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ABSTRACT
Tactical Operations Center (TOC) system in military field is
an advanced computer system composed of multiple servers
and desktops to interlock internal/external weapon systems
processing mission-critical applications in combat situation.
However, the current TOC system has several limitations
such as difficulty of integrating tactical weapon systems in-
cluding missile launch system and radar system into the
single TOC system due to the heterogeneity of HW and
SW between systems, and an inefficient computing resource
management for the weapon systems.

In this paper, we proposed a novel HPC supported mission-
critical Cloud architecture as TOC for Surface-to-Air-Missile
(SAM) system with OpenStack Cloud OS, Data Distribution
Service (DDS), and GPU virtualization techniques. With
this approach, our system provides elastic resource man-
agement over the weapon systems with virtual machines,
integration of heterogeneous systems with different kinds of
guest OS, real-time, reliable, and high-speed communication
between the virtual machines and virtualized GPU resource
over the virtual machines. Evaluation of our TOC sys-
tem includes DDS performance measurement over 10Gbps
Ethernet and QDR InfiniBand networks on the virtualized
environment with OpenStack Cloud OS, and GPU virtual-
ization performance evaluation with two different methods,
PCI pass-through and remote-API. With the evaluation re-
sults, we conclude that our system provides reasonable per-
formance in the combat situation compared to the previous
TOC system while additionally supports scalable and elastic
use of computing resource through the virtual machines.

CCS Concepts
•Networks → Cloud computing; •Applied comput-
ing → Military; •Computer systems organization →
Heterogeneous (hybrid) systems; Dependable and
fault-tolerant systems and networks;
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1. INTRODUCTION
In the military field, multiple internal/external weapon

systems such as radar system, early warning system, mis-
sile launch system, and satellite system are required for the
SAM system in the combat situation. The TOC for SAM
system is a composite computer system which controls above
weapon systems for the SAM in the real combat situation.
For example, the TOC for SAM system analyzes data from
the radar tracking system while the missile launch system
targets enemy forces in the combat situation. Fig. 1 shows
an overview of the general TOC for SAM system.

However, the current TOC for SAM system has several
limitations. Firstly, internal/external weapon systems are
heterogeneous, mixing several operating systems, hardware
requirements, programming languages, and development en-
vironments. Supporting an integrated control system for
these heterogeneous systems with traditional server-client
model is an inefficient approach and almost impossible to
implement in real world. Secondly, the number of weapon
systems used in the combat situation is different from time
to time. For example, when the early warning system is in
active state with the satellite and the radar systems, other

Figure 1: Overview of the TOC System
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weapon systems such as air defense system and guided mis-
sile system may not be turned on. Providing computing
resources to every weapon system is an extremely inefficient
approach from the resource management view point. Fi-
nally, making decisions to control in the combat situation
should be real-time and accurate. Communication between
the weapon systems related to the SAM should be high-
speed. In addition, analyzing combat data from the weapon
systems should be accurate too.

In this paper, we proposed a novel HPC supported mission-
critical Cloud architecture as TOC for SAM system with
OpenStack Cloud OS [16], Data Distribution Service (DDS),
and GPU virtualization techniques. To overcome the het-
erogeneous system problem, we used OpenStack open source
cloud OS to provide virtualized infrastructure to the sys-
tem. Every weapon system is loaded to the virtual ma-
chines created by OpenStack Cloud OS with different guest
OS such as Windows and Linux. Cloud computing also en-
ables the elastic use of computing resource for the weapon
systems which overcomes the second problem stated above.
DDS with high speed network, such as 10Gbps Ethernet and
QDR InfiniBand, assures real-time communication between
the weapon systems in the TOC system with the virtual
machines. GPUs are used to accelerate algorithm that sup-
ports fast and accurate data analysis for the decision mak-
ing. For example, Kalman filter algorithm for the radar
tracking system can be written in GPGPU programming
languages such as CUDA and OpenCL. GPU virtualization
techniques including PCI pass-through and remote-API are
used to provide virtualized GPU resources to the virtual ma-
chines. With DDS and GPU virtualization, our approach
solves the third limitation stated above.

