
A Performance-centric Approach for Complex Decisions
Support

Ate Penders
Thales Research&Technology,
Delft University of Technology

ate.penders@d-cis.nl

Ana Lucia Varbanescu
University of Amsterdam

a.l.varbanescu@uva.nl

Gregor Pavlin
Thales Research&Technology

gregor.pavlin@d-cis.nl

Henk Sips
Delft University of Technology

h.j.sips@tudelft.nl

ABSTRACT
Many situations in the security domain require decision-
making based on complex data, i.e., many variables which
need to be taken into account before adequate decisions can
be made. For example, in a surveillance scenario, the size
and complexity of the area of interest, the mix of objects,
and the unexpected behavior of suspects are just a few ex-
amples of complex variables to be analyzed in the process.
Existing decision support systems provide some analysis,
but are typically limited in the complexity they can han-
dle. Therefore, users end up with simplified models which
often suffer in the accuracy of their decisions and, ultimately,
may lead to incorrect decisions. In this work, we present a
framework that can scale to cope with the complexity and
time requirements of real-world scenarios, while remaining
flexible to handle the ad-hoc adaptation to the situation.
We discuss the challenges and solutions for such a scalable
and flexible system, and validate it using a target tracking
scenario in urban environments of different sizes.

1. INTRODUCTION
Border security, maritime security, wildlife protection, or

search & rescue operations are examples of critical applica-
tions in the security domain. Situation assessment in the
security domain requires unstructured (big) data and com-
plex processes to be combined for decision making, which in
turn should lead to one or more simple and concrete actions
and orders, like ”apprehend suspect”or ”ignore, false alarm”.
Ideally, this translation of complex processes and data into
actions is performed by a (semi-)automated system for de-
cision support.

The data in all applications in the security domain come
from some form of surveillance. The resources used for
surveillance (i.e., the sensors) and their availability are de-
pendent on the application: with border security, the pres-
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPE’17, April 22 - 26, 2017, L’Aquila, Italy
Industrial Paper
c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4404-3/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3030207.3044532

Figure 1: The pipeline of processes in a surveillance system,
from extracting the surveillance data from each of the S sensors
to the suggested actions based on the predicted movement of the
N target objects. This pipeline is executed for every time step.

ence of security cameras can be expected, while search &
rescue operations often depend on human surveillance or cell
towers. Regardless of these differences, in all cases, the data
read from many relevant sensors, of different kinds, must be
combined. Reading relevant surveillance data is an essential
part of situation assessment. Furthermore, the data is un-
structured, heterogeneous, and can be very large in size. A
first critical task of the system is extracting and filtering the
surveillance data relevant for the decision making process.

The filtered set of surveillance data is used for further
analysis. For example, it can be used to create situation
awareness by using tracking algorithms that collect data of
specific objects over time and predict the most likely next
position of these objects. Such prediction is a complex and
time consuming task, requiring both historical data of the
object, if available, and information on the context of the
surroundings in which the object moves (e.g. road maps,
traffic information, road blockages) [8]. Therefore, the sec-
ond critical task of a decision support system is the complex
and time consuming analysis process (or group of processes),
where the filtered set of surveillance data is used to generate
relevant information about the target object (e.g., its desti-
nation), eventually leading to one or more concrete actions.

Figure 1 presents the sequence of the components required
for a decision support system for object tracking. The sys-
tem, which collects data from S sensors to track N objects,
is organized as a pipeline of processes, and suggests an ac-
tion per object, based on the surveillance data collected at
a specific time. The pipeline is executed at each time step;
ideally, a decision had been reached in all previous time steps
before a new step begins, a condition that limits the possi-
ble frequency of the system. We note there are two iterative
blocks in the system. The first one iterates over the num-

179

ber of available surveillance processes (S) to collect all the
surveillance data that can later be used by the tracking pro-
cesses; the second one is performing the tracking process and
action suggestion for each of the N tracked objects. Thus,
the time step of the system is at least Tseq, defined in Equa-
tion 1; by design, the performance of the decision system is
limited by the time-to-decision, Tseq.

