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ABSTRACT

The detection of early-warning signals of performance dete-
rioration can help technical support teams in taking swift
remedial actions, thus ensuring rigor in production support
operations of large scale software systems. Performance
anomalies or deterioration, if left unattended, often result
in system slowness and unavailability. In this paper, we
presents a simple, intuitive and low-overhead technique for
recognizing the early warning signs in near real time be-
fore they impact the system The technique is based on the
inverse relationship which exists between throughput and
average response time in a closed system. Because of this
relationship, a significant increase in the average system re-
sponse time causes an abrupt fall in system throughput.
To identify such occurrences automatically, Individuals and
Moving Range (XmR) control charts are used. We also pro-
vide a case study from a real-world production system, in
which the technique has been successfully used. The use of
this technique has reduced the occurrence of performance
related incidents significantly in our daily operations. The
technique is tool agnostic and can also be easily implemented
in popular system monitoring tools by building custom ex-
tensions.
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1. INTRODUCTION

Large scale, heterogeneous software systems are becom-
ing pervasive in many areas. Such systems are usually not
monolithic and may be made of a number of constituent
systems working in an integrated manner to fulfil customer
requirements. Monitoring the performance of critical soft-
ware systems at run-time is an important activity carried
out during the operations phase of the software life cycle.
The main objective of performance monitoring is to be able
to proactively identify performance related deterioration or
anomalies much before they severely affect the end users. We
can describe a performance anomaly in a software system as
an unanticipated, undesirable degradation or deterioration
in the performance of the system at run-time. Performance
anomalies can severely impact services provided by the sys-
tem to the customers, resulting in customer complaints, loss
of business in the form of potential customers and penalties
on account of violating contractual service level agreements.
The availability of a functional system monitoring setup is
an essential prerequisite for operational readiness and go-
live of large scale software systems. System monitoring can
be carried out at different levels of granularity like continu-
ous monitoring, monitoring at predefined time (e.g. analyz-
ing and reporting the system health at close of business) or
post-hoc monitoring (e.g. reporting investigation results af-
ter occurrence of an event or incident in production). Early,
continuous and near-real time detection of performance de-
terioration signals help Network Operations Center (NOC)
teams to proactively carry out remediation actions, increas-
ing the chances of avoiding system slowness or unavailability.
NOC comprises of one or more command and control centers
from where the production system is monitored to ensure its
smooth functioning.

Open source and commercial available system monitor-
ing tools, as they are commonly called in the IT industry
have matured over time and established their place in IT
monitoring landscape. The basic version of system monitor-
ing tools collect a large number of performance counters or
metrics from the components on which software systems are
deployed (like physical servers, virtual machines, networks,
storage, web server, application server, database servers) at
predefined time intervals. Some of the monitoring tools can
also be configured to collect and display metrics related to
web services, like response time and throughput. The de-
tection and alerting of performance deterioration in these



system monitoring tools is mostly based on identifying per-
formance counters which exceed static or dynamic threshold
values set by administrators.

Often, the components of critical large scale software sys-
tems are configured for high availability using a N+M redun-
dancy model. In an N+M model, N components required for
full functioning have a minimum of M redundant compo-
nents. For critical systems, it is important to note that the
immediate priority on detecting a performance deterioration
is to take actions for preventing or reducing any further im-
pact on the Quality of Service (QoS) offered by the system.
Root Cause Analysis (RCA) is is a secondary objective and
is expected to follow later. The time available between the
detection of a performance anomaly and it transformation
to a major performance incident is very limited. There-
fore, any technique designed to detect anomalous conditions
that emerge during operations should not rely on triage and
analysis of a large number of IT infrastructure performance
counters. Our experience in the industry tells us that the
common remediation actions carried out by support teams
include killing and restarting application processes, servers,
terminating expensive database queries and locks. If the
components are redundant, they can be restarted one at a
time to minimize downtime. The optimization or fixing of
code, tuning of parameters, realigning resources, augmen-
tation of compute, storage or network needed to overcome
performance problems, is usually done on a short to medium
term horizon.

