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ABSTRACT
The evolution of cloud-computing imposes many challenges
on performance testing and requires not only a different
approach and methodology of performance evaluation and
analysis, but also specialized tools and frameworks to sup-
port such work. In traditional performance testing, typi-
cally a single workload was run against a static test config-
uration. The main metrics derived from such experiments
included throughput, response times, and system utilization
at steady-state. While this may have been sufficient in the
past, where in many cases a single application was run on
dedicated hardware, this approach is no longer suitable for
cloud-based deployments. Whether private or public cloud,
such environments typically host a variety of applications on
distributed shared hardware resources, simultaneously ac-
cessed by a large number of tenants running heterogeneous
workloads. The number of tenants as well as their activ-
ity and resource needs dynamically change over time, and
the cloud infrastructure reacts to this by reallocating exist-
ing or provisioning new resources. Besides metrics such as
the number of tenants and overall resource utilization, per-
formance testing in the cloud must be able to answer many
more questions: How is the quality of service of a tenant im-
pacted by the constantly changing activity of other tenants?
How long does it take the cloud infrastructure to react to
changes in demand, and what is the effect on tenants while it
does so? How well are service level agreements met? What
is the resource consumption of individual tenants? How can
global performance metrics on application- and system-level
in a distributed system be correlated to an individual ten-
ant’s perceived performance?

In this paper we present CloudPerf, a performance test
framework specifically designed for distributed and dynamic
multi-tenant environments, capable of answering all of the
above questions, and more. CloudPerf consists of a dis-
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tributed harness, a protocol-independent load generator and
workload modeling framework, an extensible statistics frame-
work with live-monitoring and post-analysis tools, interfaces
for cloud deployment operations, and a rich set of both low-
level as well as high-level workloads from different domains.

CCS Concepts
•Computing methodologies → Simulation environ-
ments; Simulation tools;

Keywords
Performance testing; workload modeling; load generation;
statistics collection; multi-tenancy; cloud

1. INTRODUCTION
Cloud providers offer on-demand infrastructure, platform,

or software as a service (abbreviated IaaS, PaaS, and SaaS)
to their users, called tenants, on a subscription-based pay-
ment model. Rather than purchasing hardware and software
up-front and integrating, deploying and managing it in their
own data center, tenants rely on the cloud provider for these
tasks. In order to minimize their cost, cloud providers will
try to maximize the number of supported tenants on their
infrastructure by sharing physical resources among tenants.
This is typically achieved by some form of virtualization
on the hardware, operating system, platform, or applica-
tion layer. While providers aim at maximizing the overall
performance of their infrastructure, tenants are more con-
cerned about their individual performance. This can easily
create a conflict of interest, as the provider needs to re-
strict a tenant’s resource consumption in order to host as
many tenants as possible, while tenants may need more re-
sources in order to achieve their desired performance objec-
tives. Provider and tenant therefore often negotiate a service
level agreement (SLA), in which the provider guarantees a
certain minimum quality of service (QoS), sometimes com-
bined with penalty payments if the SLA is not met. As the
provider has little control over the workloads of its tenants,
it can become challenging to fulfill their SLAs as workload
characteristics of tenants may change at any point in time.
A tenant on the other hand may complain if it suddenly ex-
periences performance degradation due to a noisy neighbor
although its own workload did not change.
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Performance testing of cloud deployments is equally im-
portant for providers and tenants. Cloud service providers
must be able to simulate realistic tenant behavior in order to
optimize their infrastructure to best support a large number
of tenants without violating their SLAs. Tenants must have
certainty that the offered cloud services fulfill their require-
ments before moving their applications and workloads into
the cloud. In order to support such tests, a performance
test framework must be able to span potentially hundreds
of nodes from which it collects data across all layers, in-
cluding system-, platform- and application-level statistics.
Rather than assuming a static infrastructure, it must sup-
port nodes to be added or removed from the system under
test (SUT) at any time during a test run. To test the ro-
bustness of the infrastructure, it must be able to inject er-
rors into the system to trigger application or node failures,
and initiate operations such as the provisioning of new ten-
ants or live-migration of a workload. It must be able to
simulate the behavior of thousands of tenants running het-
erogeneous workloads, while controlling each tenant’s work-
load individually to simulate their changes in load. Each
tenant’s throughput and response times must be measured
separately to verify the fulfillment of SLAs. For metering
and charge-back, it must also be possible to measure each
tenant’s resource consumption individually and correlate it
to the tenant’s behavior. Last but not least, such a frame-
work must provide efficient ways to aggregate, post-process,
report, analyze, and correlate the collected data across all
nodes, layers, and tenants in configurable and comprehen-
sive ways. While many existing performance test tools cover
some of these requirements, we are not aware of any tool that
addresses all of them.

In this paper we present CloudPerf, a performance test
framework we have been developing at Oracle since 2012.
The main design goals of CloudPerf were to create a dis-
tributed, dynamic, and extensible framework scalable to hun-
dreds of nodes and thousands of tenants, with a protocol-
independent load generator providing workload modeling
abstractions for the implementation of arbitrary workloads,
a statistics framework for live-monitoring, post-processing
and analysis of workload and system statistics across all
nodes, layers, and tenants, and integration with deployment
operations in cloud environments. All necessary tasks from
workload development, test deployment, test execution and
statistics collection to test evaluation and analysis should be
provided end-to-end under the umbrella of a single, tightly
integrated framework.

The main contributions of this paper are:

• CloudPerf, a performance test framework for distri-
buted and dynamic multi-tenant environments

• a detailed description of CloudPerf’s architecture and
components

• examples how CloudPerf can be used for performance
testing of use-cases relevant to cloud deployments

The remainder of this paper is organized as follows: In
section 2 we formulate requirements for cloud performance
testing. In section 3 we describe the architecture and compo-
nents of CloudPerf, and illustrate key features of CloudPerf
in section 4. Related work is summarized in section 5, and
we conclude with section 6.

2. REQUIREMENTS
Before designing and developing a performance test frame-

work, requirements need to be formulated which the frame-
work shall address. In this section, we gather requirements
important for performance testing in cloud environments.
This requirement list is certainly not exhaustive, but cov-
ers many central and relevant aspects and incorporates as
well as exceeds requirements formulated by other researchers
[7][10][11]. In sections 3 and 4, we then discuss how Cloud-
Perf fulfills these requirements.

R 1 (Scalability). Scalability to hundreds of nodes,
thousands of tenants, days of test duration, and virtually
unlimited number of end users, transaction rates, and con-
current sessions.

R 2 (Elasticity). Support of elastic SUTs with nodes
being added and removed from the SUT during a test run.

