
Cost-Efficient and Reliable Reporting of Highly Bursty
Video Game Crash Data

Drew Zagieboylo
Electronic Arts

dzagieboylo@ea.com

Kazi A. Zaman
Electronic Arts

kzaman@ea.com

ABSTRACT
Video game crash events are characterized primarily by large
media payloads and by highly bursty traffic patterns, with
hundreds of thousands or millions of reports being issued in
only a few minutes. These events are invaluable in quickly
responding to game breaking issues that directly impact user
experience. Even the slightest delay in capturing, processing
and reporting these events can lead to user abandonment
and significant financial cost.

A traditional standalone RESTful service, backed by a
vertically scaled SQL database is neither a reliable nor cost-
effective solution to this problem. An architecture that de-
couples capture and persistence and uses a horizontally scal-
able NoSQL database is not only easier to provision, but also
uses fewer cpu and memory resources to provide the same
end to end latency and throughput.

By replacing our RESTful implementation with one that
takes advantage both of the aforementioned design and multi-
tenant provisioning, we have reduced our dedicated cpu foot-
print by 63% and memory footprint by 59%. Additionally,
we have decreased our data loss during spikes to essentially
0, maintained sub-second persistence latency and improved
query latency in the average case by 54% with only a 3%
sacrifice for worst case queries.

CCS Concepts
•Computer systems organization → Cloud comput-
ing; Real-time system architecture; Reliability; Maintain-
ability and maintenance; •Applied computing → Media
arts;

Keywords
Cloud Infrastructure, NoSQL, Reliability, Crash Reporting,
Cost Efficiency

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPE’17, April 22 - 26, 2017, L’Aquila, Italy
c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4404-3/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3030207.3044529

1. INTRODUCTION
Crash reporting is an invaluable system in the world of

online gaming. As any software developer knows, the best
tested code is not without bugs and even in the case where
the code “works as expected” problems will arise due to the
limitations of software and hardware infrastructure. Most
games will experience their highest peak simultaneous users
upon game or expansion release; this implies that any given
game will likely be under its most demanding load when it
has had the least amount of exposure to users (and there-
fore realistic testing). In such situations where bugs are not
resolved expediently, there can be significant user backlash
and abandonment [13]. Thus the crash reporting system
(CRS) needs to be highly available and reliable; dropped
crash reports and high query latencies limit the data avail-
able to developers and increase time to mitigation.

However, there are several challenges to implementing a
CRS. One such challenge, which is common among many
software applications, is the minimization of client overhead.
Game clients cannot wait many seconds or minutes to sub-
mit crash reports, since submission time directly increases
recovery time and user experience [14]. If a CRS is unre-
sponsive due to the numerous clients trying to report si-
multaneously, the client is forced to disconnect and fails to
submit the crash data or must submit at a significantly later
date.

Another practical restriction is cost and scalability. As
previously noted, many major problems are encountered at
times with high peak simultaneous users, and often affect
the vast majority of the current users; this in turn leads
to an extremely bursty traffic pattern. The classic tradeoff
between over and under provisioning (a.k.a. the tradeoff be-
tween cost and negative impact, respectively) applies quite
starkly to this use case and needs to be closely considered.
Lastly, crash reports that occur near simultaneously are of-
ten indistinguishable except for detailed stack traces and
memory dumps. This makes keyed partitioning effectively
useless for balancing resource usage during peak load. In
such architectures, horizontal scaling of hardware resources
can be effectively nullified and provisioning for peak load
means adding memory and/or I/O bandwidth to a single
machine.

In this paper, we describe how the New CRS is an im-
provement over the simplistic model of RESTful service for
crash reporting. We address all of the aforementioned chal-
lenges, while comparing and contrasting other solutions that
we considered. Our goals are specifically to reduce data loss,
increase cost-efficiency (as measured by report throughput

201

Figure 1: Sample of Reports from AAA Title Beta

per cpu and memory provisioned) and maintain or improve
query latency. This paper will describe each of the architec-
tural modifications and technology choices that we made in
order to achieve this goal. For each component in the de-
sign, this paper will additionally detail both the performance
benchmarks we ran during evaluation and the behavior of
the sytem since its release to our production environment.
Once evaluating the results of our efforts, this paper will
explore further work that can be done to improve usabil-
ity of the system, while still maintaining high throughput,
reliability and scalability.

2. BACKGROUND

2.1 Crash Report Taxonomy
EA crash reports have a small number of required fields

that help users to differentiate reports based on game, crash
type, etc. Many game teams also opt to send detailed debug-
ging data that notably includes any or all of the following:
stack trace, screenshot, and heap memory dump. These blob
fields represent the bulk of the data volume and are encoded
in base64. For the purposes of this paper we will concern
ourselves primarily with the following fields:

• sku - the game/game-platform combination on which
the crash originated

• submitTime - the time at which the crash report be-
came readable through the CRS

• reportId - an internal UUID assigned to each crash
report by the CRS

In addition to crash reports, the CRS also accepts ‘session’
events, which simply represent a session beginning either for
a game client or game server. These are always small since
they contain the same required fields as reports but no media
or large text fields.

2.2 Crash Report Workload Profile
Crash reports in the system have an approximately bi-

modal distribution of ’large’ and ’small’ reports. Large re-
ports are those that include the media or blob text fields
listed above, these range anywhere from 10 KB to 512KB.
Small reports contain no media or large text fields (except
for a stack trace) and range from several hundred bytes to
about 5KB. The average size of all reports is 5KB, but that

can be a misleading measurement due to the bimodal distri-
bution mentioned above. For example Figure 1 represents
the sizes of crash reports from a single EA game during its
open beta; for this game the average report size is signifi-
cantly higher, around 100 KB. The design and benchmarks
listed later in this paper reflect this 100KB crash report pro-
file in order to not only prepare for the worst case, but also
to better future proof for the time when more game teams
decide to provide large media in their crash reports.