Our extensive experience in the area of monitoring large
scale software systems and running NOC operations indi-
cates that ease of implementation, intuitiveness and low run-
time overhead of an anomaly detection technique is a driving
factor in its effectiveness and adoption. The paper describes
a technique based on application services instead of a large
number of IT infrastructure performance counters for iden-
tifying early-warning signals of performance deterioration,
which we have been successfully using in production sup-
port of mission critical software systems for last few years.
The technique has helped us to proactively undertake reme-
diation activities and eliminate occurrences of high severity
performance incidents. The technique, which initially re-
lied on continuous visual inspection to match steep increase
in average system response time with an abrupt decline in
system throughput, was enhanced to have automated detec-
tion capabilities through the use of Individuals and Moving
Range (XmR) control charts.

The contributions of this paper are:

e We propose a technique based on Little’s Law and
XmR control charts to identify early-warning signs of
performance deterioration. The technique is simple,
intuitive and has a low overhead.

e Software systems are usually deployed using a multi-

tier architecture like presentation, application and data.

The proposed technique is deployment tier agnostic i.e.
it is equally applicable for all the tiers.

e We demonstrate that our technique can automatically
detect early-warning signs of performance deteriora-
tion by evaluating its accuracy on a large software sys-
tem used in industry.

The paper is organized as follows: Section 2 provides a
motivating example driving this work. Section 3 explores
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the related work in this area. Section 4 describes our tech-
nique. Section 5 presents a reference implementation of the
technique. Section 5 details real-world case study of perfor-
mance anomaly detection during production support. Sec-
tion 6 lists the threats to the validity of our work. Section
7 provides the conclusions and direction on future work.

2. MOTIVATING EXAMPLE

In this section, we describe an actual situation observed
by the production support team while monitoring the per-
formance of a large scale case management system. The sys-
tem is used for processing application forms daily at various
customer touch points. The system has a three tier deploy-
ment architecture: web, application and data tier. The web
tier contains the presentation components, application tier
contains web services and data tier hosts the database, doc-
ument store. The throughput and average response time at
each tier is calculated from the data collected from the web
tier log, application tier log and database snapshot. The
throughput is represented by the symbol X and the aver-
age response time is represented by the symbol R. For web
and application tier, the standard web server logs are used.
Throughput is the number of requests processed by the soft-
ware system in a given time interval. Response time is the
time elapsed between the software system receiving the re-
quest and the requests is processed. The terms response
time and processing time are used interchangeably in this
paper. The value of X and R are calculated every two min-
utes. Figures 1, 2 and 3 shows the value of X and R plotted
against time. The total number of measurements is 270,
conforming to a monitoring duration of nine hours. We now
examine the graphs related to each tier in detail.

Web Tier: In Figure la, an abrupt increase in R is observed
in monitoring intervals 229 to 234. The average processing
time R changed from 0.47 s to 34.49 s. The increase is
accompanied by a rapid decline in X in the same interval,
as observed in Figure 1b. The throughput dropped from
2,215 to 58. Figures 1c and 1d show a magnified view of the
monitoring intervals 226 to 237 for better understanding.
Application Tier: In Figure 2a, a steep increase in R is ob-
served in monitoring intervals 229 to 234. The average pro-
cessing time R changed from 0.36 s to 75.69 s. The increase
is accompanied by a rapid decline in the throughput X in
the same interval, as observed in Figure 2b. The through-
put dropped from 2,431 to 173. The web and application
tier show a similar pattern for throughput because the web
tier uses the facade design pattern and makes a single call
to composite web services in the application tier. However,
the web services may internally invoke a number of database
queries for completing a functionality. The same can be ob-
served in the large value of X in Figure 3b. The maximum
value of X is more than 188,000.

Data Tier: The average execution time for database queries
collected from the database snapshot during normal opera-
tions, was between 10 ms to 20 ms. Figure 3a shows an
increase in R to 0.099 s. The increase is accompanied by
a rapid decline in the throughput X in the same interval,
as observed in Figure 3b. The throughput dropped from
123,000 to 91,000.