R 3 (Availability). Support of destructive tests and
accidental node deaths during a test.

R 4 (Generic Workload Modeling). Modeling ab-
stractions for the implementation of arbitrary high-level as
well as synthetic workloads using reusable building blocks.

R 5 (Protocol Independency). Load generation in-
dependent of any protocol or application domain to allow im-
plementation of workloads for any domain using the same
framework and modeling abstractions.

R 6 (Dynamic Load Generation). Support of open
and closed system load generation models for synthetic load
generation with dynamic change of request rates, concur-
rency, and other workload parameters.

R 7 (Load Replay). Replay of captured workload pro-
files at configurable speed.

R 8 (Multi-Tenancy). Support for mixed workloads
and individual per-tenant control of any load generation or
workload parameter.

R 9 (Fault Injection). Injection of faults and execu-
tion of arbitrary actions during a test run to simulate or
trigger errors and other operations.

R 10 (Cloud Life Cycle Operations). Triggering
and measurement of deployment and other cloud manage-
ment operations performed by the cloud provider such as
provisioning or live-migration of tenants.

R 11 (Statistics Collection). Collection of fine-
grained load generation, system- and application-level statis-
tics across all nodes and layers.

R 12 (Conditional Events). Conditional execution
of load changes, fault injection or management operations
based on observed tenant or system behavior.

R 13 (Metrics and Results). Calculation of metrics
and result verification using arbitrary statistics.

R 14 (Live Observability and Interaction). Live
observability of a test run including monitoring of any
collected statistics during runtime as well as interactive
intervention (such as change of load) during a run.
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CloudConsole
Distributed Harness

CloudPump
Dynamic Load Generator

CloudStats
Monitoring and Reporting

CloudPerf Framework

Services
Workload Building Blocks, Actions, and Statistics Providers

Workloads
Native and Managed Workloads

CloudDeploy
Tenant Deployment

Figure 1: CloudPerf Framework Architecture

R 15 (Time-based Statistics Aggregation). Aggre-
gation of statistics based on time intervals defined by load
changes or other triggers to allow evaluation of statistics,
metrics, and results across the entire test run as well as for
each individual interval.

R 16 (Flexible Reporting). Flexible report genera-
tion of statistics, metrics, and results using user-defined tem-
plates supporting arbitrary aggregation and correlation of
statistics from any source. Report generation across mul-
tiple test runs for test comparison.

R 17 (Interactive Analysis). Tools for interactive
analysis and correlation of all collected statistics for trou-
bleshooting and deep-dive analysis.

R 18 (Repeatability and Automation). Repeatable
test execution using pre-configured events and interfaces for
automated test submission.

R 19 (Extensibility and Reusability). Well-defined
APIs for high degree of reusability and extensibility, espe-
cially for statistics collection, workload development, and
fault injection.

R 20 (Ease of Use). Ease of use from workload de-
velopment, test deployment, test execution, to test evalua-
tion.

3. ARCHITECTURE
Key objectives of CloudPerf were to design a scalable,

extensible, flexible, and reusable framework for performance
tests of all kinds, that provides as much as possible common
functionality in the framework without limiting its use to
any specific domain. In order to accomplish this, we have
designed CloudPerf in a very generic way using abstractions
that are common across nearly all workloads, statistics, or
deployment types, and where necessary also allow to by-pass
framework components to even cover those corner-cases not
directly supported by our framework. CloudPerf is written
in Java and therefore runs on any environment supported
by Java.

CloudPerf is a modular software product comprised of in-
dividually developed and packaged modules. The CloudPerf
Framework module consists of four core components, Cloud-
Console, CloudPump, CloudStats, and CloudDeploy comple-
mented by a set of tools. The framework module is extended
through Service and Workload modules (figure 1). The re-
mainder of this sections describes the framework compo-
nents, services, and workloads in detail.

Master

PrimeAgent
Service & Stats

PrimeAgent
Service & Stats

PrimeAgent
Service & Stats

Agent
Driver Driver

CLI / GUI

...

Figure 2: CloudPerf Process Architecture

3.1 CloudConsole: Distributed Harness
CloudConsole is a distributed harness which manages the

overall test deployment, configuration, submission of test
runs and events, communication between nodes, result gath-
ering, and live polling of statistics.

3.1.1 Deployment and Process Model
A CloudPerf deployment is managed through a Master

process running on a dedicated node, which serves as the
single point of administration. From this node, the Cloud-
Perf software is automatically installed or updated on all
configured nodes of the test deployment. On each node of
an installation, a Prime Agent process is started. The prime
agent remains idle until being requested to participate in a
run by the master. A test run may be submitted to all
or just a subset of the provisioned prime agents, separat-
ing software distribution from test execution. Prime agents
serve two main purposes (also simultaneously) during a test
run, the collection of system statistics and the management
of load generators. While statistics collection is done by the
prime agents themselves, they spawn separate Agent pro-
cesses to run the actual load generators (Driver) on selected
nodes. A sample deployment is illustrated in figure 2.

Note that CloudPerf does not explicitly distinguish clients
and SUT, but treats all nodes the same. Whether a node
that runs a load generator is considered client or SUT is
entirely the decision of the performance tester. CloudPerf
also allows to run master, prime agent, and agents all on the
same node for single-node deployments, and even supports
to run them inside a single JVM for development purposes.

During a run, the master supervises all participating prime
agents and polls statistics from them, which in turn super-
vise and poll statistics from all agents they have spawned.
The inter-process communication is implemented through
Java Remote Method Invocation using parallel threads to
ensure scalability to hundreds of nodes (R1). Users can con-
nect to the master using graphical (GUI) and command-line
(CLI) tools to monitor and control test runs.

3.1.2 Run Configuration and Submission
A run is configured through a set of XML-based configu-

ration files. The CloudPerf framework itself provides frame-
work and cloudpump configuration files which specify frame-
work parameters such as ports, JVM options, trace and de-
bug settings, and basic load generator parameters. Service
developers create service descriptions specifying resources
offered by a service as well as reporting of service-provided
statistics. Workload developers create workload descriptions
specifying Java class names, transaction names and distribu-
tions, metrics, result checks, and arbitrary other parameters
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offered by workloads. A deployment description is created
by a performance tester, who specifies the nodes to be used
for a test run, the statistics providers to run, their configu-
ration, the assignment of load generators to hosts, as well as
workload-specific deployment information such as URLs of
web servers or databases for the load generators to connect
to. Wildcards allow prime agents to join a test run after run
submission, for example if new nodes are to be dynamically
created during a run (R2). Additionally, the performance
tester creates a run description, in which the test flow is
specified in form of load change events and actions, their
timing and load parameters such as injection rates or con-
currency. Finally, a report template, which is provided by
the framework but may be customized by the performance
tester, specifies the content of the generated performance
report.