The baseline submission load for the CRS is between 350
and 800 requests per second, depending on the time of day.
Of those requests, approximately between 30 and 50 are
crash reports and the remainder are session events. Based
on the above average data size, we can extrapolate that our
baseline data throughput for crashes is 250KB/s. Peaks ap-
proach 2500-3000 crash reports per second and are short
lived. Figure 2 shows incoming report events per minute
during the open beta for a AAA title. This depicts the
unique characterization of large but short-lasting spikes of
crash traffic.

Lastly, the CRS maintains crash report data for 90 days.
The majority of this data is not queried with any frequency,
as game developers are usually concerned with only the most
recent crashes; nevertheless old data is retained to allow
post mortems and other long term analysis. The primary
implication of this fact is that our database needs to store
approximately 2TB of data (excluding replication), while
only a small fraction of that needs to be quickly accessible
for fast read or update operations.

2.3 Crash Report Query Profile
On average there are approximately 10 concurrent queries

per second. 99.0% of queries return fewer than 2000 crash re-
ports and 99.9% of queries return fewer than 20000; the vast
majority of queries return fewer than 100 reports. Again,
due to the bimodal distribution of report sizes, this causes
a vast range in query size from hundreds of KB to hundreds
of MB. This paper will further discuss performance charac-
teristics in the Benchmarking section.

2.4 Hardware Resources
We used Amazon Web Services’ Elastic Cloud Computing

to provision our hardware resources for this implementation.
AWS EC2 allows us to add or remove hardware easily with
various configurations. For this project we used m3.xlarge
instances, running CentOS 6. M3.xlarge instances have 4
virtual cpus, 15 GB of RAM, approximately 100 MB/s of
network bandwidth and 80 GB of ssd storage. For compone-
nents that required additional storage, we attached Amazon
Electronic Block Storage, which provided persistent virtual
ssd drives [3].

M3.xlarge instances provide the maximum network band-
with per dollar of all AWS instance types. Flux7 has per-
formed Amazon-recommended benchmarking with i-series
I/O optimized instances and m3 instances; while i-series in-
stances do provide higher bandwidth per instance, the dol-
lar cost per MB/s of bandwidth per hour is $0.005456 for
i2.8xlarge and $0.00266 for m3.xlarge on-demand instances
[1]. No cheaper instance provides better bandwidth than the
m3.xlarge, according to Amazon’s network performance de-
scriptions and these tests. In practice, we have also noticed
a network cap of 100-130 MB/s for m3.xlarge instances, cor-
roborating the findings of Flux7.

202

Figure 2: Incoming Crash Reports in Requests per Minute During Public Beta

3. PREVIOUS WORK

3.1 Other Research
While crash reporting has been researched previously, most

work focuses on techniques for analyzing crash data. For
example, there are many papers that describe processes for
deduplicating crash reports based on memory and stack sim-
ilarities [9, 14]. This paper seeks to fill a hole regarding
infrastructural design and performance analysis. The CRS
detailed in this paper provides the mechanism for informa-
tion storage and retrieval, which is then used by downstream
applications for bug detection.

3.2 Legacy CRS
In the introduction to this paper, we highlighted many

of the challenges faced by a production scale crash report-
ing system. This section details how the Legacy CRS at
EA handled some of those challenges and failed to account
for others. The legacy implementation was a single-tiered
capture and persistence service. Several servers, called col-
lectors, in a company data center were load balanced behind
a virtual IP to which clients could connect. After receiving
client crash reports these collectors then wrote them into one
of three MySQL databases. Other servers, called reporters,
handled read requests; game developers used an API to con-
nect to these servers to retrieve crash report data. Figure 3
depicts this design with game client connections on the left
and game developer queries depicted on the right.

To avoid high client latencies in the event of a database
outage or sluggishness, the collectors used an in-memory
queue to buffer crash reports. Asynchronously, they were
removed from the queue and then written to persistent stor-
age. In order to increase write throughput and storage space,
the application manually sharded data, based on crash re-
port sku, to different MySQL database servers. Each MySQL
server also had a matching slave server that was used by the
reporters in order to prevent heavy read load from impacting
write throughput.

3.2.1 Legacy CRS Shortcomings
While the above attempts to mitigate or solve perfor-

mance and scale problems were improvements over a com-
pletely unintelligent RESTful service, they had some major

flaws. First, the collectors maintained in-memory queues
whose sizes were constrained by system memory; once the
server ran out of heap space, the collector would crash and
all reports in that queue were effectively discarded.

Next, there were also a few fundamental flaws with the
data partitioning approach taken by the Legacy CRS. As
previously mentioned, when a crash report spike occurs, it
is usually due to a single game; this means that most re-
ports will have the same one or two skus (one for each game
platform that is affected). In this case, the data partition-
ing scheme listed here has no effect since utilization for one
MySQL server will be maxed out, while the others lay mostly
idle. Moreover there was no intelligent system for choosing
how to map each sku to each database; two games that had
higher than average crash rates could end up on the same
server. This also lead to uneven MySQL utilization.

The Legacy CRS also had usability issues for game de-
velopers which arose due to the MySQL master-slave archi-
tecture. This design created an eventual consistency model
for the reporters; data would be available for read at some
undefined point after it had been written to the MySQL
master (i.e. once the slave had replicated it). To make this
situation more complicated, each MySQL master-slave pair
had its own independent ‘lag’; there was no central way to
measure inconsistency. During a crash spike, slave lag would
increase significantly; querying the last five minutes worth
of crashes would certainly result in an incomplete list of
crash reports since some number of them had not yet been
replicated from master to slave. Due to the indeterminate
nature of the consistency there was no way for the API to
compensate for this ‘pseudo-missing’ data.

Finally, since this entire system was built at an in-house
data center, there was no ability to launch new application or
database servers during a crash spike. It would take days to
coordinate hardware provisioning and setup, rather than the
minutes or hours needed to either horizontally or vertically
scale any piece of the system.