The performance incident in this case, continued till the end
of monitoring period 234. The root cause in this incident was
a database query with an incorrect filter criteria returning
a large number of records to the calling web service, leaving
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Figure 2: X and R for application tier

the application server with no free memory. The threads
which were currently executing web services in the applica-
tion server stalled causing the calling web tier services to
become extremely slow. The early-warning signals of an
impending performance related incident are clearly seen in
sampling period 229 and 230. The signals can be easily de-
tected by continuous visual monitoring of the pair of R and
X values, for each tier. While, using visual analysis, we can
detect such patterns which point to a performance anomaly
or abnormal performance behaviour, it is prone to misses.
Our objective is to design a technique to detect such pat-
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terns automatically. Such a technique will enable generation
of early warning alerts so that remediation can be quickly
carried out.

3. RELATED WORK

In this section, we review the available work related to
identifying performance related anomalies in software sys-
tems. The anomaly detection techniques can be classified
as online or offline. Online techniques analyze monitoring
data as it gets collected. Offline techniques analyze moni-
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Figure 3: X and R for data tier

toring data at specified time e.g. at the end of load testing
execution cycle, after business hours.

There are a number of techniques in literature for detect-
ing anomalies during performance monitoring of production
systems or at the completion of a load test. Malik et. al. rec-
ommend use of supervised and unsupervised learning tech-
niques like K means clustering, principal component analy-
sis, WRAPPER to spot anomalies in IT infrastructure met-
rics collected during load test execution [19][18][16][17]. For
checking performance related regressions in a new release of
a software, Nguyen et. al. use statistical control charts [21].
The control charts are based on IT infrastructure metrics
like CPU utilization, memory utilization, network 10 and
disk IO. The distribution of response time from a given load
test can be compared with the distribution of response time
from a baseline test. If the distributions are not similar,
then the load test results need to be investigated further
for performance anomalies [12]. The load testing results are
validated at the end of the test using Little’s Law [20].

Frank et. al. provide a detailed comparison of Hypothe-
sis Testing, Statistical Process Control, Multivariate Adap-
tive Statistical Filtering (MASF) and ANOVA techniques
used for detecting abnormality in metrics that are caused
by assignable reasons [7]. The use of control charts, MASF
and its variations for monitoring software systems was pro-
posed by Trubin et al. [24][25][26][27]. MASF partitions the
time during which the system is operational, into hourly,
daily or weekly reference segments to characterize repeat-
able or similar workload behavior experienced by a software
system [8]. For example, the workload encountered by the
system on Monday between 9:00 a.m. - 10:00 a.m. may be
different from the workload between 10:00 a.m. - 11:00 a.m.
Each segment is characterized by its mean and standard de-
viation. The number of reference sets can be further reduced
using clustering techniques. The upper and lower limits are
established for each reference at three standard deviations
from the mean.

Foo et. al. propose the use of association rule min-
ing technique on metrics from a baseline load test run to
establish rules, with each rule containing a set of metrics
which are correlated [11]. For example, a large number of
requests may correlate with high CPU utilization. The vio-
lations of defined rules is taken as an early-warning sign of
a performance anomaly. The use of predictive rules gener-
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ated by an offline analysis of historical incident tickets and
alerts in system monitoring is described in [23]. Satoshi
et. al. use control charts with average, maximum, median
and minimum statistic to proactively identify response time
anomalies in web applications [13]. Joao Paulo et. al. de-
fine a framework comprising of aspect-oriented programming
(AOP) based application performance data collection, sta-
tistical correlation and time-series alignment techniques to
identify the incidence of performance anomalies [15]. Per-
formance signatures established using failures which have
occurred in the past can also be used to proactively deter-
mine anomalies [1, 5, 11]. Cherkasova et. al. propose an
integrated framework comprising of a regression based trans-
action model and an application performance signature for
enabling service providers to quickly identify and prevent
performance related problems [9].

Open source and commercial system monitoring tools col-
lect various performance data at defined intervals. The col-
lected data is then compared to one or more threshold values
for detecting performance issues. Thresholds can be sim-
ple (compare a single observation to the threshold), average
(compare the average of most recent n observations to the
threshold), successive (threshold is violated multiple consec-
utive times), occurrences (threshold is violated m times in
n observations) or delta (of two observations separated by
a specified number of observations violates the threshold)
type [4]. The tools allow configuration of separate warning
and critical threshold values. It is also possible to set the
number of consecutive times a threshold must be violated
for triggering an alert.For example, if CPU is 90% or more
for over 3 times, an alert can be triggered. The threshold
values can be defined for different times of the day or week to
account for variations in workload profile. Apart from man-
ually setting the thresholds, the tools also provide adaptive
[6] or self-tuning [4] methods. In this case, the thresholds
are statistically calculated periodically using historical data.
The threshold values are based on statistic like percentile, a
percentage of maximum value or a scaling factor of standard
deviation.

