>{[0,1,3],[2,7,2],[3,9,1]}</alphaUpper>

<phiLower>{[0,0,0]}</phiLower>

<phiUpper>{[0,0,3],[1,3,2],[3,7,1]}</phiUpper>

<dialog editDelay="true">

...

</service>

Table 1: XML description of a single service with source
and sink

Figure 3: A model of a single service.

The graphical information of a model, the parameters
(i.e., the different bounding curves) and additional informa-
tion is stored in an XML format. Tab. 1 contains the XML
specification of the simplest model which can be generated,
consisting of a source, a service and a sink. The graphical
representation, which is the interface to the user for mod-
eling composed services, is shown in Fig. 3. The XML de-
scription includes apart from the model specification, which
is shown in Tab. 1, additional graphical information which
is not shown here.

For the simple model shown in Fig. 3, the user specifies
the model graphically by selecting the basic elements and
connecting them. Parameters of a service are the three
bounding curves for arrival, delay and service, mentioned
above. For the specification of a service, an upper bound
for the arrivals and either an upper bound for the delay or
a lower bound for the service capacity have to be available.
In SLAs upper bounds on arrivals and delays are given, the
service capacity is not relevant for a user. However, for a
provider it could be interesting to compute a lower bound for
the required service capacity. In SLA tool all three curves
are associated with a service. Curves are specified by the
triplets [xi, yi, si] and are graphically represented as shown
in Fig. 4. A triple of curves belongs to each service. The user
can decide which curves are actually shown. Furthermore,
the representation of a curve can be modified by choosing
a color, the zoom level and the translation of the x and
y axis. The graphical representations helps a user to see
whether his or her curve fulfills some basic properties like
being continuous, concave or convex. The curves belonging
to a service are always kept consistent. If upper arrival and
delay curves are defined, a lower service curve is implicitly
determined and presented. One can switch to the descrip-
tion of the lower service curve, then the upper delay curve
is computed. Apart from the upper arrival and delay curves
also lower bounds can be defined. Initially lower bounds
are {[0, 0, 0]}. Lower bounds are not part of SLAs but for
an analysis it is sometimes useful to define a lower delay
bound to make a service more predictable. From the lower
delay bound an upper bound for the service capacity may
be computed, although this is usually not needed since ser-
vice calls that are available too early can be easily delayed,
although additional space to store service calls is required in
this case. Fig. 4 shows a typical scenario, the upper arrival
and delay curve have been specified as concave curves with
2 segments each and the corresponding lower service curve
has been computed. Observe that the resulting service curve
consists of 4 segments and is neither concave nor convex. In
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Figure 4: Bounding curves for arrival, delay and service.

the example the lower arrival and delay curve are (0, 0, 0)
resulting in an upper service curve (0,∞,∞).

A source has a single parameter, the arrival curve. Again
lower and upper bounds can be defined. The parameter
of the source specifies bounds for the real arrival rate of
the user whereas the parameter of the service describes the
bound from the SLA, i.e., the maximal arrival rate the ser-
vice will accept. A sink has no parameter. If the simple
model is analyzed, then the delay and service bounds are
computed according to the arrival bounds defined in the
source. As long as the upper arrival bound from the source
does not exceed the upper arrival bound of the service, the
delay bound of the service, as given in the SLA, is valid.
However, the lower bound for the service capacity depends
on the source arrival bound. If the arrival bound of the
source exceeds temporarily the arrival bound of the service,
then calls have to be delayed and the upper delay bound
grows. The lower bound for the service capacity is in this
case the same as computed for the upper arrival bound de-
fined in the SLA. If the mean rate of the source exceeds the
mean rate of arrivals for the service, then the delay grows
to infinity, as in a queueing network where the arrival rate
exceeds the service rate.

We consider an example where
αU
1 = {[0, 1, 3], [2, 7, 2], [3, 9, 1]} and

ΦU
1 = {[0, 0, 3], [1, 3, 2], [3, 7, 1]} are the upper bounds for

the arrivals and delay of the service. Furthermore, αU
0 is the

upper arrival bound of the source. For αU
0 = αU

1 , the lower
bound for the service process becomes
σL
1 = {[0, 0, 0], [1, 0, 3], [3, 7, 2], [4, 9, 1]}.

If we choose αU
0 = {[0, 1, 1]}, then ΦU remains and

σL
1 = {[0, 0, 0], [1, 0, 1], [3, 2, 2], [4, 4, 1]}.