Evaluation of our TOC for SAM system processed in three
different ways. First, we evaluated the DDS performance
over two high speed networks, 10Gbps Ethernet and QDR
Infiniband, in both non-virtualized and virtualized environ-
ments. Then, we experimented the DDS on the multiple
virtual machines to check scalability of the DDS in the virtu-
alized TOC system. Finally, we measured the performance
of the real world GPU benchmark programs with two com-
mon GPU virtualization techniques, PCI pass-through and
remote-API, on the virtual machines. From the evaluation,
latency of the DDS over 10Gbps Ethernet with 1ms sta-
ble message interval shows average 5% faster than that of
the QDR Infiniband. Between non-virtualized and virtual-
ized environments, latency result with 1ms message interval
time in the non-virtualized environment shows average 65%
faster than that of the virtualized one. In case of 0.1ms
message interval, we checked that the blocked messages at
the publisher can significantly decreases the overall perfor-
mance of the DDS in the TOC system. In addition, we also
measured throughput, and standard error for the DDS per-
formance evaluation. With the DDS performance results, we
concluded that using DDS with the message period higher
than 1ms can provide reliable and reasonable performance
and scalability over the TOC system. In case of running
GPU benchmark programs on the virtual machines with
PCI pass-through and remote-API, execution time of the
programs shows various results that are related to the char-
acteristic of benchmark programs such as high memory copy
proportion.

The paper is organized as follows. Section 2 provides back-
ground information and Section 3 covers the detail architec-

ture of the system. Section 4 includes evaluation and ex-
perimental results of the system. Previous works related to
our approach is provided in the Section 5. Conclusion of our
work and future work are described in the Section 6.

2. BACKGROUND

2.1 OpenStack Cloud OS
OpenStack is an open source project for the cloud comput-

ing platform that began in 2010. The project was started by
Rackspace Hosting and NASA. Currently, OpenStack Foun-
dation manages the project and more than 500 companies
are participated in the project, including AMD, Cisco, Dell,
Google, IBM, Intel, Oracle, VMware, etc. Updated version
of OpenStack platform is released around every six-months
under the terms of the Apache License.

When classifying Cloud computing according to service
and deployment models, OpenStack can be classified as an
infrastructure as a service (IaaS) for public, private, and hy-
brid cloud. OpenStack is composed of several lower branches
of projects including Nova, Glance, Keystone, Neutron, etc.
Fig. 2 shows the conceptive architecture of OpenStack projects.
Our interest in OpenStack for this paper is focused on com-
pute and network services

2.2 Data Distribution Service
DDS is a publish/subscribe based machine-to-machine (M2M)

standard, approved by the Object Management Group (OMG)
, that enables real-time, high-speed, and scalable data com-
munication between publishers and subscribers. Many of
todayâĂŹs systems are heterogeneous, mixture of different
hardware, operating systems, programming languages, and
development environments. In case of our TOC system, the
weapon systems are heterogeneous. For example, the mis-
sile launch system uses Windows based OS with Java ap-
plications while the early warning system uses Linux based
OS with C++ applications. In this scenario, integrating
these two systems requires standard middleware APIs such
as DDS, CORBA, and JMS.

DDS is widely used in many kinds of systems such as
aerospace, military, traffic control, simulation, and medical

Figure 2: Conceptive architecture of OpenStack projects
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system. Recently, there is a movement of adopting DDS
to Internet of Things (IoT) system especially for Industrial
Internet of Things (IIoT). RTI Corporation, which is DDS
development Company, already participates in the Indus-
trial Internet Consortium (IIC), and according to the mar-
ket study conducted by Appinions in July 2014, RTI has
been ranked the most influential industrial IoT Company
[15]. This implies that DDS will take more important role
in the IoT field.

2.3 GPU Virtualization
General Purpose computing on Graphic Processing Unit

(GPGPU) is nowadays a common technique to boost up par-
allel applications that are traditionally processed by CPUs.
GPGPU has been used in many scientific computing appli-
cations including molecular modeling, bioinformatics, finan-
cial computing, and digital signal processing. In particu-
lar, applications involving vector or matrix operations can
gain large benefits from GPGPU programming. In our TOC
system, algorithm for decision making, Montel Carlo simu-
lation, and Kalman filter algorithm require GPGPU based
system to support high-performance operational control in
the combat situation. However, using GPUs in the virtual
machine needs GPU virtualization techniques to support
GPGPU programming on the guest OS. Currently, there
are about three approaches for the GPU virtualization, PCI
pass-through [10], remote-API, and hardware supported vir-
tualization [4].