System monitoring tools allow for searching for patterns and
keywords in logs that may characterize a performance (or
functional) issue. Some of the tools allow for deriving the
health of a monitored entity based on the health of its con-
stituents [3]. For example, we can define the overall hard-



ware availability of a system to be dependent on the avail-
ability of all its server clusters. The availability of a server
cluster may further depend on the availability of individual
servers in the cluster.

Of all the above techniques, association rules and statis-
tical process control charts appear to be the most intuitive
for practitioners and easy to implement in commercial or
open source system monitoring tools using custom exten-
sions. However, association rules require thresholds to be
set, which is dependent on the knowledge and experience
of the practitioner. Similarly, a control chart can be used
to monitor a single variable at a time, which restricts our
ability to correlate multiple variables of interest. Through
this work, an attempt has been made to correlate the mon-
itoring done by two separate control charts: one for sys-
tem throughput and the second for average system response
time. The correlation is based on the inverse relationship be-
tween system throughput and average system response time
as established by Little’s Law [12],

4. PROPOSED TECHNIQUE

Software systems can be modeled using an open, closed or
partly-open system model [22]. In a closed system model,
a user submits a new request only when the response for
the previously submitted request is received. This model is
characterized by a fixed number of users. Load testing of
software systems involving a fixed number of virtual users
executing scripts containing data parametrization is an ex-
ample of closed system behaviour. In an open system model,
request submissions and completions are independent. Each
arriving user submits a request, receives the response and
then departs from the system. This model is characterized
by the average arrival rate of users ().

In real-world, software systems are usually a mix of both
open and closed models. Such systems are called as hybrid
or partly-open systems as shown in Figure 4. Box 1 is the
boundary of a partly-open system comprising of user ar-
rivals, request-response interactions and departures. Box 2
is the boundary of a closed system containing only request-
response interactions of users. The users arrive at and de-
part from the software system like in an open system. Prior
to departing, users interact with the system multiple times.
During every interaction, the user submits a request, waits
to receive the response before submitting the next request.
Partly-open systems can be treated as a closed system if
the number of requests in user sessions are > 10 [22]. So,
for all practical purposes, we can model real-world software
systems as closed systems.

For closed systems, Little’s Law [14] establishes the re-
lationship between the number of users in the system (N),
throughput of the system (X), average response time (R)
and average think time of the user (Z). The relationship is
described by Equation (1). The terms X and R have been
already introduced in section 2. Think time is the time spent
by the user between consecutive interactions with the sys-
tem like entering data in a form, viewing results of a previous
request, navigating on the screen [28].

N=X[R+2) (1)

For closed systems, it can be intuitively argued that be-
cause N and Z do not change, X is inversely related to R
[12]. For open systems, because N is not fixed, X and R are
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not correlated. For illustration, let us consider an interac-
tive software system with 20 users, average think time of 5
sec and average response time of 15 sec. The throughput
of the system calculated using Equation (1) is % =1
request/sec. If the average response time increases by two
times to 30 sec, the throughput of the system decreases to
% = 0.57 request/sec. The increase in average response
time by 100% leads to 43% decrease in throughput. Our
experience shows that commonly used system monitoring
tools in industry have no in-built support for establishing
such correlation.

The proposed technique leverages the inverse relationship
between X and R for identifying early-warning signals of
performance deterioration in software systems. For this, we
consider monitoring of software systems in production as a
simplified process with two variables: throughput (Xs) and
average response time (Rs). The subscript S denotes the
monitoring interval. Xg is the number of requests completed
in interval S. Rg is the sum of processing times of all requests
completed in interval S divided by Xgs. The value of Xg
and Rg is calculated for requests processed during interval
S. For example, a software system processed 400 requests
in an interval of two minutes. The sum of the individual
processing times of all the requests is calculated as 32 sec.
Using this data, Xg and Rg are calculated as 400 and % =
0.08 sec respectively. The value of Xg and Rs can increase
or decrease from their values of the preceding monitoring
interval (S-1). Figure 5 shows the four scenarios which can
arise while comparing consecutive Xg and Rg values. Each
scenario corresponds to one of the four quadrants. The X
axis represents the behavior of Xg and the Y axis represents
the behaviour of Rs.