For αU
0 = {[0, 1, 5], [2, 11, 1]}, which temporarily exceeds αU

1 ,
σL
1 is the same as for the arrival bound αU

1 and
ΦU = {[0, 0, 6], [1, 6, 5], [3, 16, 4]} which equals the delay ΦU

1

plus the delay {[0, 0, 3]} that is necessary to smooth the
arrival stream of the source to be conform to the arrival
bound of the service.

In a SOA a user can combine several services, each with
a specific SLA, to build a new composed service which may
then be used in further compositions. SLA tool helps to
model such compositions and analyze the composed service.
Analysis means that delay bounds for composed services are
computed, that bounds for the arrival stream into a com-
posed service can be determined and that the required ser-
vice capacity for the whole composition or a subset of com-
posed services can be computed.

Each composed model describes a flow through a set of
services. It starts with a source, where service calls are gen-
erated and ends with a sink where processed calls leave the
composed service. Basic elements are services and the three
composition operators, sequential, &-parallel and ‖-parallel.
The graphical representations for specifying the composi-
tions are shown in Fig. 5.

We first describe the sequential composition which can be
used for an arbitrary number of services. Fig. 5a shows the
composition of two services. We assume that the SLA of
the first service is given by αU

1 and ΦU
1 as defined above.

For the second service we have αU
2 = {[0, 2, 2], [1, 4, 1]} and

ΦU
2 = {[0, 0, 2]}. For αU

0 = αU
1 the upper delay bound of the

composed service becomes
ΦU

12 = {[0, 0, 8.667], [1, 8.667, 7.667], [3, 24, 6.667]}.
For αU

0 = αU
2 we obtain ΦU

12 =
{[0, 0, 5.875], [1, 5.875, 4.875], [3, 15.625, 3.875], [4, 19.5, 3.667]}.

If the two services are combined by a &-parallel composi-
tion, then all calls are split and enter both services. For our
example the delay curve equals ΦU

12 = {[0, 0, 5]} if arrival
curve αU

1 is fed into the composed service and it is
ΦU

12 = {[0, 0, 3.2083], [1, 3.2083, 2.2083][3, 7.625, 2]} if αU
2 en-

ters the composed service.
The last composition operator is the ‖-parallel composi-

tion which needs as additional parameters the maximal size
of a call b and the probability p of choosing service 1. If
the two services are composed by a ‖-parallel composition
and p = 0.5, we obtain for b = 0 and arrival process αU

1

ΦU
12 = {[0, 0, 3], [2, 6, 2]} . A value of b = 0 means that ar-
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(a) Sequential composition (b) ‖-parallel composition (c) &-parallel composition

Figure 5: Composition of services.

riving load can be split into equal parts, as it is the case
for fluid. For b = 1 (i.e., calls can have maximal size of 1
and cannot be split), we obtain a slightly different bound
ΦU

12 = {[0, 0, 3], [2.5, 7.5, 2]}. In both cases the delay lies
above the delay that would occur if the load is routed to
the first service. The reason for this behavior have been de-
scribed above, the longer delay at the beginning affects in a
parallel composition more calls since it occurs in both paral-
lel services. Of course, the delay for a service call converges
to 2, the final slope of the delay curves. However, if we in-
crease the arrival stream to αU

0 = {[0, 1, 4], [3, 13, 1.5]}, then
the arrival stream overloads each of the involved services if
the complete load is routed to one service. The delay curve
becomes
ΦU

12 = {[0, 0, 3], [2, 6, 2.52], [22, 56.47, 2]} for b = 0, p = 0.5
and
ΦU

12 = {[0, 0, 3], [2.5, 7.5, 2.88], [26.5, 76.61, 2]} for b = 1, p =
0.5.

Observe that the parallel composition operators are al-
ways used as pairs, an opening operator is followed by a
closing operator of the same type. In between can be an
arbitrary network of services. To specify more than two
parallel services, the parallel operators have to be nested.

A complete model results from composing several sub-
services. The model is consistent if opening and closing par-
allel operators fit and the model has a single source and
a single sink. Service compositions are always described by
acyclic structures which is common in models using min/plus
methods for analysis, although there is some work available
in generalizing the approach [19]. Here we assume that loops
are unwound using several ‖-parallel connectors to define the
probabilities for 1, 2, ..., n calls to the service. Of course,
such an approach only works for a moderate number of loops.

The analysis of the whole system can be easily realized
using a recursive data structure describing a model. Be-
fore we introduce the solution algorithm, the recursive data
structure is defined. A composition of services in SLA tool
is defined by the following grammar.