203

Figure 3: Legacy CRS Architecture

4. DESIGN OVERVIEW

4.1 Technologies
In this design we chose to use Kafka and Couchbase to im-

plement the messaging and persistence layers of the design.
Kafka is a distributed message broker, which allows for

highly scalable and redundant message publishing and con-
sumption. Kafka performance is bounded primarily by net-
work and disk I/O bandwidth; which is consumed via pub-
lishing, consumption and replication [4].

Couchbase is a horizontally scalable key-value store built
on top of Memcached. The primary API is a simple GET-
PUT interface, where the key is a string and the value is
JSON document (although Couchbase does also support ar-
bitrary binary data). Starting with Couchbase 4.0, it also
offers document indexing and querying with an SQL called
N1QL [8].

4.2 Persisting Crash Reports
When a game client or server experiences a crash, the

following chain of events occurs:

1. Via HTTP, the client connects to a lightweight capture
service and uploads the crash report.

2. While this connection is open, the capture service writes
the report to Kafka and appends the report to a local
file on disk.

3. Upon completion of these writes, the connection to the
capture service is closed.

4. A consumer process reads the capture report from the
Kafka queue.

5. The consumer persists the report to Couchbase.

6. The consumer updates a MySQL table that is used to
indicate to the reporter that the crash data is available
to be read.

7. The consumer updates a time-series counter (stored
in MySQL) which tracks total sessions and crash inci-
dents.1

1Step (7) is taken wholesale from the Legacy CRS; the
MySQL-stored time series metrics were not a significant con-
cern when developing the New CRS and so that piece of the

Notably, the legacy collector has been refactored into two
processes: capturing data via the http service and Kafka;
and persisting data via a Kafka consumer. Additionally,
crash report storage has been migrated from MySQL to
Couchbase, while the pre-existing MySQL has been con-
verted into index storage.

4.3 Querying Crash Reports
While these changes were made in order to increase write

throughput and reliability, they also incurred some changes
to the reporter. Since the crash reports are no longer stored
in an rdbms, there needs to be a mechanism for translating
user query filters (such as time range and sku) into a list
of document keys. MySQL is used as an ‘index’ to map
submitTime, reportId, and sku to a given document key.
This generates the following set of actions when querying
the CRS:

1. User connects to reporter and supplies query parame-
ters.

2. Reporter executes a MySQL query to retrieve the rel-
evant document keys.

3. Reporter retrieves all of the reports from Couchbase
in parallel.

4. Reporter applies non-indexed query filters, serializes
the reports and returns them to the user.

This design is highlighted in Figure 4, and is visually sep-
arted into the three phases of Capture, Persistence and Re-
porting.

5. REPORT CAPTURE SERVICE

5.1 Overview
The capture service is a taxonomy-independent and pre-

existing EA application which has exactly one job: accept
incoming HTTP payloads and persist them with very high
fault tolerance and minimal latency. Prior to work on the
new CRS, this service was already in use for the purpose of
receiving and storing game telemetry. It makes data avail-
able for downstream processing by storing it on local log files

system was left untouched. While improvements could cer-
tainly be made there as well, it is not the focus of this paper
and will be largely undiscussed.

204

Figure 4: New CRS Architecture

and then rotating those files every 15 minutes to S3. From
S3, scheduled ingestion processes pull the data into other
locations in order to translate and process it.

The capture service runs on m3.xlarge EC2 instances and
uses an Elastic Load Balancer to distribute work across
servers.

Although this was a nearly ideal candidate for crash re-
port capture, the batch processes involved in moving data
to and from S3 had too much end to end latency. Users of
the Legacy CRS expected near real time availability of crash
reports, not multi-hour turn around times. To solve this, we
replicated the legacy system of an in-memory queue by us-
ing a distributed messaging queue (i.e. Kafka). The capture
service now also routes incoming data to a pre-configured
Kafka topic based on the client URI; in this way crash re-
ports are filtered out from other data streams and published
to Kafka.

6. DATA PERSISTENCE

6.1 Crash Event Consumer
Once crash data has been stored safely in Kafka, it can

at any time be consumed into a queryable data store. To
accomplish this, we used the simple Kafka consumer api to
build an application that reads the crash data stream, parses
the events and writes them to Couchbase. This API allows
the consumer to be a distributed application whose paral-
lelism is limited primarily by the number of partitions in the
Kafka topic from which it is reading. Adding or removing
a new consumer instance will automatically rebalance the
assignment of partitions to consumers, thus making hard-
ware failure and horizontal scaling easy to handle. While
the main purpose of the consumer is straightforward, there
are a few practical considerations: how is the Couchbase
document key generated; how are errors handled; and how
does the MySQL index get updated.

6.1.1 Key Generation
The first and last points here are closely interrelated. In

the Legacy CRS, each report was given a unique id by insert-
ing a new row into a MySQL table with an auto-increment
column; then the report was written to another table us-
ing that value as its reportId. This order of events creates
data inconsistency; there is no order enforced on the stream
of incoming reports and it becomes impossible to guarantee
that a client has read all of the data that is actually present
in the system. It follows that in the New CRS, the report
is first written to Couchbase and then the MySQL index
table is updated; however this means that the reportId is

not generated until after the document is already stored in
couchbase. Some other value must be used as a Couchbase
key.

Here we take advantage of another feature of the capture
service. It assigns a UUID to each event that it receives and
attaches that in a header field of the published message. We
have opted to use a hash of this UUID in order to uniquely
generate each crash report key. This gives us the convenient
side-effect that writing a report is idempotent; reprocessing
or retrying will not generate undue duplicate entries and it
does not require any extra logic to enforce. Importantly, we
use a truncated hash of the UUID in order to reduce the
memory overhead of storing a single report in Couchbase.
The truncation to 16 bytes reduces the Couchbase key length
by 20 bytes per document. Although it is not a necessary
step, it is one that allows more data to be stored in memory
in Couchbase and thus more data that can be queried at
peak throughput.