As all pairs of Xg and Rg which fall in quadrant (1) may
not be a real-warning signal, our objective is to devise a
mechanism to distinguish signals from noise. For this, we
will use the Individuals chart of an Individuals and Moving
Range (XmR) statistical process control chart. The XmR
chart is a set of two charts: X and mR. The mR chart shows
the moving ranges of the variable of interest calculated using
Equation (3) and the X or Individuals chart shows the indi-
vidual values [10]. We use a two-point moving average. The
Central Line (CL), Upper Control Limit (UCL) and Lower
Control Limit (LCL) of the Individuals chart is calculated
using Equations (4) to (6). The CL and UCL for correspond-
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ing mR chart is calculated using Equations (7) and (8). Xj
denotes the it measurement. There is no LCL in the mR
chart because the absolute difference between consecutive
values is used. If there are n consecutive measurements, we
have r = n — 1 two-point moving range values.

(2)

S|

mR:;;mRi, where mR; = | Xi11 — Xi

CLi=X
UCLy = X +2.660 * mR
LCL; = X —2.660 * mR
CLwmr =mR

UCLnr = 3.268 x mR (8)

To further increase the sensitivity in eliminating noise
from signals, we recommend that practitioners establish con-
trol limits in accordance with the workload profile of the sys-
tem to be monitored. In our case study, we have calculated
control limits for every business hour of each weekday rather
than having a single control limit for all business hours of
the weekday. Therefore, we have separate control limits for
Monday 9:00 a.m. to 10:00 a.m., 10:00 a.m. to 11:00 a.m.,
11:00 a.m. to 12:00 p.m.,.., Friday 9:00 a.m. to 10:00 a.m.,
10:00 a.m. to 11:00 a.m., 11:00 a.m. to 12:00 p.m.,..,Friday
4:00 p.m. to 5:00 p.m.. We define the following rule for
identifying an early-warning signal.

Early-Warning Signal Rule

Xs is below LCL and Rg is above UCL in the Individuals
(X) chart for a specified number of consecutive monitor-
ing intervals.

218

S. REFERENCE IMPLEMENTATION

In the real-world case study described in section 6, we
used the standard web server log entries generated by the
presentation tier components and application tier compo-
nents. The application tier components encapsulate pro-
cessing logic in the form of web services. For the data tier,
we used the database snapshot. Figure 6 shows a standard
log entry. The %T and %D directive is used to log the pro-
cessing time taken by a request in seconds and microseconds
respectively [2]. The web server log is available by default
in all web applications. We conducted several tests in a con-
trolled environment and did not see any noticeable increase
in the resource utilization on enabling the processing time
directive (which may requires an additional function call in-
ternally). If a web server is not available, applications can
be instrumented using techniques like AOP to write similar
entries in a custom log file. In [15], the overhead introduced
by using AOP for data collection is reported to be almost
negligible.

Entry Time

10.0.10.19 - - [[12/0ct/2013:11:08:00| +0530]
"GET /TestApp/SubmitData2.action HTTP/1.1"

Processing Time

200

Figure 6: A web server log entry

We want to highlight that the proposed technique is not
application specific because it is not for collecting the per-
formance data but for discovering useful insights from the
collected data. The underlying data collection mechanism
can be the more efficient Application Programming Interface
(API), if software system provides such data via APIs.

A health sensing script is scheduled on each component to
be monitored. The script processes the newly added entries
in the last S minutes and calculates the value of Xg and
Rs. The calculated values are then submitted to a central
collection service for storage using an API. The dashboard
of the central collection service displays the Individuals con-
trol charts and generates an alert in case the Early-Warning
Signal Rule defined in section 4 is violated. The calcula-
tion of Xg and Rg incurs minimal computation overhead as
it requires only sum, count and a single division, making
it suitable for near real-time monitoring. We have empiri-
cally determined that for the system used in our case study,
setting S to two minutes provides the correct balance of ac-
ceptable performance deterioration detection capability and
compute overhead. In case of a multi-tier deployment, the
health sensing script is deployed on each tier and the dash-
board displays one entry for each of the tier. This allows us
to drill down to the tier in which the performance deterio-
ration originated.