3. PROPOSED SYSTEM
Our TOC system has two major components, tactical

and operational control system and weapon system. Tacti-
cal and operational control system includes combat control
servers, tactical console servers, controller server, and data
link servers. The combat control servers manage tactical and
operational information and perform critical decision mak-
ing during the combat situation. Tactical console servers
provide visual information to the managers who command
operational actions. Controller server is OpenStack con-
troller server which manages the entire TOC system related
to OpenStack components. Data link servers handle con-
nection between internal/external weapon devices. Weapon
system is a collage of multiple weapon device software such
as missile launch and radar tracking software. Fig. 3 shows
an overall architecture of the TOC system.

Every server in tactical and operational control system,
except the controller server, is also a compute node of Open-
Stack Cloud platform. Each server has nova-compute, KVM
hypervisor, and nova-network packages. With nova-compute
and KVM hypervisor, the virtual machine is created in the
target server. For example, weapon handling software which
controls multiple weapons in combat situation is installed in
virtual machine that placed at the combat control server.
Every virtual machine in the TOC system communicates
through DDS middleware. To support high speed data ex-
change between virtual machines, local network of the sys-
tem is composed of 10Gbps Ethernet and QDR Infiniband
network

3.1 Weapon System
Weapon system composed of multiple servers that are

compute nodes of OpenStack. Weapon software related to
SAM in the combat situation such as radar software, missile

launch software, satellite software, and early warning soft-
ware are installed in the virtual machines that are placed
at servers. As same as the tactical and operational control
system, DDS middleware is installed in the virtual machines.

3.2 Tactical and Operational Control System
Tactical and operational control system is the main com-

ponent of the TOC for SAM system. The system manages
the weapon systems and make control decision in the combat
situation. Combat control servers are central part of the tac-
tical and operational control system. Combat control soft-
ware including sensor handling, air picturing, Threat Evalu-
ation and Weapon Assignment (TEWA), weapon handling,
weapon tactical, and basic utility software are installed in
the virtual machines that placed at combat control servers.
In addition, every server is also the compute node of Open-
Stack Cloud that nova-compute and nova-network are in-
stalled as OpenStack packages.

Some parts of combat control servers have special pur-
pose virtual machines such as decision making in the com-
bat situation, Kalman filtering for radar tracking, and Monte
Carlo simulation to support probabilistic simulation. These
servers have high-end GPUs to provide GPGPU features to
the virtual machines and PCI pass-through and remote-API
techniques are both implemented for the GPU virtualiza-
tion. Tactical console servers include tactical multi-media
interfaces (MMI) to support visualized monitoring over the
TOC system and data link servers act as link handler be-
tween servers.

Controller server is a single server which manages the en-
tire TOC system related to OpenStack features. Controller
server has many OpenStack components such as keystone
for authentication, glance for the guest OS image manage-
ment, horizon for OpenStack dashboard support, heat for
orchestration over the virtual machines, ceilometer for the
server resource monitoring, and nova related packages for
the virtual machine management. Because virtual machines
are not created in this server, there is no KVM hypervi-
sor. In addition, controller has only one network interface
for an OpenStack management purpose while other servers
have two network interfaces, one for OpenStack management
and the other for data exchange between virtual machines.
Every virtual machine in the tactical and operational sys-
tem has DDS middleware to support high-speed and reliable
communication between the virtual machines.

3.2.1 System Network
Neutron and nova-network are network services for Open-

Stack. In an earlier version of OpenStack, nova-network
was the only network service for the virtual machine net-
working. From the OpenStack version Folsom, new network
service project called Quantum has been released and from
the version Havana, project name has changed to Neutron,
which provides Software Defined Network (SDN) as a net-
work service [1]. Despite of many difference between SDN
and legacy network services, our interest for OpenStack net-
work services focused on the floating IP range for the virtual
machines. Legacy network, which is nova-network, assigns a
fixed IP to the virtual machine. Main role of nova-network
is to support Linux bridge network between the virtual net-
work interface in the virtual machine and the physical net-
work interface in the compute node. However, this fixed
IP can only be used inside the Cloud system. To access
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Figure 3: TOC System Architecture

the guest OS from the outside system, a floating IP should
be assigned to the virtual machine. When nova-network is
used, the range of floating IPs is same as that of the servers
where OpenStack is installed. This limitation occurs a huge
problem when the cloud system is composed of thousands
of servers.