6.1.2 Data Partitioning in Couchbase
As previously noted, the Legacy CRS had a hotspot issue

caused by the difficulty of partitioning similar-looking crash
reports. Couchbase partitions data randomly by hashing
document keys, which leads to even usage across the cluster.
Regardless of the key generation implementation, employing
Couchbase as a storage engine removes the former hotspot
bottlenecks.

6.1.3 Index Format
The MySQL index is represented as a single MySQL table

with four columns, most of which are repeated from above:

• reportId - the ID used by clients to query a given report
or range of reports

– Primary key

• submitTime - the time at which the crash report be-
came readable through the CRS

– Partition key

• sku - the game/game-platform combination on which
the crash originated

– Indexed

• storageId - the couchbase document key

After writing a document to couchbase an entry is made
into this table, where reportId is generated as an auto-
increment value. This is the only bottleneck in the entire

205

pipeline which cannot be horizontally scaled; luckily, it is a
very fast operation. The average latency for this step is < 1
ms. However, the critical section must be shorter than these
observed latencies since we have supported more than 250
index entries per second. We have not measured precisely
the length of this critical section; ultimately it will dictate
an upper bound on consumer throughput at 1/len(critical
section) reports per second.

For any user queries which apply other filters (e.g. error-
Code), the reporter application must scan all of the docu-
ments that fall in the specified time range for that sku; much
like querying via an unindexed field in traditional rdbms.
The cost to index a new field would be to alter this table to
include a new column, scan every crash report and update
that entry in the index table. This is a highly expensive op-
eration and a notable drawback of this implementation; this
paper will address this concern in the future work section.

6.1.4 Error Handling
The consumer needs to handle several different error cases:

malformatted data, temporary infrastructure errors, and non-
recoverable errors.

The first is the easiest case to handle but is quite frequent,
especially in testing. The consumer simply drops data that
it cannot parse or that is is missing any required fields. The
benefit of using Couchbase for storage is that we can actually
persist the entire payload, even if it has unexpected fields or
fields with unexpected types; this minimizes our ‘required’
field list to include only fields which need to be indexed
for querying. However, there is a significant downside to
handling user errors asynchronously; the New CRS cannot
respond to the client with debug information about why a
particular report was dropped. In our integration environ-
ment, we have enabled payload inspection on the capture
service to allow client to receive detailed 4XX errors, if they
so choose; however this drastically reduces the throughput
of a single capture instance and is not cost-effective for a
production environment.

Temporary errors occur frequently in production cloud
(and physical data center) environments. They include but
are not limited to: temporary network outages, latency spikes
and short failover periods during server hardware failure.
They are also fairly straightforward to handle by ensuring
that only idempotent operations be retried and that offsets
are committed to Kafka only once the corresponding data
has been persisted. To this end, the consumer will stop read-
ing data from a Kafka partition if it encounters a temporary
error during processing. Then it will repeatedly retry until
the error is resolved. Since all operations other than index
updates in the persistence process are idempotent (and a
successfull index update indicates successful persistence) it
is safe to simply retry the entire procedure.

Non-recoverable errors should be rare and require manual
intervention to resolve. For example, a server might run out
of disk space or memory due to a faulty configuration or sim-
ple accident, causing an error. The consumer handles these
cases identically to temporary errors because it can be dif-
ficult to distinguish between them. System administrators
are notified of such errors via email when any of the con-
sumer threads are stuck in the retry state for an extended
period of time. This configurable period effectively dictates
the minimum time to detection for any serious issues.

6.2 Alternative Storage Options
Before finally settling on Couchbase as our database we

considered several other technologies. Ultimately Couch-
base won out for a few reasons: it provides some controls
for multi-tenancy; it has competitive write throughput per
node; it requires no complicated logic to horizontally scale
and it is simple to configure and maintain. While it is of-
ten overlooked in benchmarks and white papers, this last
point is critical to creating a practical production system. A
difficult to optimize database leads to higher costs in both
performance and developer-hours spent debugging esoteric
issues. This section will introduce the competitors that we
considered and will conclude with comparisons to couchbase.

6.2.1 SQL (MySQL)
The‘least-effort’ implementation for us would have been to

leave the legacy MySQL system in-place, potentially modify-
ing the data schema to improve write performance. As we’ve
already described there are significant issues with this ap-
proach; primarily the inability to easily remove hotspots and
extra overhead required to shard data intelligently. There-
fore, to use MySQL as our database we could either simply
accept the occasionally high latency spikes and unavailabil-
ity of data or we could attempt to improve the sharding
algorithm. The former was deemed unacceptable for obvi-
ous reasons.

To implement the latter would have required maintain-
ing a dynamic mapping for each report to shard mapping
(we would have to remove the sku-based sharding to avoid
hotspots), in the form of a hash function. Additionally we
would have had to implement replication, cluster expansion
and failover algorithms; at this point we would already be
implementing most of the features provided by NoSQL stor-
age engines. For almost any realistic use case, this is not
worth the labor cost or the likelihood of introducing bugs
with complicated logic.

6.2.2 Document Store (MongoDB)
The leading open source document based storage engine

is MongoDB. Document-oriented databases are essentially
key-value stores that also provide additional ’relational’ fea-
tures based on object metadata. Ideally, this allows for high
scalability while still providing a traditional SQL interface
and query optimization via indexing (at least for MongoDB).
However, several independent benchmarks show that both
read latency and throughput for MongoDB are significantly
worse than other NoSQL competitors, specifically due to
architectural decisions that do not scale well, such as the
single-instance MongoDB Router [12]. These benchmarks
caused us to immediately discount MongoDB as too cost-
inefficient for our peak provisioning.

6.2.3 Column Store (Cassandra)
The most promising alternative to Couchbase was a col-

umn store, Cassandra. Column-oriented databases provide
the ability to read or write only specific data columns effi-
ciently and have very flexible indexing and partitioning ca-
pabilities.