6. REAL-WORLD CASE STUDY

The objective of this case study is to apply the proposed
technique and validate its effectiveness. The study uses Xg
and Rg data from the presentation tier of the system de-
scribed in section 2.

First, we use data from a randomly selected month for
setting control limits. Table 1 lists the statistics of the
data. The data corresponds to the working days of the se-



lected month, containing five Mondays, five Tuesdays, four
Wednesdays, four Thursdays and four Fridays. Thus, Mon-
day and Tuesday each have 1,200 observations whereas Wed-
nesday, Thursday and Friday each have 960 observations.
During this month, no incidents of slowness were reported
by the end users.

Table 1: Statistics of data used for setting control limits

Statistics Values
No of days 22

No of business hours per day 8
Monitoring interval (S) 120 secs
No of observations per hour 30

No of observations per day 240
Total no of observations 5,280

We use two Individuals charts, one for throughput and
second for average response time. We determine the UCL
and LCL for both the charts using Equations (4) to (6).
The control limits of each chart are separately calculated
for every weekday and business hour combination, resulting
in 40 distinct control limits. Figures 7a and 7b show the
control charts for one weekday.

Next, to evaluate the accuracy of our technique in identi-
fying early-warning signals, we used our technique on data
from another 23 days. During these days, four established
incidents of slowness were documented. Table 2 lists the
statistics of the data used in our validation. The data cor-
responds to five Mondays, four Tuesdays, four Wednesdays,
five Thursdays and five Fridays. Thus, Thursday and Friday
each have 1,200 observations whereas Tuesday and Wednes-
day each have 960 observations. Monday has 1,170 obser-
vations, as one Monday had only 210 observations. This is
our test dataset.

Table 2: Statistics of data used in validation

Statistics Values
No of days 23
Monitoring interval (S) 120 secs
Total no of observations 5,490
Total no of slowness incidents 4

To compare our technique with those used by practitioners,
we also calculated the number of pairs of Xg and Rg in the
second month which satisfied the following conditions.

o X5 < Xgs.1 and Rs > Rs.1

e Xg has decreased and Rg has increased by a specified
value €

e Using the 3-sigma control limits in Early-Warning Sig-

nal Rule, calculated using Equations (11) and (12).
The symbol o denotes the standard deviation.

UCL=X +30
LCL=X—-30 (10)

e Xg is less than the LCL of the Individuals chart.
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e Rg is greater than the UCL of the Individuals chart.

Table 3 summarizes the results. The count of observa-
tions in rows 4 to 6 is less than 5,490 because for every 30
data values, there are 29 two point moving range values.
The number of consecutive violations was set at 1 and 2.
The value of € was set at 0.05 and 0.10. We use precision
and recall to evaluate the accuracy of our technique. If the
identified signal is not substantiated by slowness reported
by end users or analysis done by an expert, the signal is
considered as a false signal. If an incidence of acknowledged
slowness is not detected, then it is considered as a missed
signal. The precision is calculated using Equation (11) and
recall is calculated using Equation (12).

Noof true signals
Noof signals detected by our technique

Precision =

(11)

Noof true signals detected by our technique

Recall =
Actual noof early warning signals

(12)

The results clearly confirm that our technique shows sig-
nificant improvement (by reducing false alerts) than other
techniques used by practitioners like independent monitor-
ing of response time and/or throughput, using 3-sigma limits
or exceeding a specified rate of change. Our technique has
a recall of 100% (calculated using Equation (12)) i.e. we
were able to spot all the four incidents. Out of the 32 early-
warning signals our technique detected when the number of
consecutive violations was set at 1, the number of signals cor-
responding to the four incidents was 21. Our technique has
a precision of % =65.63%. The precision improved signifi-
cantly to % =100% when the number of consecutive viola-
tions was taken as 2. In comparison, using 3-sigma limits we
missed detecting any of the 21 signals. To improve alerting
precision, we can tune the number of consecutive violations
parameter. We conclude that our technique has helped in
fulfilling the objective stated in section 2.