Neutron eliminates this limitation with SDN concept. When
Neutron is used, network control software that was installed
in the network devices are all programmed into the indepen-
dent software. With Neutron, we can observe several new
things such as ML2 plugin, L2 Agent, and OpenvSwitch that
were not visible when nova-network is used. Because every
network control software is configurable and programmable,
the range of floating IPs is no longer limited by the range of
the host servers. Although many of todayâĂŹs public cloud
service deployed SDN for Cloud networking in the data cen-
ter, using SDN for networking in private cloud service, like
our TOC system, can be inefficient especially when the cloud
system only requires small number of virtual machines, par-
ticularly less than 1,000.

3.2.2 Virtual Machine Communication
DDS middleware provides communication between the vir-

tual machines. DDS is composed of Data-Centric Publish-
Subscribe (DCPS) and Data Local Reconstruction Layer
(DLRL) [17]. DCPS is the lower part of APIs layer that
enables applications to communicate topic data with other
applications. Meanwhile, DLRL is the upper part of the
layer that allows integration between applications and DDS
interfaces. Communication between applications are sep-
arated by the domain that applications with same domain
only can exchange their data through the DDS. Fig. 4 shows
overall architecture of DDS, especially includes DCPS en-
tities. Topics are basic unit of data to be published and
subscribed. Domain participants are entry points for data

access. Publishers contain Data-writers to perform the write
operation and subscribers have Data-reader to access data.
There are two ways of accessing data through the subscriber,
wait-based data access and listener-based data access. The
wait-based approach blocks participant until data change
occurs, which is a synchronous approach. However, the
listener-based approach notifies participant whenever data
changes, which is an asynchronous approach. These DCPS
entities, topics, data-writers, data-readers, are configurable
with quality of service (QoS) policies that consider deadline,
resource limitation, reliability, durability, etc.

3.2.3 GPGPU Support
We used two different GPU virtualization techniques to

support GPGPU for acceleration of the decision making.
Firstly, PCI pass-through technique binds physical GPUs
to the virtual machine through the hypervisor. This tech-
nique requires IOMMU support from CPU. Fig. 5 shows an
architecture of the PCI pass-through for GPUs. Attaching
GPUs to the guest OS requires following steps, removing
GPUs from the hostâĂŹs PCI interface, binding GPUsâĂŹ
vendor and device ID to the PCI stub driver, and assign-
ing GPUs on the virtual machine creation time. In case of
OpenStack, vendor and device ID of GPUs are defined in
Nova configuration file with pci-passthrough-whitelist and
pci-alias options. OpenStack also supports scheduling of
GPUs with PCIPassthroughFilter option in nova-scheduler
of the controller node [2]. When a virtual machine creation
is requested, GPUs are pre-allocated to the virtual machine
flavors and user can access GPUs from the guest OS as same
as accessing from the host OS.

Advantage of PCI pass-through technique comes from the
direct access of GPUs from the guest OS PCI interface. User
can use every feature of GPUs from the guest OS as it was
in the host OS, and the performance of GPU applications

226



shows almost near performance as that of native GPU. How-
ever, there is a critical limitation which is a lack of scala-
bility. GPUs that are bound to the virtual machine cannot
be shared with other virtual machines which compromises
inefficient use of GPU resources. Unlike CPUs, GPUs are
used in small fraction of time compared to the idle time of
CPUs. Increasing idle time of GPUs in an entire system is
crucial, especially for the Cloud service provider due to the
high cost of GPU resources. In case of Amazon EC2 public
Cloud service, which is the most popular IaaS Cloud service
today, virtual machine with GPUs are about one dollar per
hour more expensive than the same flavor of virtual machine
without GPUs [12]. In conclusion, sharing GPUs resource
among virtual machines are an important issue in GPU the
virtualization technique and this limitation brought remote-
API virtualization technique.