For our purpose, we considered Cassandra since it is a
leading open source column store, with many vocal users.
In some benchmarks, Cassandra outperforms Couchbase in
terms of throughput per node and latency [7]. On the other
hand, other benchmarks have shown Couchbase to provide

206

better performance and additionally, the previous paper used
an older version of couchbase which is known to have worse
performance than the current 4.x versions [2]. In any case,
both linear scaling properties and the per node performance
of Cassandra and Couchbase are comparable. Further dis-
cussion of benchmarks can be found in the Benchmarking
section.

For the purpose of productionalizing the new CRS, the
major issue with Cassandra was cost in developer time. In
order to achieve the reported performance for Cassandra
with our use case, fairly extensive data modeling and sys-
tem tuning would have been required.We executed our own
load tests with YCSB and found that Cassandra ran into
issues while inserting large records, which Couchbase did
not have. This is certainly a problem that can be solved
with intelligent schema design, but out of the box a simple
cassandra ‘table’ would not support our needs for storing
several terabytes of large rows.

Cassandra uses a hash of the ‘partition key’ (a set of
columns from a row) to determine on which node data is
located. This causes some challenges when you want to
retrieve data based on a date range, since the data is dis-
tributed across the entire cluster and you cannot take advan-
tage of Cassandra’s ordered storage of data on disk. DataS-
tax does offer several data models that enable time range
queries, but they have limitations of row size that would
quickly be overwhelmed by 100KB crash reports [11]. While
it is certainly possible to implement time range queries on
large data sets in Cassandra, it requires a non-trivial amount
of effort that quickly racks up cost in terms of developer
time.

In addition, there are many configuration options for Cas-
sandra that in some cases drastically change performance
characteristics. This is a useful feature, since it allows for
so much control; however several of these configurations be-
come scaling bottlenecks with no manifestation of problems
until the bottleneck is reached [10, 5].

Cassandra is certainly a highly scalable NoSQL database
that provides much flexibility, both in terms of system tun-
ing and indexing options. For many use cases it is a highly
desirable storage solution. Nevertheless, we decided to use
Couchbase since there was no obvious benefit from Cassan-
dra for our use case. Setting up and maintaining Couchbase
is much simpler due to the minimal configuration require-
ments, both have comparable throughputs and latencies in
the CRS scenario and the developer effort required to inte-
grated Cassandra added undue complexity.

6.3 Alternative Indexing Strategies
Before settling on the MySQL-based indexing strategy

listed above, we considered two other options: using Couch-
base 4.x’s built-in Global Secondary Indexes, and using Elas-
ticsearch.

6.3.1 Couchbase Indexing
The primary draw for using Couchbase GSIs was to al-

low the reporting API to issue SQL queries to Couchbase
directly and remove the MySQL dependency completely.
GSIs provide partitioned indexes that allow queries to scan
a subset of document keys based on the provided partition
columns. We did not even consider using a primary index
since that requires a full bucket scan which, after even min-
imal testing, was clearly not viable with our 500 million

document dataset. The GSI model we considered involved
building one GSI per sku, since every API query requires
a sku filter. Ultimately, Couchbase indexing was imprac-
tical because enabling it made the cluster’s responsiveness
highly intermittent, the read throughput was significantly
lower and it required manual management of index creation
and replication.

When only one index was created for one sku with our
production data, we saw repeated failures of couchbase pro-
cesses. On all of the servers the indexing and key-value pro-
cesses repeatedly crashed and restarted due to timeouts or
out of memory errors. While Couchbase does allow for set-
ting memory limits on the key-value and indexer processes,
it does not for the ‘projector’ process that forwards data be-
tween the key-value data stream and the indexer. We saw
that this process was using an inordinate amount of mem-
ory and causing the system to fail. The only recommended
solution we could find was to allocate more hardware and
memory. Since we have several hundred skus active in our
system and this issue presented itself while indexing merely
one, it was clearly not cost-effective to allocate enough hard-
ware to sustain the Couchbase indexer.

Furthermore, we saw drastically slower read performance
when using Couchbase’s built-in N1QL query service. Al-
though indexing did not impact write performance (out-
side of the aforementioned cluster instability), it performed
markedly worse than the key-value api in read throughput.
Using 5KB documents, a single server could sustain 4500
key-value read operations per second, while it could only
support 2200 GSI-backed read operations per second via
N1QL. While ‘read throughput’ is not a common term for
read evaluation, it is notable in that it sets the lower limit
of the query latency. If only 2200 operations per second are
supported, then a query returning 10000 documents will take
at least 4.5 seconds to complete. Using N1QL would double
our hardware requirements to support the same worst-case
latency for large queries.

Finally, using Couchbase GSIs was not even remotely prac-
tical from an administrative point of view. Couchbase does
not have any support for automatic index creation or repli-
cation. We would need to monitor any new data coming
in for new skus and initiate index creation at that point
in time. Additionally, we would need to build replica in-
dices in the case of node failover; N1QL does handle reading
from the correct index in the case of failover, but Couchbase
doesn’t support the auto-generation of replicas. Index cre-
ation also requires a full bucket scan, which ends up taking
hours to days of time and requires a large amount of disk
space (about 5 * final index size) due to fragmentation that
only gets cleaned up after creation is complete. The final im-
plications of this were that we would have to build quite a
large monitoring and automation system to ensure that all
required indexes were always present and replicated; even
then, the latency required to build new indexes means that
data for new games would be un-queryable for some time.

6.3.2 Elasticsearch
Elasticsearch is open source software built on top of Lucene

and provides a scalable full-text search engine [6]. Couch-
base provides an Elasticsearch plugin which utilized Couch-
base’s cluster replication feature to load data into an Elas-
ticsearch cluster. The primary issue with this model is that
indexing occurs completely asynchronously; we cannot guar-

207

Figure 5: Incoming Network I/O Utilization of
Kafka Servers (MB/s)

antee what, if any, documents have been properly replicated
to the Elasticsearch cluster. Consistency is one of the Legacy
CRS concerns that we wished to address and so this eventual
consistency model was too loose for the our current use case.
We are investigating elasticsearch as a tool for enabling full
text search on crash reports but that will be detailed in the
’Future Work’ section of this paper.