Configuration parameters can be overwritten by configu-
ration files in the order described in this section, which for
example allows a performance tester to override basic load
generator or workload parameters in the deployment or run
descriptions without modifying the load generator or work-
load configuration files. Except for the basic framework con-
figuration, which is read by each prime agent during startup,
all other configuration files are passed to the master through
a GUI or CLI when submitting a test run. These files can
therefore be edited in a single, centralized location. Perfor-
mance testers can use a web-based user-interface (WebGUI)
to generate deployment and run description files automati-
cally rather than manually editing them (R20).

3.1.3 Events
Events can trigger load changes in load generators (see

section 3.2) or execute actions inside prime agents. Actions
are small pieces of Java code provided by services which
allow the execution of arbitrary code on any host at any
point in time. With actions it is possible to inject faults into
the SUT by killing a process, panicking a host, or simulating
memory shortages by consuming all available memory (R9).
Actions can also trigger operations such as the creation of
new VMs, adding of CPUs to a VM, or the migration of a
tenant to another host (R10).

Events can be pre-configured in the run description, de-
pend on the outcome of actions, triggered by conditions
based on the evaluation of statistics (R12), or interactively
submitted through GUIs and CLIs (R14).

3.1.4 Result Gathering
In order to minimize network bandwidth consumed by the

harness, all captured statistics are kept locally on each node
during runtime. At the end of a test run, each prime agent
and agent perform a local post-processing of their statistics
in parallel (R1) before sending them to the master. Once
the master has received all statistics, it invokes the reporter
for report generation.

3.1.5 Live Polling
Any collected statistics such as transaction throughput

and response times or CPU utilization can be polled live
during runtime. Clients like LiveView or CLIs (see section
3.7) can connect to the master during runtime to fetch and
display live statistics from all nodes. This allows perfor-
mance testers to monitor a test while it is running (R14)

rather than waiting for a report to be generated after test
completion.

3.2 CloudPump: Dynamic Load Generator
The fundamental concepts of load generation are entirely

independent of the type of workload, yet workload develop-
ers often not just develop a workload, but also the load gen-
eration capability to execute it, and thus reinvent the wheel
with every new tool. This often leads to tools with only very
restricted workload generation capabilities (see section 5).

With CloudPerf we take a different approach and provide
all load generation capability inside the framework decou-
pled from the individual workloads. Workload developers
only need to implement the business logic of their workload,
while all load generation functionality is provided by the
framework. This not only simplifies workload implementa-
tion as developers can focus on the business logic, but also
provides consistent and reusable load generation capabilities
with identical characteristics across all workloads (R19). To
achieve this, we have designed a workload implementation
model providing abstractions common across all workloads
(R4). The scheduling of requests is independent of the work-
load domain and communication protocols (R5) and sup-
ports dynamic load changes (R6), load replay (R7) as well
as multi-tenancy with per-tenant load control and reporting
(R8).

3.2.1 Workload Modeling
CloudPerf provides a generalized workload model through

APIs and abstract classes. Workload and service developers
use these modeling concepts to implement workloads and
services. This section briefly describes the core concepts of
our workload model.

Implemented by Service
Operation A reusable building block to perform a certain

task (examples: HTTP GET, database prepared state-
ment, network read, disk write)

Connection A communication channel on which to run an
operation (examples: HTTP connection, JDBC con-
nection, TCP connection)

Connection Pool A pool of connections or a connection
factory to be used by clients to connect to a server

Connection Listener A listening endpoint of a server for
incoming client connections

Implemented by Workload
Transaction A set of operations glued together by business

logic (examples: add to shopping cart, place a new
order, receive and reply)

Session A sequence of related transactions (scheduled with
think or cycle time) executed in the same context on
behalf of a common user (identified through a common
user ID)

Context The state of a session

Load A vector of values describing a workload’s magnitude
and parameters (such as rate, concurrency, user range,
and custom attributes)
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Transaction 1

Op A Op B

Context
{ user ID, data}

Transaction 2

Op C Op D

Transaction 3

Op A Op E

Transaction 4

Op F Op A

S

Think or Cycle Time

scheduling of
  new sessions

Figure 3: CloudPerf Workload Modeling

Figure 3 illustrates a workload consisting of four trans-
actions. In this example, a new session always begins with
Transaction 1 (initial transaction), which is scheduled by
the framework’s scheduler (S) according to a configured in-
jection rate or concurrency (see section 3.2.2). The frame-
work also creates a session context for this session and picks
a user ID based on a configurable distribution. Transac-
tion 1 executes two operations Op A and Op B provided
by a service, and then selects a subsequent transaction to
run for this session and instructs the framework to schedule
either Transaction 2 or Transaction 1 next. The scheduling
of subsequent transactions may depend on the outcome of
the current transaction or any other criteria and uses either
think or cycle time to determine when to run the subsequent
transaction. Transaction 2 participates in the same session
and therefore references the same session context through
which data can be shared across transactions of the same
session. Further state transitions eventually execute Trans-
action 3 and Transaction 4, which may re-schedule itself or
terminate the session.

If this example was a workload simulating the use of an
online shop, Transaction 1 could be a login transaction in
which a user tries to login to their account, which is repeated
until the login was successful. The user name could be de-
rived from the user ID selected by the framework. Transac-
tion 2 could be a transaction in which the user browses a cat-
alog of shopping items. In Transaction 3, the user may add
an item to their shopping cart, and then continue browsing
for more items in Transaction 2, until the user finally pro-
ceeds to Transaction 4 in which the checkout and payment
could be implemented. After successful payment, the session
is completed. Operations could be HTTP GET and POST
operations to load web pages from a web server and submit
user input if this was a web workload, or prepared state-
ments to be run against a database if this was a database
workload. Any metadata such as web cookies, number of
login attempts, or items already placed into the shopping
cart, would be stored in the session context.