Secondly, Remote-API technique allows using GPUs in
remote host through the network. Main idea of remote-
API techniques is capturing API calls from GPU applica-
tions, then send these API calls to BackEnd module in the
host server side which has GPUs. After GPU driver and
GPU execute API calls, the result returns back to GPU
applications through network or loopback interface. Fig.
6 shows the general architecture of remote-API technique.
When GPU application starts, FrontEnd module captures
API calls with the wrapper library. Then FrontEnd module
sends captured API calls to BackEnd module through the
network interface. Because FrontEnd and BackEnd mod-
ules are separated, GPU application can be executed even
there is no GPU in the host where the application is run-

Figure 4: Overall Architecture of DDS

Figure 5: PCI Pass-through Architecture

Figure 6: Remote-API Architecture

ning. After BackEnd module receives API calls, it delivers
API calls to GPU driver. When GPU finishes execution for
API calls, the result returns back to FrontEnd module and
to GPU application. Main advantage of remote-API tech-
nique is a separation of FrontEnd and BackEnd modules
that enables GPU applications to use GPUs in the remote
hosts. This helps an efficient use of GPU resources when
the system is distributed and not all hosts have GPUs for
computing resources. Primary target system of remote-API
was a large distributed system with small number of GPUs
so that the applications in every hosts can use GPUs log-
ically through the network interface. Nowadays the virtu-
alized system such as Cloud computing has huge interests
in the remote-API technique. With remote-API, the virtual
machine can access GPUs in the server host through the
virtualized network interface.

Our interest in GPU virtualization also focuses on the
remote use of GPUs among the TOC system. However, be-
cause data communication between GPU application and
GPU memory is processed through the network interface,
performance of GPU applications highly depends on the net-
work status. In addition, GPU driver is installed in the host
server side, not in the client side, which limits GPU fea-
tures from the client side OS due to the invisibility of GPU
through the PCI-e interface. Despite the limitation of GPU
features and performance issue, remote-API is still attrac-
tive GPU virtualization technique that allows remote use of
GPUs in the distributed system. There are several remote-
API methods such as gVim [11], gVirtus [24], vCUDA [19],
and rCUDA [20] [13]. As far as we know, rCUDA is the only
updated remote-API technique which supports CUDA ver-
sion 7.0. Table 1 describes difference between these remote-
API techniques.

Table 1: Comparison between Remote-API methods

gVim gVirtus vCUDA rCUDA
Version None

(2009)
Beta3
(2011.11)

None
(2012.6)

v15.07
(2015.7)

S/W
Available

No Yes No Yes

GPGPU
Model

CUDA1.1 CUDA3.2
OpenCL1.1

CUDA3.2 CUDA7.0

Network
Channel

XenStore TCP/IP
(vm-
Socket)

VMRPC
(Shared
memory)

TCP/IP
Infini-
band
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Figure 7: Experimentation System Architecture

4. EXPERIMENTAL EVALUATION
Our experiments are categorized into two different evalu-

ation. First, we evaluate the performance of DDS middle-
ware in virtualized and non-virtualized environments with
10Gpbs Ethernet and QDR Infiniband network. In addi-
tion, we evaluate the scalability of DDS middleware with
eight virtual machines across two distributed servers. Sec-
ond, we analyzed the performance of general GPU applica-
tions with two different GPU virtualization techniques, PCI
pass-through and remote-API, on our experimentation sys-
tem.

4.1 Experimental Setup
To evaluate the performance of the TOC system, we im-

plemented another system for the experimentation. Due to
the military security reason, it is forbidden to expose the
actual TOC system specification to the public. So we im-
plemented a reduced size TOC system for the research and
experimental purpose. The system composed of one PC for
the controller node and two servers for the compute nodes.
The PC has Intel Core i7 CPU and 8GB RAM while each
server has two Intel Xeon E5 CPUs, 64GB RAM, and two
high-end NVIDIA Tesla K20 GPUs. Infiniband that we used
for the experimentation is QDR Infiniband that theoreti-
cally shows 40Gbps bandwidth on Infiniband protocol while
shows 10Gbps on IP over Infiniband (IPoIB) configuration.
Ubuntu 14.04 is used in every host OS with Linux kernel ver-
sion 3.19.0-26. Fig. 7 shows an overall architecture of the
experimentation system. As same as the actual TOC sys-

tem, we used OpenStack Cloud OS to support virtualized
environment. We have one controller node with keystone,
glance, nova, horizon, heat, and ceilometer installed and
two compute nodes with KVM hypervisor, nova-compute,
and nova-network.

For the management interface, used to deliver commands
between OpenStack components, is composed of 1 Gbps
Ethernet interface from the controller node and 10 Gbps
Ethernet interfaces from compute nodes. Data interface pro-
vides data exchange between virtual machines. This is the
most important interface to DDS middleware because the
communication through DDS will use data interface. As
result, data interface is composed of two high-speed net-
works, 10Gbps Ethernet and QDR Infiniband. However,
nova-network does not support Infiniband protocols for the
internal network interface, so we deployed Infiniband inter-
face into a virtual Ethernet interface by using Ethernet on
IP over Infiniband (E-IPoIB) [6]. Because of additional in-
terface for the IPoIB, E-IPoIB shows lower bandwidth than
that of IPoIB which is a theoretically up to 10Gbps.