S =
(
αL, αU ,ΦL,ΦU

)
| S → S | S&S | S‖b,pS (13)

A service is either a simple service which is specified by the
arrival and delay bounds, or it is a composed service. The
three composition operators → for sequential composition,

& for &-parallel composition and ‖b,p for ‖-parallel compo-
sition with parameters b and p combine simple or composed
services. A model resulting from the grammar has always
a single entry and a single exit point. Models are specified
graphically, are mapped implicitly to the proposed grammar
that defines a recursive data structure which can be easily
generated from the model specification.

In SLA tool the data structure is defined in Octave. Ar-
rival or delay curves are vectors of triples (x, y, s). A simple
service is a structure consisting of 4 curves and a composed
service is a structure of two services and the composition
information (i.e., the composition type and if necessary the
parameters b and p). Observe that upper and lower bounds
for arrivals and delays are always part of a simple service
description. If lower bounds are not specified, they are im-
plicitly set to {[0, 0, 0]}. In SLA tool simple services can be
alternatively characterized by arrival and service capacity
bounds. In this case, the delay curves are computed from the
bounds for the service capacity and the arrival bounds. Sim-
ilarly, if service curves are shown in the graphical interface
they are always computed from arrival and delay curves. In
this way a service is internally always represented by arrival
and delay curves and inconsistent specifications are avoided.
Computation of a service curve or a delay curve for a service
is efficient as long as the number of linear segments is not
too large which is usually the case.

The recursive data structure can be naturally used in a
recursive algorithm to analyze a composed system. Algo-
rithm 1 analyzes model S for some arrival stream with up-
per bound αU . The algorithm computes upper bounds for
the delay Φ and for the departure process γ which might
be fed to another service. Again we describe here only the
computation of upper bounds. In SLA tool also the compu-
tation of lower bounds has been implemented based on [6,7].
Computations follow the recursive structure of the model
and simple services are analyzed using the basic equations
introduced in Sect. 2 and in some more detail in [6, 7].

Since composed services follow some hierarchical struc-
ture, SLA tool supports the building of hierarchical models
by composing sub-structures to sub-services. A composition
of services with a single entry and exit point can be defined
as a sub-service which is a specific node in the graphical
representation. Fig. 6 shows an example where the services
flights1, flights2 and hotels are composed services which in
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Algorithm 1 Computation of departure and delay bounds
for a composed service S.

1: function [Φ, γ] = analyze service(αU , S)
2: if S == simple then
3: if αU ≤ S.αU then
4: Φ = S.ΦU ;
5: else
6: Compute ΦU

0 via (3) ;
7: Φ = ΦU

0 + S.ΦU ;
8: end if
9: Compute γ via (6) ;

10: else
11: if S == S1 → S2 then
12: [Φ1, γ1] = analyze service(αU ,S1) ;
13: [Φ2, γ] = analyze service(γ1,S2) ;
14: Φ = Φ1 + Φ2 ;
15: else
16: if S == S1‖b,pS2 then
17: [Φ1, γ1] =
18: analyze service(pαU + (1− p)b,S1) ;
19: [Φ2, γ2] =
20: analyze service((1− p)αU + pb,S2) ;
21: Φ = Φ1 ∨ Φ2 ;
22: γ = (γ1 + γ2) ∧ αU ;
23: else /* &-parallel composition */
24: [Φ1, γ1] = analyze service(αU ,S1) ;
25: [Φ2, γ2] = analyze service(αU ,S2) ;
26: Φ = Φ1 ∨ Φ2 ;
27: γ = γ1 ∧ γ2 ;
28: end if
29: end if
30: end if
31: end function

the specific example consist of a simple sequence of two ser-
vices. The hierarchical structure of the model in terms of
sub-services is shown in a separate window. Composed ser-
vices can be used to reduce the complexity of graphical rep-
resentations. The analysis is later done using Algorithm 1
on the complete hierarchy.