Figure 4 illustrates the use of connections. The first model
depicts a classical connection pooling model in which con-
nections are borrowed from a pool at the beginning of each
transaction and returned back to the pool at the end of a
transaction. In the second model, the connection pool is
used as a factory: A new connection is created in the first
transaction of the session and then stored in the session con-
text. Subsequent transactions of this session use the pre-
viously created connection from the context, and the last
transaction of the session closes the connection. CloudPerf
makes no restrictions as to how many connections a session
may create or borrow (as long as sufficient connections are

Transaction 1

Op A Op B

Context
{ user ID, data}

Transaction 2

Op C Op D

Transaction 3

Op F Op A

Connection Pool

Transaction 1

Op A Op B

Context
{ user ID, data,

connection}

Transaction 2

Op C Op D

Transaction 3

Op F Op A

Connection Pool

Model 1: Connection Pooling

Model 2: Connection Factory

Figure 4: CloudPerf Connection Handling

available in the pool or the pool has not yet reached its max-
imum size). Also arbitrary combinations of the illustrated
models are possible. For example, a session may store a bor-
rowed connection in its session context or use both borrowed
and newly created connections in the same session.

This model has proven to be very flexible for implementing
any arbitrary workload. During workload design, develop-
ers will try to map a workload’s elements onto the provided
modeling abstractions in the most elegant way. Depending
on the workload, some of these abstractions might not be
applicable and will consequently not be used. For example,
disk I/O workloads have no concept of connections. Other
workloads consist only of unrelated events and do not re-
quire sessions. In those cases, operations may perform disk
reads and writes without using connections, and sessions
may consist of only a single transaction. User IDs chosen
by the framework in uniform or non-uniform ways typically
identify a range of data accessed by a workload (for exam-
ple customer records in a database). A disk I/O workload
without the concepts of users may instead use the user ID
to decide the offset in a file for a read or write operation.

3.2.2 Load Generation
Load generation is implemented inside a driver provided

by the CloudPerf framework. In a multi-tenant deployment,
each individual tenant will typically be simulated by a dedi-
cated driver. Mixed workloads will typically be run with one
driver per workload and tenant. While drivers are highly
performant1, scale-out by instantiating multiple drivers per
tenant provides virtually unlimited scalability for load gen-
eration (R1).

Figure 5 illustrates the main components of a CloudPerf
driver. A Scheduler Thread creates jobs for new sessions
at either a configurable injection rate (open system model)
or based on a target rate of concurrent sessions to maintain
(closed system model), and enqueues these jobs in a Schedul-
ing Queue. An idle Driver Thread from a pool of threads
dequeues the next job. If the job requires the start of a new
session, it picks a random initial transaction from a trans-
action distribution table, creates a new session context, and
executes the business logic of that transaction. If the trans-
action does not schedule a subsequent transaction, the driver

1A single driver can reliably schedule about 200,000 new ses-
sions per second on Intel Westmere servers while just con-
suming a small fraction of CPU. Overall CPU consumption
of a driver primarily depends on the implemented workload
business logic.
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thread terminates the session after executing the transaction
and deletes the session context. If the transaction has re-
quested a subsequent transaction to be scheduled, the driver
thread computes the due time of the subsequent transaction
based on think or cycle time and inserts a job for the sub-
sequent transaction into a Timer Queue2. For each timer
queue, a Timer Thread dequeues jobs that have reached
their scheduled time, and inserts them into the scheduling
queue, where an idle driver thread will dequeue them and
execute the scheduled subsequent transaction.

Note that subsequent transactions of the same session
may execute on different driver threads and must therefore
use the session context rather than thread-local variables
to store session-related data. Driver threads are only used
during execution of a transaction and then returned back to
the pool. With this design, CloudPerf supports a virtually
infinite number of concurrent sessions (only limited by the
memory needs of the session contexts) where the number
of driver threads only depends on the transaction rate and
duration but not the think or cycle time or the number of
concurrent sessions (R1).

The use of a scheduling queue decouples load injection
from load processing and provides an open system model
that simulates request-driven workloads much more accu-
rately than closed system models[16]. Note that the schedul-
ing queue only serves as a buffer and will be mostly empty
if load processing keeps up with the injection rate. Cloud-
Perf provides multiple options to handle overload, including
the discarding of jobs when the scheduling queue is full and
limits on the maximum queueing time for jobs in the queue
(those jobs will be counted as failed transactions), which
maintains an open system model also during overload.

Transactions may use connection pools provided by the
driver as described in section 3.2.1. The driver maintains a
configurable number of connections in each pool, specified
through minimum and maximum size, and also supports re-
size operations during runtime, recreation of connections at
configurable rates, and other features.

The driver captures statistics about transaction and op-
eration throughput, success and failure rates, and response

2For better scalability, each driver maintains a set of timer
queues, which are used in a round-robin fashion. Subsequent
transactions with a think-time of 0 bypass the timer queues
and are directly re-executed in the same driver thread.

times including percentiles as well as resource usage of in-
ternal resources such as connection pool, driver thread pool,
and scheduling queue length. User-defined timers and statis-
tics counters can be used by service and workload devel-
opers for additional timing and statistics. Through APIs
the driver provides developers with access to workload and
other configuration parameters and reacts to events it re-
ceives from the master, which may cause it to change injec-
tion rates or target concurrency for the scheduler, resize a
connection pool, change a workload parameter, or stop the
workload.

For most workloads such as database and mid-tier work-
loads or CPU and storage micro-benchmarks, the driver will
act as an initiator of requests. Through its Connection Lis-
tener, it can also act as a server, for example to implement
client-server network micro-benchmarks. If the connection
listener receives an incoming request, it will create a job for
a new session and insert it into the scheduling queue, from
which a driver thread will dequeue and execute it.

For synthetic workloads, requests are typically randomly
generated based on a configurable distribution, injection rate,
and concurrency. A random selection however, even if fol-
lowing a certain distribution, has limits and may not always
be an accurate simulation of a given scenario. For example,
a storage and its caching strategies may react differently to
a synthetic random read/write mix than to the I/O profile
of a real application, which generates specific sequences of
read and write requests of a certain size on particular file
descriptors. CloudPerf therefore also supports the replay of
a previously captured profile in which the timing, type, and
parameters of transactions are described in a text file. Dur-
ing load replay, the scheduler thread reads this profile and
creates jobs for corresponding transactions accordingly. A
configurable replay speed allows users to execute a profile
faster or slower than it was captured (R7).

3.2.3 Load Changes and Dynamic Load
Load parameters can be changed at any time during a

test run through load change events that are delivered to
all or a select subset of drivers (R6). Drivers can increase
or decrease injection rates, concurrency of sessions, replay
speed, connection pool sizes, or any other workload parame-
ters upon load change events. Changes in value can either be
immediately or gradually applied over a configurable period
of time.

To simulate constantly changing injection rates, Cloud-
Perf also supports to configure load curves that continually
adjust the injection rate based on a mathematical function
with a certain period and magnitude such as a sine or gaus-
sian function.