In the system, each compute node has two NVIDIA Tesla
K20 GPUs for the high performance GPGPU computing.
One of GPUs is bound to the virtual machine through PCI
pass-through and the other is bound through remote-API,
especially rCUDA. rCUDA is the only remote-API method
which supports recent CUDA version with other important
GPGPU libraries such as CUBLAS, CUDNN, CUFFT, CU-
RAND, and CUSPARSE. With rCUDA, the virtual ma-
chine can use GPUs in both compute nodes that are not
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bound to the specific virtual machines through PCI pass-
through. When the virtual machine executes GPU applica-
tions, rCUDA uses management interface for API and data
exchange between FrontEnd and BackEnd modules. For this
reason, management interface of compute nodes can be ei-
ther 10Gbps Ethernet or virtual Ethernet interface with E-
IPoIB.

To measure the performance and scalability of DDS mid-
dleware, we used RTI Connext DDS Professional 5.1.0 [22]
and RTI PerfTest 5.1.0.9 [21]. For the performance mea-
surement, we set the following four different environments,
non-virtualized 10Gbps Ethernet, non-virtualized QDR In-
finiband with E-IPoIB, virtualized 10Gbps Ethernet, and
virtualized QDR Infiniband with E-IPoIB. Virtualized envi-
ronments are composed of m1.large type virtual machine in
OpenStack Cloud which uses two virtual CPUs, 8GB RAM,
and 80GB disk with an Ubuntu 14.04 for the guest OS. From
DDS, each publisher sends 100,000 messages with message
queue size 50, and message length from 1 byte to 10bytes
with multicast option enabled. DDS performance is mea-
sured with average latency of single message, throughput of
the subscriber, and standard error of latency in the single
test.

To evaluate DDS more precisely, we set the interval time
between messages sent from publisher to subscriber. For the
latency driven evaluation, we set the interval time to 1ms to
check the latency difference between 10Gbps and E-IPoIB
QDR Infiniband. For the throughput driven evaluation, the
interval time is set to 0.1ms to check the throughput differ-
ence between the two networks.

Scalability of DDS in virtual machines is measured through
eight virtual machines that are separated into four each.
Each compute node has up to four virtual machines and
we measured the latency and throughput of publishers and
subscribers with one-to-one to four-to-four matching.

For the performance measurement of GPU applications,
we used Rodinia 3.0 benchmark suite [5] which is gener-
ally used to measure the performance of real-world applica-
tions written in GPGPU programming languages including
CUDA and OpenCL. Within the Rodinia suite, we chose 8
GPU applications written in CUDA, Backprop, BFS, CFD,
Hotspot, LUD, NN, NW, and Pathfinder. Table 2 shows
description of GPU programs used in Rodinia suite.

Table 2: GPU Benchmark Program Description

Name Description
Bacprop Back Propagation which is a machine learning

algorithm that used in neural network
BFS Breadth-First-Search (BFS) is well known graph

traversal algorithm
CFD CFD is a volume solve program for 3D Euler

equations for compressible flow
Hotspot Hotspot is used to estimate the processor tem-

perature
LUD LU Decomposition is well known algorithms to

solve linear equations
NN K-nearest neighbors is popular algorithm in pat-

tern recognition for classification and regression
NW Needleman-Wunch is optimization method that

used for DNA sequence alignments
Pathfinder Pathfinder uses dynamic programming to find a

path in 2D grid with the smallest accumulated
weights

4.2 Evaluation Result

4.2.1 DDS performance evaluation results
Fig. 8 shows the performance evaluation results of DDS

with 1ms message interval. In case of our TOC system,
actual message interval period required in the system is be-
tween 100ms and 1000ms which is much slower than 1ms.
As result, we concluded that testing with 1ms message in-
terval is sufficient enough to show stable latency over the
TOC system. From the Fig. 8a, average latency of DDS on
10Gbps Ethernet is 5% lower than that of E-IPoIB Infini-
band. Between non-virtualized and virtualized, average la-
tency in non-virtualized environments show 65% lower than
that of virtualized one due to the increased number of layers
from the virtualized network interface. From the Fig. 8b,
throughput of subscriber linearly increases when data length
of message gets higher which is reasonable result considering
that messages are published with multicast option enabled.
From the Fig. 8c, standard error of every test is below 10
which is stable enough in case of our TOC system require-
ment.