5. EXAMPLE
As an example we consider an agency which sells travel

packages to customers via the Internet. A package consists
of a round trip by air and a reservation for a hotel at the des-
tination. The agency’s offer is based on the services provided
by two flight portals and a hotel reservation system all run
by external vendors. The structure of the model is shown in
Fig. 6. First a preprocessing step is performed by the agency
followed by calls to external services. In order to satisfy cus-
tomer demands promptly requests for flights and hotels are
performed in parallel. For flights two different portals are
available that have different types of SLAs. The first flight
portal is able to cope with jittery traffic in short time in-
tervals, but accepts less average traffic on the long run than
the second flight portal which offers an SLA with shorter
long-term delays. Both flight portals offer two services, one
returns all flights to the destination inspecting the flight
plan via a database request (DB) whereas the second ser-
vice checks the availability of specified flights (Check Avail).
The travel agency uses both services to satisfy customer de-
mands. The portal for hotels directly checks for availability
of rooms at the destination. Once all requests have been fin-
ished, the result information is finalized in a postprocessing
step at the travel agency’s site.

The SLA specification of all services is given in Table 2.
The local services preproc and postproc as well as the ser-
vice offered by the portal for hotel rooms seem to be well
dimensioned. Considering the flight portals both database
requests (DB) offer the same SLAs, whereas checking the
availability of flights offers different SLAs. At first glance
it seems favorable to direct requests to the first flight por-
tal, since it is capable to handle bursty traffic better than
flights2 and guarantees similar response times. On the other
hand flights1 accepts less traffic on the long run, an arrival
rate of 5 compared to an average arrival rate of 7 for flights2.

If we assume that customer demands are upper bounded
by e.g. a bursty arrival curve of {[0, 20, 50], [2, 120, 8]} it’s
obvious that the services of both flight portals need to be
used to handle all traffic on the long run and the key question
is to determine the portion pi, i = 1, 2 of traffic which should
be directed to a flight portal. The long run arrival rate of
the source implies p1 <

5
8

and p2 <
7
8
, since the Check Avail

services of both flight portals specify the most limiting upper
arrival bounds. Considering moderate traffic intensities it
seems favorable to use the services of flights1, since the upper
delay bounds are lower in those situations.

Table 3 shows results of our SLA tool which are here the
upper delay bounds that can be guaranteed by the agency
directing different portions p1 of the load to flights1 by as-
suming that load can be split arbitrarily according to a fluid
model (Note that p2 = 1− p1 implying 0.125 < p1 < 0.625).
It follows from the SLA specifications that it is beneficial
to direct as much as possible requests to flights1, but only
in very low traffic periods. For typical situations it is much
better to select p1 ≈ 0.52, since the corresponding resultant
upper delay bound is optimal. This means that the final de-
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Figure 6: Model of travel agency.

Table 2: Arrival and delay curve specifications for travel
agency model

Service Upper arrival bounds Upper delay bounds

preproc {[0, 6, 20} {[0, 0, 2]}
flights1: DB {[0, 6, 12]} {[0, 0, 3]}
flights1: Check Avail {[0, 1, 20], [3, 61, 5]} {[0, 0, 10], [3, 30, 8]}
flights2: DB {[0, 6, 12]} {[0, 0, 3]}
flights2: Check Avail {[0, 1, 8], [1, 9, 7]} {[0, 0, 20], [1, 20, 6]}
hotels {[0, 10, 20]} {[0, 0, 3]}
postproc {[0, 6, 20]} {[0, 0, 2]}
Root source {[0, 20, 50], [2, 120, 8]} —

lay of 15 time units per called is reached as soon as possible
and the accumulated delay at some given time is minimal.

The situation is very similar if we assume that the load
can only be split in portions of size 1. the corresponding
results are shown in Table 3. Again p1 ≈ 0.52 seems to be
the best choice to distribute load among the two services.

6. CONCLUSIONS
This paper presents a new approach to analyze service ori-

ented architectures based on the information available in ser-
vice level agreements, namely bounds on the arrival stream
of service calls and bounds on the response times of a service.
These bounds can be adequately described by piecewise lin-
ear functions and results for composed services can then be
computed using min/plus algebra. In some sense the pro-
posed technique presents an alternative and supplement to
the well established queueing network based analysis of soft-
ware systems.

The proposed analysis techniques have been implemented
in SLA tool. Composed services can be specified graphically
using basic composition operators such that large models

can be easily described and analyzed. The tool is an open
source project consisting of a Java based graphical interface
and a set of Octave (or Matlab) functions to perform the
computations.

The current state of the solution technique and the tool
describes a first step. There are several possibilities to ex-
tend the approach in future research. Models can be ex-
tended using multiple types of service calls resulting in mod-
els which are the counterpart to multi-class queueing net-
works. Furthermore the approach can be combined with
optimization techniques to find an optimal service composi-
tion.
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Table 3: Resultant upper delay bounds of travel agency model for different values of p1 (b = 0)
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