3.2.4 Mixed Workloads and Multi-Tenancy
Since two drivers share no resources (other than poten-

tially the JVM or host they are deployed on), they act com-
pletely autonomously and can simulate individual tenants
or workloads (R8). Each driver can have dedicated con-
figuration and load parameters, run different workloads or
transactions, and keeps its individual statistics to measure
throughput and response times.

CloudPerf allows users to deploy an arbitrary number of
drivers in an agent process, an arbitrary number of agent
processes per host, and distribute agents across an arbitrary
number of hosts. These deployment options enable Cloud-
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Perf to scale to thousands of individually controlled and re-
ported tenants running same or different workloads (R1).

3.3 CloudStats: Monitoring and Reporting
Monitoring and reporting are essential tasks of perfor-

mance engineering and performance testing work. Most per-
formance test tools are capable of capturing throughput and
response time statistics for the load they generate, yet only
few also capture comprehensive system-level or application
statistics. The use of dedicated monitoring tools leaves the
performance engineer with the task to integrate load genera-
tion and monitoring, which becomes increasingly challenging
if load generation is not steady and load levels are changed
throughout the test so that load changes need to be corre-
lated in time with system statistics.

CloudPerf therefore natively integrates monitoring (R11)
and reporting (R16) by providing an extensible and generic
statistics framework (R19). This framework consists of a
statistics repository in which all statistics are stored in a
uniform way, and a set of pluggable statistics providers that
capture data and add them into the repository, comple-
mented by a GUI for live-monitoring, a customizable re-
porter for report generation, and other post-processing tools.

3.3.1 Data Organization and Repository
CloudPerf stores statistics in form of series which each

consist of a sequence of samples. Each sample is a time-
value pair. Series are created by statistics providers in a
hierarchical namespace. The fully qualified name of a series
consists of the provider name (hostname, service, provider-
name, providerid) and the series name (category, subcate-
gory, series).

Figure 6 illustrates the statistics framework architecture.
Statistics providers are implemented by services and started
on a host inside a prime agent. They register their series
with the statistics manager which maintains the statistics
repository and periodically flushes data to disk as it is be-
ing captured. Flushing also ensures that statistics data is
not lost during destructive tests where nodes are crashed
or rebooted during runs (R3). Recent samples are kept in
memory to allow clients to poll for selective statistics, while
old samples are aged out and purged from the statistic man-
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Figure 7: Time-Based Statistics Aggregation

ager’s cache to save memory. Statistics providers may use
arbitrary ways to obtain their data such as the forking of
a process (P) and reading of its output, tailing of a log
file (F ), connecting to an application like a database (D)
and querying performance statistics, sampling of counters
or registering for notifications. They may add samples to
their series at arbitrary times and intervals.

3.3.2 Live Observability
Performance testing is usually an iterative process in which

bottlenecks are eliminated and parameters adjusted until a
workload or system behaves as desired. To facilitate such
process better, CloudPerf provides a LiveView GUI for live
observability of the system during runtime to allow perfor-
mance testers to troubleshoot performance during the run
rather than waiting for a report to be generated at the end
(R14). LiveView uses CloudPerf’s polling interface on the
master to register for statistics series of interest and periodi-
cally poll latest samples. The master forwards these requests
to all prime agents, which in turn forward them to all agents,
and then aggregates the results before returning them back
to the client. With statistics polling, any statistic collected
on any node in a distributed environment can be observed
and displayed live during runtime.

3.3.3 Conditions and Alerts
Conditions are rules based on mathematical expressions

configured by a user for a certain set of statistics series on a
node, which are evaluated by the statistics manager at run-
time. When the configured expression evaluates to true, the
statistics manager raises an alert, which triggers an action
(delivered through an event) on any arbitrary host (R12).
Performance testers can use this mechanism in many ways,
for example to add VCPUs to a virtual machine if CPU
utilization exceeds a threshold or to adjust load generation
parameters based on the observed resource usage or response
times.

3.3.4 Time-Based Statistics Aggregation
When load is dynamically changed throughout a test run,

any statistical summary that only considers the run as a
whole but does not distinguish its individual phases is of
little value. Figure 7 illustrates a test run consisting of three
major phases: a night-load, day-load, and night-load phase.
During the day-load phase, a spike in traffic was simulated.
Load change events in CloudPerf are tagged with a level,
shown as a circled number in this figure. A level 1 event is
automatically inserted at the very start and end of a test.
Event timestamps determine the aggregation intervals for
all captured statistics. Each aggregation interval is defined
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by two events of same or lower level. In the example, an L1
aggregation would represent statistics for the entire tests,
while the L2 aggregation would distinguish night-load, day-
load, and night-load phases, and the L3 aggregation would
further break the day-load phase into the time period before,
during, and after the peak. Statistic samples for all series
are aggregated for each of these intervals (R15).

3.3.5 Customizable Reporting
At the end of a test run, all statistics captured by prime

agents and agents are copied to the master’s repository. The
CloudPerf reporter then creates an HTML report for the
test run. The content and format of the report is controlled
through a customizable XML template (R16). It defines how
statistics should be aggregated (for example, total through-
put as the sum of the throughput of each individual driver,
or disk servicing times as the average of all servicing times
of disks of a particular host) and reported (in tabular form
for each of the aggregation intervals, or plotted as a graph).
The reporter makes no restrictions as to which series to ag-
gregate or report and correlate in a common table or graph.
Further report contents include captured system and config-
uration information, log files, and links to raw data. While
the default report template satisfies most needs, users are
encouraged to adapt it to fine-tune the reporting of their
results to organize and summarize data in the most suitable
form for their experiments.

The reporter can be manually rerun for previous tests to
regenerate reports with different templates. Performance
engineers often run series of tests in which selective param-
eters are varied to study their effects. To facilitate such
analysis, the reporter can compare up to ten tests and cre-
ate a comparative report in which data for multiple tests is
reported side-by-side including relative differences of values.

Workload developers and performance testers can further
specify metrics and result checks to compute higher-level
metrics from the captured statistics or validate their values
to determine whether a test should be considered successful
or failed (R13). Metrics and result checks are either defined
in XML or implemented as Java-callbacks for more complex
evaluation. Services may also implement Key Performance
Indicators (KPIs) which classify certain statistics or metrics
into user-defined categories such as low, medium, and high.