The reason for the commonly used 3-sigma thresholds, not
performing well can be understood by comparing the value
of o and mR. If o is greater than mR, then the tolerance
limits established using Equations (11) and (12) are wider
than tolerance limits established using Equations (5) and
(6), leading to early-warning signals not being detected. For
X =1,934,0 = 563 and mR = 183, the 3-sigma UCL and
LCL are 3,624 and 244 respectively. The UCL and LCL for
Individuals chart are 2,420 to 1,447 respectively. Figure 8
shows the 3-sigma limits based control charts for the same
weekday used in the Individuals charts of Figure 7.

For using control charts, it is not necessary to assume a
specific distribution for the data. Tchebycheff’s inequality
states that for a stable process, at least 1 — k—lz of the ob-
servations lie within k standard deviations of the mean of
the observations [10]. Tchebycheff’s inequality is applicable
for any distribution. If k = 3, at least 88.9% of the ob-
servations, in the long duration, will lie within 3 standard
deviations of the mean of the observations. The probabil-
ity of false alarms in this case is 0.111. If observations are
normally distributed, at least 99.73% of the observations, in
the long duration, will lie within 3 standard deviations of
the mean of the observations. In this case, the probability
of false alarms is only 0.0027.



(a) Individuals chart for throughput

(b) Individuals chart for average response time

Figure 7: XmR Chart
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Figure 8: Control Chart with 3-sigma limits

Table 3: Summary of results

Technique Warning Signals | Normal Signals | Total
Detected Detected
Individuals chart (consecutive violations=1) | 32 (0.58%) 5,458 (99.42%) 5,490
Individuals chart (consecutive violations=2) | 21 (0.38%) 5,469 (99.62%) 5,490
3-sigma control limits 0 (0%) 5,490 (100%) 5,490
Xs Down, Rs Up 1,572 (29.62%) 3,735 (70.38%) 5,307
Xs Down, Rs Up, € =0.05 639 (12.04%) 4,668 (87.96%) 5,307
Xs Down, Rs Up, € = 0.10 214 (4.03%) 5,003 (95.97%) 5,307
Xs < LOL (of Individuals chart) 592 (10.78%) 1,898 (39.22%) 5,490
Rs > UCL (of Individuals chart) 156 (2.84%) 5,334 (97.16%) 5,490

7. THREATS TO VALIDITY

Internal Validity: The proposed technique uses data
from an software system used in industry. The data is his-
torical and may be influenced by the version of the software
system corresponding to the time of data. The data reflects
the real-world behaviour as it is also not possible to impose
any kind of controls in a real-world system and may influ-
ence the accuracy of our findings. To reduce this threat, we
have used performance data corresponding to one complete
month.

External Validity: In the paper, we validate our ap-
proach using a mission critical software system from indus-
try. To generalize our technique further, additional software
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systems from industry and publicly available e-commerce
benchmarking applications like DellDVD [1] can be included.
The monitoring interval used in this paper has been empiri-
cally determined and found to work well for the application
used in the case study. The same cannot be generalized for
all applications without more tests.

We plan to address the above limitations as an extension
of this work in future.

8. CONCLUSION

The technique proposed by us has helped in institution-
alizing a structured and systematic approach for system
monitoring teams to proactively spot early-warning signs



of performance related issues using two application metrics
and take corrective action. This is a significant improve-
ment over the existing system monitoring methods which is
mostly silo-based in which different dimensions of IT infras-
tructure like server compute, storage, network, middleware
and database are monitored in isolation and not linked to
application service metrics like response time and through-
put. It is often seen that software projects in industry ac-
quire complex system monitoring tools but are unable to use
them effectively in their daily operations because of the com-
plexity and abundance of performance counters being moni-
tored, level of expertise needed in setting realistic thresholds.
The advantage of the proposed technique is its simplicity,
intuitiveness, low implementation overhead and accuracy.
The technique and its underlying concept complements and
strengthens existing system monitoring tools typically used
by practitioners in industry.

Our future work will include experiments on open source
benchmark applications to further validate our model. We
also intend to do a comprehensive study on the anomaly
detection and alerting techniques provided by commercial
and open source system monitoring tools like SCOM [4],
OEM [6] and Nagios [5].
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