Fig. 9 shows the performance evaluation results of DDS
with 0.1ms message interval. Compared to the 1ms inter-
val message, 0.1ms interval drives the TOC system network
throughput into the limitation. With the 0.1ms interval test,
we purposed to check the negative effect of blocked mes-
sages over the entire TOC system. From the Fig. 9a, aver-
age latency of DDS in non-virtualized environment is 41%
lower than that of virtualized one until the message length
reaches 5 bytes. However, after the 6 bytes message length,
average latency non-virtualized environments is 260% lower
than that of virtualized one. The reason of this abnormal
increase of latency results in virtualized environment is from
the increased number of blocked messages. When the mes-
sage queue of publisher is full, messages are blocked until
the queue gets empty. The latency of this blocked message
is over 30,000us which is about 100 times slower than the
stable latency. Table 3 shows the maximum latency of 0.1ms
interval time results. From the Table 4 and Fig. 9c, we can
observe that standard error also dramatically increases when
the messages are blocked. From the Fig. 9b, we can observe
that throughput of virtualized environments reaches 1Gbps
than decreases after message length of 5 bytes. The reason
of this throughput limitation comes from virtio, which is I/O
virtualization layer used in KVM hypervisor [23]. When vir-
tio is used, there is only one queue for each network receive
(Rx) and transmit (Tx) in the virtual machine. This de-
fault option limits network throughput of virtual machine
around 1Gbps. However, we believe that it is not a reliable
approach to increase the number of queues for Rx and Tx
for the single virtual machine due to the load balance issue
of traffics between virtual machines. We will re-discuss this
problem in further research.

4.2.2 DDS scalability evaluation results
Fig. 10 shows the evaluation results of DDS scalability. To

get a stable results, we configured interval time between mes-
sages to 1ms. From the Fig. 10a, latency of DDS gets lower
when data length of the message increases. Between 10Gbps
Ethernet network and E-IPoIB Infiniband network, E-IPoIB
Infiniband shows lower latency until data length of the mes-
sage reaches 5 bytes. However, from the 6 bytes, 10Gbps
shows better latency than that of E-IPoIB Infiniband net-
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Figure 8: DDS Performance Evaluation Results with 1ms Message Interval

(a) Latency (b) Throughput (c) Standard Error

Figure 9: DDS Performance Evaluation Results with 0.1ms Message Interval

work. This result implies that DDS should be carefully con-
figured considering the number of publisher and subscribers,
and data length of the messages. From the Fig. 10b, we can

Table 3: Maximum Latency Result

Size(KB) 10Gbps
Native

E-IPoIB
Native

10Gbps
VM

E-IPoIB
VM

1 821 1024 2094 893
2 800 1597 3146 939
3 864 1169 2881 1320
4 889 1391 1984 1011
5 1025 1203 2477 1008
6 1217 1311 3943 32217
7 1155 1220 2397 32900
8 1213 1837 33461 33221
9 1238 31442 35500 33598
10 1128 31249 34901 33964

Table 4: Standard Error Result

Size(KB) 10Gbps
Native

E-IPoIB
Native

10Gbps
VM

E-IPoIB
VM

1 8.08 16.97 19 21.85
2 13.93 19.84 33.04 22.43
3 15.94 22.09 28.86 24.69
4 19.09 23.21 18.84 24.34
5 14.61 24.18 22.64 22.4
6 16.83 25.52 12.24 260.59
7 13.84 27.14 9.36 327.4
8 15.24 30.76 81.96 395.55
9 19.95 101.04 63.55 642.78
10 9.77 103.61 78.76 712.27

also observe that the throughput of each subscriber increases
when data length of messages gets higher. These results can
be different when the multicast option for DDS is turned off.
In this experimentation, we set the multicast option to get
the best results from DDS and also it is a general approach
to set multicast option when using DDS with multiple pub-
lishers and subscribers.