3.4 CloudDeploy: Deployment Operations
Section 3.2 discussed the generation of user load. While

the load profiles of users (or tenants) play a central role in
cloud deployments, they are not the only activities that de-
termine the overall performance of an environment. Admin-
istrative operations performed by the cloud service provider
such as tenant deployment operations are equally important.
CloudPerf provides the following abstractions for tenant de-
ployment and management operations (R10):

Create Creation of a virtual resource

Start Starting of a virtual resource

Modify Modification of a virtual resource

Migrate Migration of a virtual resource

Stop Stopping of a virtual resource

Destroy Deletion of a virtual resource

Virtual resources describe the owning tenant, resource
type and identifier, as well as arbitrary metadata. These ab-
stractions are implemented by services which integrate them
with the underlying cloud infrastructure. For example, a ser-
vice for virtual machines could implement these abstractions
as creation, boot, adding and deletion of vCPUs, migration,
shutdown, and deletion of virtual machines. A service for
Oracle Pluggable Databases (PDBs) could implement them
as cloning, opening, configuration of resource management
plans, migration, closing, and dropping of PDBs.

Deployment operations in CloudPerf are a special form
of actions that can be triggered at runtime through events
directed to any set of hosts. The framework will record
their rate as well as start, end, and execution times to cor-
relate deployment operations with performance metrics such
as network bandwidth usage during VM creation or quality
of service during live-migration for both the migrated as well
as all other tenants.

3.5 Services
The CloudPerf framework is designed to be entirely agnos-

tic of any particular product or domain. Services developed
and packaged as individual modules adapt, map, and ex-
tend the framework capabilities to particular products and
domains. They implement well-defined APIs and are rela-
tively easy to develop (R19). Services provide:

Reusable workload building blocks such as connection
pools and listeners, connections, and operations

Actions for performing deployment operations and other
arbitrary tasks at runtime

Statistics providers for capturing of runtime statistics

Configuration gathering for capturing of system param-
eters

Precondition checks for validating a system configura-
tion before a test run

Among the services we have developed are HTTP, JDBC,
and Network services to provide the necessary building blocks
for middleware, database, and network workloads. Solaris
and Linux services provide OS-level statistics ranging from
CPU utilization, memory usage, network and disk activ-
ity, and process statistics to hardware performance coun-
ters, NUMA and resource management statistics, and many
more. A GenericOS service is capable of running generic
scripts or tailing arbitrary log files and extracting data from
them through configurable regular expressions. Oracle, We-
bLogic and HotSpot services capture detailed database, ap-
plication server, and JVM statistics, and further services
implement deployment operations for VMs and PDBs.

3.6 Workloads
As discussed before, the CloudPerf framework only pro-

vides generic modeling abstractions for workloads to imple-
ment workloads of any domain. The effort for the implemen-
tation of a new workload depends largely on the complexity
of the workload and is often fairly low for simple workloads.

We have implemented numerous workloads ranging from
high-level workloads to micro-benchmarks, and continue to
add new ones. Our workloads include database OLTP work-
loads such as TPC-C, flight booking and the customizable
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CRUD workload[14], DSS and analytical workloads such as
a generic customizable DSS workload capable of running ar-
bitrary queries and query streams and HTTP-based mid-
dleware workloads. Networking, disk, and scheduling work-
load provide powerful micro-benchmarks for multi-node and
multi-tier networking tests, storage benchmarking, and op-
timization of operating system scheduling.

A generic wrapper workload is capable of wrapping exist-
ing workloads or commands to integrate them into Cloud-
Perf and run them through the framework in a distributed
environment without the need of porting or rewriting them.
The concurrency of running commands can be changed any
time through load change events, and regular expressions
help to extract data from the output of these commands to
feed it back into the statistics framework.

3.7 Tools
The CloudPerf framework includes several tools, many

of which have been mentioned in previous sections already.
The most important tools are:

Installer to install, update, and deinstall modules

DataLoader to populate a database, flat file, or other
medium with test data

CLIs to restart master and prime agent processes, submit
workloads and events, query the status of scheduled
runs, and automate test submission (R18)

WebGUI to create deployment and run configuration files,
submit workloads, and browse through results

LiveView to submit workloads, interactively change load,
and monitor statistics during runtime (figure 9)

Reporter to create reports and compare test runs

StatsCollector for stand-alone statistics collection

StatsTool to export statistics from our repository for post-
processing in spreadsheets or other tools

Performance Data Analyzer (PDA)[4] is not included but
tightly integrated with the framework and supports interac-
tive analysis and correlation of statistics (R17).

4. CLOUD PERFORMANCE TESTING
Section 3 described the architecture and key features of

CloudPerf. In this section, we will illustrate on some ex-
amples how these features can be leveraged for performance
testing in the cloud or other dynamic and distributed envi-
ronments.

4.1 Test Series
In performance engineering it is very common to run test

series in which a single parameter is changed from run to
run to study its effect. Arguably most common are scaling
tests in which either the injection rate or concurrency are
increased. Though not directly related to cloud, such kind
of experiments are greatly simplified by CloudPerf’s ability
to change load during a test. Rather than running a series
of individual tests, CloudPerf enables performance engineers
to run the entire test series in a single test run with multiple
individually reported load steps where injection rate or con-
currency are adjusted through load change events. This not

Figure 8: Dynamic Load Curves

only speeds-up test execution as lengthy ramp-up phases,
pre- or post-processing steps can be avoided or greatly re-
duced, but also reduces the risk of accidental changes to
the environment in between tests. Also workload parame-
ters that alter the behavior of the workload can be changed
through load change events. System and application param-
eters can be altered during a test through action events such
as the exec action implemented in the Solaris and Linux ser-
vices which executes any arbitrary command.

4.2 Dynamic Load Curves
Performance at steady-state was and is widely used by per-

formance testers to assess and report performance of an en-
vironment, yet it is a simplification which neglects the elastic
aspects of shared deployments such as cloud. As infrastruc-
ture is shared among workloads or tenants, the elasticity of
an environment - its ability to react to changes in demand -
becomes an essential factor of its overall performance char-
acteristics. Especially as cost considerations drive service
providers to a higher degree of sharing, the risk of resource
contention increases if tenants consume more resources than
anticipated, be it network bandwidth, storage IOPS, or CPU
cycles. The simulation of dynamic load curves is therefore a
crucial feature of performance test frameworks for the cloud.

Figure 7 already illustrated how CloudPerf can be used to
simulate different levels of activity such as day- or night-load
phases as well as sudden load peaks through load change
events. As discussed in section 3.2.3, tenants simulated by
individual drivers can be controlled separately by directing
load change events to selective drivers, creating potentially
different load patters for each tenant.

Load change events however become impractical if load for
a large number of tenants shall be constantly and individu-
ally adjusted. With the support of mathematical functions
to generate per-tenant load curves with randomized period
and magnitude, dynamic load patterns can be easily config-
ured in CloudPerf even for hundreds of tenants (R6). Figure
8 shows a plot generated by CloudPerf for randomized sine
load curves of four tenants.