7. BENCHMARKING
We executed synthetic benchmarks using sample data from

our production environment and in some cases synthetic
data that mirror production scenarios. We were most con-
cerned with realistic benchmarks for the event capture pro-
cess since insufficient scale for those would imply data loss;
inaccurate provisioning of downstream components would
only affect user experience. These benchmarks give us av-
erage case latencies and maximum throughputs that can be
supported by a given amount of EC2 hardware. All tests
were executed in a Virtual Private Cloud in AWS EC2, us-
ing m3.xlarge instances.

7.1 Capture Process

7.1.1 Methodology
For tests with production data we used several EC2

m3.xlarge instances to download past requests from S3 and
replay them. We generously overprovisioned load generators
to ensure they did not produce false bottlenecks. As men-
tioned previously, there are several data taxonomies which
the capture service accepts; the following benchmark results
describe isolated tests where only one data stream was re-
played at a time.

7.1.2 Throughput
As you can see from the results in Table 1, for crash re-

port payloads, the entire 100 MB/s network bandwidth was
utilized, thus indicating that these tests measure accurate
ceilings on throughput. With this model, we predicted that
the capture service was capable of publishing approximately
1,800 crash reports or 15,000 session events per second to
Kafka per server. We used this to estimate our production
capture server requirements in the provisioning section.

7.1.3 Kafka
We used the same testing methodology to prove that Kafka

is strictly network I/O bound in this environment; in addi-
tion we ran a consumer process that read data from Kafka
to produce both read and write load. We used m3.xlarge
instances for Kafka, with a three node setup and triplicate

Figure 6: Outgoing Network I/O Utilization of
Kafka Servers (MB/s)

Figure 7: Couchbase vs. Cassandra Throughput
with Worst-Case CRS Workload

replication enabled. Figures 5 and 6 represent the three
Kafka servers’ inbound and outbound network usage over
the course of the benchmarking test, respectively. These
graphs represent the usage as we slowly increased the test
traffic until we reached a peak steady state of approximately
90MB/s (or 30MB/s per Kafka broker) as seen in Figure 5.
At this point, each broker was utilizing approximately 120
MB/s of total network bandwidth (which was derived by
adding the values in Figures 5 and 6). When we attempted
to increase the throughput (at time 22:15 in the aforemen-
tioned graphs), replication failures in the Kafka cluster be-
gan to occur, presumably due to the network I/O ceiling.

Since Kafka needs to use I/O to receive, replicate and
send data, the 4:1 ratio of I/O usage to data volume makes
natural sense. One part is used for receiving the data stream,
two parts are used to generate the two other replicas and one
part is used for client consumption.

7.2 Couchbase and Cassandra
Although there are many YCSB results for NoSQL

databases, we executed our own since none of those tests
use documents larger than 1KB. We used documents of size
100KB and ran the YCSB using m3.xlarge instances for both
the clients and servers; these tests represent the performance
using only a single server and without replication. Addi-
tionally, most other tests do not cover situations where data
does not completely fit in memory; the above tests repre-
sent storing 50% of data in memory. We attempted to re-
flect a scenario where nearly no reads occured in memory;
however when loading data into Cassandra we experienced
many timeout errors that made this impossible. During the
actual tests, this also caused timeouts on insert operations
for Cassandra.

208

Table 1: Capture Service Benchmark
API Throughput

(Requests/s)
Average
Latency (ms)

Network Usage (MB/s) CPU Usage (%)

session events 15,000 16.0 34.9 98
crash reports 1800 33.3 108.2 98

Table 2: YCSB Latencies with 100KB Records
Database Op Min (ms) Max(ms) Avg(ms)

Couchbase Read 0.80 138 7.45
Cassandra* Read 0.80 562 18.7
Couchbase Insert 2.6 365 11.3
Cassandra* Insert 1.47 2000 6.80

Figure 8: Session and Crash Events Persisted Per
Second by Instance

For these tests, our goal was to determine if either database
significantly outperformed the other. Table 2 shows that, in
terms of latency Couchbase outperforms Cassandra on aver-
age for read operations and Cassandra outperforms Couch-
base. The startlingly high 2,000 ms maximum latency for
Cassandra, in conjunction with the aforementioned errors,
indicated to us that Couchbase would perform more con-
sistently out of the box. Figure 7 also shows that Cassan-
dra executes approximately 100 more operations per second
than Couchbase. Neither the differences in average latency
or throughput signaled a clear winner to us; however, the
fact that Couchbase provided more reliable performance be-
came one of the deciding factors in this evaluation.

7.3 Consumer

7.3.1 Methodology
We ran two integration load tests with the consumer;

one with normal CRS traffic and one with a data stream
that consisted only of crash reports. The former represents
the day-to-day throughput capability, while the second is a
‘worst-case scenario’ that could occur during a severe crash
spike. For each load test, we preloaded a Kafka topic with
several GB of production data to ensure that data availabil-
ity in Kafka would not be a bottleneck.

For the normal data stream, we started a single m3.xlarge
consumer instance, waited 10 minutes and then started a
second instance; the results of that test can be seen start-
ing at minute 19:00 in Figure 8. The earlier peaks in the

Figure 9: Crash Reports Persisted Per Second

graph represent starts and restarts of the consumer to con-
firm functionality prior to the load test and each color rep-
resents the throughput of one instance. Since we see equal
throughput rates for both instances, both before and af-
ter starting a second, we can infer that the bottleneck to
throughput during this test was indeed the consumer and
not Kafka or Couchbase.

For the crash-only test we repeated the same procedure;
Figure 9 only displays the throughput of a single consumer
instance.

7.3.2 Results
Figure 8 shows that the consumer can persist 2,300 events

per second from the normal mix of event types. If all events
are crash reports, each consumer can processt about 1,700
crash reports per second, which also translates to approxi-
mately 8.5 MB of data per second. This scales linearly with
number of consumer instances until read parallelism from
Kafka or write parallelism to Couchbase becomes a bottle-
neck.