4.2.3 GPU benchmark programs evaluation results
Fig. 11 shows the performance evaluation results of GPU

benchmark programs in Rodinia suite. Fig. 11a, shows nor-
malized execution time based on the results of rCUDA us-
ing localhost GPUs through loopback interface. From the
result, we can observe that PCI pass-through does not al-
ways show better performance than that of rCUDA. The
reason of performance gap between PCI pass-through and
rCUDA comes from pre-load of runtime libraries into the
main memory. When rCUDA is used to execute GPU appli-
cations, the runtime library is a chunk of wrapper libraries
which is pre-loaded on the main memory. Because whole li-
brary is already loaded, processing time of API calls is faster
than that of original approach. However, this advantage is
removed when there is a lot of memory copy between GPU
application and GPU memory. From the Fig. 11b, propor-
tion of execution time for the memory copy API calls in NW
benchmark is higher than 80%. In result of NW benchmark,
the average execution time of the NW benchmark using re-
mote GPUs through the networks is 128% higher than result
of using the local GPUs. In contrast, the average execution
time of other 7 benchmarks using remote GPUs is only 7%
higher than that of using local GPUs.
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Figure 10: DDS Scalability Evaluation Results

(a) Speed Up (b) API Calls

Figure 11: GPU Benchmark programs Performance Evaluation Results

5. RELATED WORK
5.1 DDS over the Cloud environment

There are several researches try to adopt the DDS mid-
dleware in the Cloud environment. Corradi, A., et al. [7]
introduced Cloud monitoring and management architecture
with the DDS standard. They also used an open source tool
called Distributed Architecture for Resource manaGement
and mOnitoring in cloudS (Dargos) [18] to implement their
own management framework related to OpenStack Cloud
OS. Similar to [7], An, K., et al. [3] also introduced a
resource monitoring middleware in the Cloud environment
with DDS. However, main purpose of [7], [3] is to introduce
monitoring/management of Cloud infrastructure with DDS
while our work targets to build an entire Cloud system with
DDS as a data communication middleware between virtual
machines.

5.2 GPU Virtualization techniques on Cloud
Performance evaluation of GPU virtualization techniques

such as PCI pass-through and remote-API is done by many
previous researches. Crago, S., et al. [8] introduced Open-
Stack Cloud platform with remote-API method called gVir-
tus. Younge, A., et al. [26] evaluated PCI pass-through on
Xen hypervisor with SHOC [9] benchmark suite. Walters,
J. P., et al. [25] evaluated performance of PCI pass-through
in several hypervisors such as KVM, Xen, VMware ESXi,
and LXC with SHOC benchmark suite. Jun, T., et al. [14]
evaluated the performance of PCI pass-through and rCUDA
remote-API on the OpenStack Cloud platform with SHOC
and Rodinia benchmark suites. However, evaluation of GPU
virtualization techniques on our work focuses on the perfor-
mance of PCI pass-through and rCUDA on the OpenStack
Cloud OS with two different high-speed networks, 10Gbps
Ethernet and QDR Infiniband.

6. CONCLUSION AND FUTURE WORK
TOC for SAM system is an important platform that con-

trols weapon systems related to the SAM in the combat
situation. Previous approaches of TOC system had sev-
eral limitations such as unable to support heterogeneous
environments between weapon systems, inefficient comput-
ing resource management, and lack of GPGPU based sys-
tem to provide high-performance decision making. In this
work, we proposed a novel HPC supported mission-critical
Cloud architecture as TOC for SAM system with OpenStack
Cloud OS, DDS middleware, and GPU virtualization tech-
niques. We also implemented an experimental TOC system
to evaluate performance DDS, scalability of DDS, and per-
formance of GPU virtualization techniques over two differ-
ent networks, 10Gbps Ethernet and QDR Infiniband. From
the evaluation result, we conclude that efficiency of DDS for
communication between virtual machines highly depends on
characteristics of published messages such as data length,
message queue size and interval time between messages. We
also observed that the number of blocked messages critically
affects the increase of average latency by checking standard
errors of latency results. In conclusion, we deployed an ac-
tual TOC for SAM system for Agency of Defense Devel-
opment with considering evaluation results of experimental
system.

In future, we plan to expand our TOC system into gen-
eral purpose Cloud platform such as IoT platform. Recently,
DDS middleware is used to support communication between
sensors in IoT platform. Similar to the TOC system, DDS
middleware handles data exchange of sensors while GPGPU
system provides analysis of big data gathered from IoT sen-
sors and actuators with machine learning algorithms.
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