4.3 Noisy Neighbors
Load change events and load curves are also ideal instru-

ments to study the effects of noisy neighbors and the poten-
tial degradation of quality of service due to interference with
other tenants. Such experiments can be conducted by keep-
ing the injection rate for a primary tenant constant while
increasing the rate of colocated tenants (neighbors) through
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load change events. The noisiness of a neighbor typically de-
pends not just on its activity, but also its proximity to the
primary tenant. The experiment can be further enhanced
by changing the proximity of colocated tenants through ac-
tion events, for example by changing the CPU binding of
their virtual machines or containers from a different socket
to the same socket or even same cores as the primary ten-
ant. Throughput and response times of the primary tenant
can then be correlated to other system metrics such as cache
misses and stalls (also captured by CloudPerf) to assess their
effect on the quality of service on the primary tenant.

Note that for request-driven workloads such experiments
are much more meaningful with an open system load gener-
ation model than with a closed one. In an open system
model, a fixed injection rate for the primary tenant will
maintain its throughput as long as no resource is saturated
even though its quality of service degrades. This degradation
appears in form of increased response times, for example due
to higher network, storage latencies, or cache misses as in
the above sketched experiment, which can be directly com-
pared to identical throughput of the tenant in isolation. In a
closed system model, the quality of service degradation will
manifest itself in a reduction in throughput for the primary
tenant. In other words, the primary tenant would appear to
be changing its behavior due to its noisy neighbors, which is
typically not an adequate simulation of request-driven work-
loads where requests originate from external end-users and
are fairly independent of response times unless they exceed
critical thresholds.

4.4 Tenant Deployment and Node Addition
Not just the load of tenants constantly changes in cloud

deployments, but also the number of hosted tenants. The
time needed to provision a new tenant, the resource con-
sumption of tenant provisioning, and the impact of tenant
provisioning on the quality of service of other tenants are im-
portant performance attributes of cloud environments. As
discussed in section 3.4, deployment operations in CloudPerf
are implemented by services and may invoke cloud manage-
ment software APIs to deploy or destroy tenants. At run-
time, they are triggered through deployment events. Per-
formance testers may use this to evaluate the cost of tenant
deployment or the scalability of an environment as the num-
ber of tenants increases.

If new virtual machines are created for a tenant, a prime
agent in that VM can be automatically started when the VM
boots. It will then contact the master, which will lookup
that prime agent’s role and assign it a task, for example to
collect statistics or start load generators. This way newly
started hosts can join a running performance test and par-
ticipate as if they had been there from the beginning, sup-
porting dynamic changes of the SUT at runtime (R2).

4.5 Fault Injection and High Availability
Service availability is a key attribute of cloud offerings and

is largely impacted by the robustness and fault tolerance of
an environment as well as its ability and time needed to
recover from failures. Stress testing in which faults are sim-
ulated is therefore besides performance testing another cor-
nerstone of non-functional testing of cloud infrastructures.
CloudPerf supports stress testing in many ways (R3).

Fault injection is enabled through actions, which execute
arbitrary Java code and can be triggered on any host at any

CPU utilization per host

Throughput &
 other stats

Zoom in-and-out

Load control

Interactive event submission

Figure 9: LiveView: Live Monitoring and Control

point in time through action events. Actions allow stress
testers to kill processes, panic a host, change routing tables,
offline CPUs, simulate memory shortages through allocation
of large amounts of memory, and anything else that can be
implemented in code.

The open system load generation model of CloudPerf de-
couples load injection from its processing. If processing
stalls, the driver’s internal scheduling queue will run full.
For stress testing both queue length as well as maximum
queueing time can be limited so that requests are discarded
if not handled within a specified time. CloudPerf reports
both the duration of total service downtime (no single re-
quest serviced successfully) as well as request failure rates.
Together with other statistics such as throughput, response
times, and system statistics, those are reported separately
for the period before the service failure (the time of the ac-
tion event), during service downtime or degradation until
the service is restored (identified through either conditions
or other watchdogs that raise alerts upon restoration), and
after full restoration of the service.

If services provide information about the state of connec-
tions, the framework’s connection pool will automatically
discard and re-establish failed connections. For database
stress testing, CloudPerf’s JDBC service also integrates the
Oracle Universal Connection Pool (UCP) for advanced fail-
over strategies of JDBC connections.

CloudPerf is also robust against failures of any monitored
host on which a prime agent is running. Captured statistics
are continuously flushed to disk to minimize data loss to a
few seconds. On a rebooted host, a prime agent can resume
statistics collection and re-join an existing test run.

4.6 Cloud Life Cycle Management
Conditions as described in section 3.3.3 can be used to

monitor statistics values and trigger actions upon certain
criteria, for example to add VCPUs to an overloaded VM or
migrate a tenant off an overloaded host. Such experiments
can be useful to design or prototype cloud management soft-
ware decisions or improved migration algorithms.

In [14] we presented and evaluated a new methodology to
migrate PDBs between nodes of a cluster which we tested
and prototyped using CloudPerf. Figure 9 shows a screen-
shot of CloudPerf’s LiveView GUI visualizing throughput
and response times of four tenants as well as CPU utilization
of two hosts during the runtime of a similar live migration
experiment. Tenants 1 and 3 are deployed on node 1, while
tenants 2 and 4 are deployed on node 2. After a warmup
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and steady-state phase, the load of tenant 3 is gradually in-
creased through a load change event, slowly driving up CPU
utilization on node 1 (sup07). A condition has been config-
ured on node 1 to monitor CPU utilization and trigger an
action to initiate live-migration of tenant 1 off the overloaded
node once it exceeds a certain value. The screenshot shows
response times of all four tenants as dashed lines, clearly in-
dicating the response time increase of tenant 1 as it is being
migrated from node 1 to node 2, as well as tenant 3 which
suffers from high CPU utilization on node 1. Once tenant 1
has been migrated off the overloaded node 1, the CPU uti-
lization for that node drops and utilization on both nodes is
balanced. The bold horizontal overlayed curves in the mid-
dle of the graph show throughput for tenants 1, 2, and 4.
Throughput for the migrated tenant 1 is steady throughout
the migration without any downtime.

CloudPerf not only provides the necessary features for
such complex experiments, but can even be used to pro-
totype improved algorithms or to monitor system behavior
live during test execution.