7.4 Reporter

7.4.1 Methodology
To benchmark the reporter we ran multiple sets of tests

for latency on both the Legacy and Couchbase-backed im-
plementations. We varied both the size of the quries (mea-
sured in number of reports returned) and the number of
concurrent queries. Network I/O is an uncontrolable factor
for both systems, since clients operate in different network
environments than either the Legacy data center or AWS.
In order to account for these network disparities, we mea-
sured time to first byte (TTFB) responses. Each test was
run 5 separate times and all latency results were averaged
together. All queries were made using the same sku, which
averaged reports of size 100 KB.

The Legacy Reporter was run on a single CentOS 6 ma-
chine, which has 16 cores and 42 GB of RAM. It was con-

209

CRS 1
Report

200
Reports

2,000
Reports

20,000
Reports

Legacy 0.10 0.20 1.42 2.76
New 0.17 0.51 2.34 25.0

Table 3: Latency for Reporter Queries of Varying
Size - Simple Fields Only (sec)

CRS 1
Report

200
Reports

2,000
Reports

20,000
Reports

Legacy 0.14 1.73 4.57 23.9
New 0.17 0.51 2.26 24.7

Table 4: Latency for Reporter Queries of Varying
Size - All Fields (sec)

nected to a MySQL 5.7 database, running on a CentOS6
machine with 24 cores and 94 GB of RAM.

The New Reporter was run on a single m3.xlarge instance.
It was connected to two m3.xlarge Couchbase servers.

7.4.2 Results
Tables 3, 4 and 5 compare the latencies of queries, vary-

ing in size between 1 report returned and 20,000 reports
returned (100KB to 2GB of data). Table 3 refers to queries
which exclude fetching blob and media data from the re-
ports; in this case the amount of data returned is only a few
hundred bytes per report. Table 4 refers to normal queries,
which return the full report data. Table 5 refers to when 10
concurrent queries were run of the specified size.

The Legacy MySQL implementation was by far superior
if the API was required to only return the simple field set,
since Couchbase requires fetching the entire document, even
if only some fields are returned. In addition, the MySQL
implementation was slightly better performing in the case
where the queries were very large; however this was most
likely due to the vastly superior hardware used in the Legacy
Reporter.

The new implementation outstripped the legacy imple-
mentation in all situations where multiple queries were is-
sued simultaneously and where a smaller number of reports
were queried.This does suggest that client behavior needs
to be modified, such that they issue many small queries in
parallel. A limit and offset system such as that used in SQL
has been incorporated into the reporting API to encourage
such behavior.

It should be noted, that in the case where many MB of
data are queried (such as with 2000 or more reports), I/O
will be the dominant factor in latency. The average network
bandwidth allocated per connection for the network between
client and reporter is no more than 1 MB/s; as such the 25
or 29 seconds to query 2000 reports is dwarfed by the 100
seconds taken to transfer the data. However, this network

CRS 1
Report

200
Reports

2,000
Reports

Legacy 0.85 4.32 29.78
New 0.99 1.96 23.2

Table 5: Latency for Reporter Queries of Varying
Size - 10 Concurent Queries (sec)

bandwidth is limited per connection and not per server; is-
suing multiple small queries will help to alleviate this issue
for clients and further reinforces the advantages of the new
approach.

8. PROVISIONING AND COST
Based on the above performance metrics, the CRS use

case needs 7 m3.xlarge instances and 1 m1.xlarge instance
to process normal traffic volume: 1 capture server, 1 Kafka
broker, 1 consumer, 1 reporter api server and 3 couchbase
servers. In fact, for most of those services, the hardware will
not be fully utilized.Additionally, one mysql master-slave
pair is retained from the Legacy CRS; however it is likely
overprovisioned for its new use and will be scaled down in
the future to a small piece of hardware.

In reality, this small number of machines is not sufficient to
provide a highly available and reliable service; neither does
it include provisioning for data spikes nor does it account
for replication of data in Kafka.

8.1 Reducing Overhead
The daily CRS workload is not massive; it is only during

spike events when the traffic volume becomes a significant
issue. We need to provision for that event since that is when
reliability and scale is key, and we cannot entirely predict
it ahead of time. However,the capture service, Kafka and
Couchbase are are all multi-tenant in our ecosystem; this
means that CRS is not the only application to use those
resources. In general, the capture service and kafka are al-
ready provisioned with headroom to ensure no data loss for
other taxonomies already. This headroom is already enough
to handle 5-6 times the volume of normal CRS traffic. Since
crash spikes are so short lived, and other data streams have
much more predictable patterns, there is little risk that to-
tal usage will exceed this headroom. Either the crash spike
will be processed before any other issues can occur, or there
will be enough warning to provision more capture servers
to compensate for the issue (rising traffic, cloud availability
zone outage, etc.)

In this way, it is justified to claim that this design does
not need to pay the costs of high availability; they are essen-
tially one-time costs paid by the organization that become
amortized across services.

9. PRODUCTION PERFORMANCE
The New CRS has been deployed on the aforementioned

hardware and has been running as part of our production
environment for several months. Not only has this project
been a theoretical proof of concept, but it has withstood the
test of several prominent game launches and open betas with
minimal issue. The average time elapsed between crash sub-
mission and crash report availability is 600 ms and the 95th

percentile for this latency is 950 ms. Specifically, Couch-
base performs significantly better than anticipated, with a 3
ms average insert latency and supports 2,000 operations per
second per server; the majority of the latency comes from
publishing data to and consuming data from Kafka.

As far as dataloss, reports are dropped occasionally due to
various temporary glitches. Figure 10 presents a view of all
such events over the course of one month in terms of reports
dropped per second from the real-time system. Very rarely
do such glitches cause data loss of more than 10 events per

210

Figure 10: Events Dropped Per Second over 1
Month

second and all such issues are resolved within approximately
10 seconds. The largest spike of 62 events per second was
caused by a hardware failure and bug which caused retries
to be incorrectly attempted; this issue was caused merely by
implementation, not a design flaw.