4.7 Multi-Tenancy
In [17] we used CloudPerf to compare the efficiency and

scalability of two different database deployment models by
deploying and simulating 252 tenants. Tenants were split
into three groups (small, medium, large) of 84 tenants each
with different database sizes and injection rates. The focus
of our study was to determine the resource needs and re-
sulting throughput and response times for tenants in both
deployments. Using CloudPerf’s services providing operat-
ing system and database observability, we captured CPU
consumption, memory footprint, storage I/O, and database
statistics such as waits and buffer cache misses per tenant
group for each deployment. In another experiment, we de-
ployed application server and database clusters, storage in-
frastructure and load generators for 29 tenants across a total
of 128 nodes (R8).

The ability of CloudPerf to control this many tenants on a
distributed infrastructure in a single test run and automate
the correlation of statistics to tenants made these experi-
ments feasible (R1).

4.8 Service Level Agreements
Cloud providers and tenants typically negotiate SLAs to

specify guaranteed levels of performance, availability, and
other attributes of the service. The fulfillment or violation
of service levels can be validated for each test run by the
CloudPerf reporter through result checks as described in
3.3.5. Test runs are then automatically marked as successful
or failed based on the configured criteria (R13).

4.9 Scalability and Overhead
Testing all aspects of cloud demands highest scalability

from a performance test framework. We designed Cloud-
Perf such that its architecture scales to largest deployments
by providing horizontal scalability of load generation, par-
allel and asynchronous message-based three-level commu-
nication between master, prime agents, and agents, node-
local storage of statistics during runtime with parallel post-
processing, and many other features. In our daily work,
we have challenged the implementation of CloudPerf to live
up to its architectural possibilities and resolved bottlenecks
where we found them. At the time of writing, we have run

experiments with up to 252 tenants, 128 hosts, on servers
with 1 to 384 cores per host, 72 hours of runtime, up to half
a million statistic series per host with hundred millions of
samples, and hundreds of GB of result data per run (R1).

The overhead of the framework can be categorized into
CPU, memory, network, and disk I/O consumption. The
CPU cost of load generation primarily depends on the work-
load’s business logic, while the overhead for scheduling and
timing is typically below 5% for high-level workloads (micro-
benchmarks with minimal business logic may have a higher
overhead). CPU cost for statistics collection depends on the
invoked commands or queried APIs. The framework itself
only consumes minimal CPU cycles (typically less than 0.1%
of a system). The memory footprint of prime agents depends
on the number of sampled statistics and usually ranges from
tens to hundreds of MB. Heartbeats and statistics polling
only consume negligible network bandwidth. Flushing of
statistics data is batched and only generates few disk writes.

5. RELATED WORK
Numerous performance test tools and frameworks have

been developed over the years, each with a different pur-
pose in mind. Some tools such as vdbench[6], iperf[20],
or uperf[5] specialize in a particular micro-benchmark and
only run this single workload. YCSB[9] and YCSB++[15]
are targeting cloud, but also just execute a single work-
load. Others tools are broader and capable of running dif-
ferent workloads but limited to just one domain. For exam-
ple, OLTPBench[10] and SwingBench[12] only run database
workloads, Cloudstone[19] only runs web workloads. JMe-
ter[1] has expanded beyond web workloads, but is limited to
supported protocols. Faban[2] is merely a harness without
built-in load generation and instead leaves driver implemen-
tation to the workload. None of them support multi-tenancy.
MuTeBench[13] adds multi-tenant support to OLTPBench
but only supports a static SUT. CloudBench[18] emphasizes
on VM deployment and automation for performance com-
parison of infrastructure cloud providers, but does not pro-
vide workload modeling abstractions. CloudSim[8] is a sim-
ulation framework for cloud infrastructures without tenant
load generation capabilities on its own. Rally[3] is designed
to benchmark OpenStack only and neither supports other
cloud management software nor tenant load generation.

Many of the above tools only support steady load execu-
tion of a single tenant and require a second instance of the
tool be be started to simulate either a load increase of the
first tenant or activity of a second tenant. This quickly be-
comes impractical when frequent load changes or hundreds
of tenants shall be simulated. Most tools just support closed
system load generation models in which a number of threads
is created to execute requests either back-to-back or with a
configurable think-time. Such a model only allows to con-
figure the concurrency of load generation, but is incapable
of maintaining a configured request rate. Partly open sys-
tem models implemented in some tools use cycle-time to
achieve a mostly deterministic request rate, but require a
sometimes impractically large number of threads if the cycle-
time is high, which dramatically limits the scalability of that
model. In reality however, the request arrival rate is exter-
nally given for most request-driven applications, which can
only be adequately simulated with an open system model.

With the exception of those tools that focus on VM de-
ployments, all of the above tools require a static SUT that
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does not change throughout test execution. They also do
not support destructive stress tests in which nodes crash or
reboot.

6. CONCLUSIONS AND FUTURE WORK
We have presented CloudPerf, an extensible and versatile

performance test framework. Its application ranges from
synthetic micro-benchmarks to high-level web or database
workloads. It can be used to run performance tests against
stand-alone scale-up systems as well as distributed scale-out
environments. With its workload modeling abstractions it
provides a high level of reuse and decouples workload de-
velopment from load generation. CloudPerf supports both
open as well as closed system load generation models to
adequately simulate any kind of workload such as request-
driven OLTP workloads, analytical or batch workloads. Its
load generation capabilities range from single-tenant steady-
state to dynamically changing load steps, curves or spikes for
hundreds of individually controlled tenants running identi-
cal or heterogeneous workloads. CloudPerf supports elastic
infrastructures and changes in the SUT such as hosts leav-
ing or joining a test, which allows testers to conduct stress
tests in which hosts are panicked or rebooted or new hosts
or VMs are dynamically provisioned during a run. The load
generation features of CloudPerf are complemented by an
extensible statistics framework, customizable reporting, and
live-monitoring of tests to allow users to analyze and cor-
relate performance-relevant statistics across all layers of the
stack. CloudPerf can be used for more traditional test sce-
narios where the performance of an application, database,
server, or storage is evaluated or optimized, but it especially
plays out its strengths in distributed and dynamic multi-
tenant environments — such as cloud.

CloudPerf’s framework has proven very versatile for all
our work so far. While we keep enhancing and improving it,
our future efforts mostly focus on areas beyond the frame-
work such as the development of new workloads and services
and the application of data analysis techniques on the data
we capture. Especially the integration with various cloud life
cycle management software through CloudPerf services will
be necessary to better test and optimize cloud management.
Data analytics could be used at runtime to develop and
validate models for predictive forecasting of SLA violations
to automatically take corrective actions, or on test results
stored in a central repository to assist software and hard-
ware architecture and design decisions for next-generation
products.
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