10. CONCLUSIONS
Overall, the New CRS improves or maintains data relia-

bility, data availaibility and query responsiveness, while re-
ducing cpu and memory usage.

10.1 Data Integrity
With the Legacy CRS, there were numerous incidents

where we lost millions of of session events and tens of thou-
sands of crash reports. While the Legacy CRS lacked the
requisite monitoring to get exact figures, it would routinely
lose millions of session events and hundreds of thousands of
crash reports. With the new CRS, there is still occasional
data loss; however it is mitigated to very small periods of
time due to temporary errors that exceed the duration of
capture service retries. Furthermore, none of that data is
permanently lost, it is merely lost from the near-real time
reporting of the CRS and is still reprocessable. This is very
clearly an improvement over the Legacy CRS.

10.2 Latency
Next we can compare the query latency and end-to-end

persistence latency of the Legacy and New CRS. The end-to-
end latency is the total time elapsed between report capture
and data being visible to the reporter api. For the Legacy
CRS, it is on the order of 1 to 2 seconds in the normal case.
The new CRS achieves a steady 550 ms average and 900
ms 95th percentile end-to-end latency. During load spikes,
the end-to-end latency will rise if the provisioned consumer
processes cannot meet the incoming crash rate. This is the
tradeoff that we have made to ensure that data is eventually
persisted2.

For query latency, the load testing section above clearly
demonstrates the general superiority of New CRS. The most
common scenario in production is around 10 concurrent user

2For the current provisioning, a 5 minute crash spike reach-
ing 3300 reports per second (over a 10X rate spike) will incur
a worst case latency no more than 5 minutes.

queries, which average 20 to 100 reports in size; the New
CRS responds to those queries with a 54% decrease in la-
tency. In the case of very large queries, the New CRS did
perform slightly worse with a 3% increase in query latency.
However, the New CRS is arbitrarily horiztonally scalable
and thus such poorly performing queries can be improved
simply by splitting them into smaller concurrent queries.

10.3 Resource Usage
As mentioned above, the new CRS needs only provision

6 m3.xlarge instances and 1 m1.xlarge instance, thanks to
amortizing the cost of high availability across other services.
The Legacy CRS used 8 collection servers, 3 MySQL master-
slave pairs and a single reporter server. All of these had vary-
ing specifications, which were invariably larger than the m1
and m3 instances provisioned in AWS. In total, the Legacy
system used 208 CPUs and 710 GB of RAM: 48 cores and
100GB for collection; 144 cores and 564 GB for MySQL;
and 16 cores and 46GB for reporting. The New CRS uses
80 cores and 308 GB of RAM: 8 cores and 30 GB for the
capture process; 40 cores and 154 GB for data persistence;
and 4 cores and 15 GB for reporting. This represents a 63%
decrease in CPU usage and a 59% decrease in memory usage.

10.3.1 Other Costs
While it is less quantitative, the time spent to maintain

these systems should also be taken into account. The New
CRS is built on cloud infrastructure that survives without
manual interaction even in the event of node failure. This
also allows for much quicker turn around on server main-
tenance, scaling and configuration. Furthermore, we have
found couchbase to be a very stable system that requires
little configuration or headache to maintain, as long as its
N1QL indexing is not enabled. It is difficult to put a price on
these advantages, but they have certainly allowed us more
rapid and reliable testing and provisioning of hardware than
if we were still using a proprietary data center.

11. FUTURE WORK
At the moment, the reporting API is very bare and can

only optimize queries based on time ranges. We would like
to continue to investigate other methods for asynchronous
indexing, either by building an in-house system using rdbms
for index storage (as we have primitively implemented here)
or by taking advantage of open source software such as
Lucene and Elasticsearch. For either of these approaches our
primary concerns are focused on enabling full-text search
and creating an index service that scales both with the
amount of incoming data and the number of index scan re-
quests. Furthermore, there are more demands from game
developers to increase payload size by including even more
detailed stack traces, higher resolution images and/or short
video clips. We seek to support these changes by evaluating
the impact of storing even larger media files on Couchbase
and how best to efficiently process such bulky reports, at
protocol and infrastructure levels.

211

12. REFERENCES
[1] F. 7. Benchmarking network performance of m1 and

m3 instances, 2014.

[2] Altoros. The nosql technical comparison report, 2014.

[3] I. Amazon.com. Amazon web services, 2016.

[4] Apache. Apache kafka, 2016.

[5] S. Bisbee. Scale it to billions - what they don’t tell
you in the cassandra readme, 2015.

[6] E. Co. Elasticsearch, 2016.

[7] E. P. Corporation. Benchmarking top nosql databases,
2015.

[8] Couchbase. Couchbase, 2016.

[9] Y. Dang, R. Wu, H. Zhang, D. Zhang, and P. Nobel.
Rebucket: A method for clustering duplicate crash
reports based on call stack similarity. In Proceedings of
the 34th International Conference on Software
Engineering, ICSE ’12, pages 1084–1093, Piscataway,
NJ, USA, 2012. IEEE Press.

[10] Datastax. Cassandra configuration, 2016.

[11] Datastax. Getting started with time series data
modeling, 2016.

[12] J. Klein, I. Gorton, N. Ernst, P. Donohoe, K. Pham,
and C. Matser. Performance evaluation of nosql
databases: A case study. In Proceedings of the 1st
Workshop on Performance Analysis of Big Data
Systems, PABS ’15, pages 5–10, New York, NY, USA,
2015. ACM.

[13] I. B. Times. Battlefield 4: Bugs and issues lead to
backlash, 2013.

[14] R. Wu. Diagnose crashing faults on production
software. In Proceedings of the 22Nd ACM SIGSOFT
International Symposium on Foundations of Software
Engineering, FSE 2014, pages 771–774, New York,
NY, USA, 2014. ACM.

212