Tseq = Tcontext+S ·Tsensor+N ·(Tpredict+Tvalidate+Taction)
(1)

The overarching goal of our work is to provide flexible,
high-performance decision systems. Therefore, we propose
a first generic framework for security applications, which
can adapt to the type of surveillance resources and decision-
making scenarios, while still providing fast decisions. Specif-
ically, our main requirements for the framework are: (1)
minimize the time per step, and (2) scale with both the num-
ber of sensors and decisions to be made. We present in this
paper our framework’s design and implementation, followed
by the performance analysis of a case-study. These pre-
liminary results show that our performance-centric design is
flexible and scalable, holding promise for a production-ready
decision support system for security applications.

The remainder of this paper is structured as follows. In
Section 2 we introduce a motivating scenario to demonstrate
the requirements of a real surveillance application. In Sec-
tion 4 we present the common challenges of decision making
in security domain applications. We follow-up with the de-
sign and implementation of our framework, as presented in
Sections 5 and 6, respectively. Section 7 discusses the usage
of the framework, in Section 8 the framework is validated,
while Section 9 discusses our preliminary results. We con-
clude the paper in Section 10.

2. MOTIVATING SCENARIO
Situation assessment is a combination of knowledge about

the environment, the whereabouts of the target (in case of
tracking), how the former affects the latter, and viceversa.
All this knowledge is specific to the desired type of assess-
ment, making support systems difficult to generalize.

Target tracking in urban environments is one example of
complex decision making, representative in many aspects for
various situations in the security domain. Across this paper,
we use target tracking as a practical example to illustrate
the baseline requirements for a decision support system.

In the scenario of target tracking in urban environments,
we are interested in the apprehension of the target by means
of blocking streets. The situation assessment therefore should
give insight in the required number of blockages, the im-
pact blocking the streets has on the ”normal” traffic, and
the availability of law enforcement in the area. The scenario
is a combination of separate complex processes: (1) predic-
tion of target movement, (2) traffic monitoring, (3) minimal
blockage determination, (4) impact estimation, and (5) law
enforcement localization.

Each one of these five process may consist of one or more
(sub)processes. For example, the prediction of target move-
ment has a prediction model that uses the last known po-
sition and direction to predict the next likely position; ob-
servations from sensors are used to improve and validate
previous predictions, as well as adjust current predictions;
finally, the environmental context (e.g., road maps), is also
used to improve and validate predictions.

Figure 2: A scenario for target tracking in urban environments:
(1) initiate tracking, (2) request sensors in area, (3) validate pre-
diction based on context, (4) new sensor for updated area, (5)
report predictions, (6) use context for decision proposal, and (7)
suggest action.

Target tracking is typically initialized by an operator, an
officer who gets the order to follow and apprehend a suspi-
cious person or vehicle. This request triggers the start of a
tracking process, which in turn triggers requests to sensors
(e.g., license plate recognition cameras) in a specific area.
The tracking algorithm, for example a particle filter [5][9],
periodically predicts all possible next positions. The predic-
tion is validated (and adjusted) when the sensors detect the
object of interest. In urban environments, but also in other
situations, the prediction can be further improved based on
knowledge about the context (e.g. road maps, traffic, con-
struction): the target tracker sends its prediction to a con-
text bank, which adjusts the likelihood of these predictions
based on a database of context information. Based on the
updated prediction the tracker will update its request to sen-
sors1. New predictions are reported to the operator and/or
a decision support module. The decision support module is
in place to assist the operator in providing suggested actions
for apprehending the target. The target tracking terminates
when a decision is made by the operator or the target is
lost (i.e. no observations are done by any sensor for a long
period of time, hence the predictions have very low probabil-
ity). Figure 2 shows a graphical illustration of the described
scenario.

3. RELATED WORK
A decision support system requires a large collection of

(different) processes able to handle and manage the het-

1The last position of the target with a radius of the maxi-
mum traveling distance between two time-steps of the track-
ing algorithm plus some margin.

180

erogeneous and unstructured surveillance data coming from
different (types of) sensors. Ultimately, all these data feed
a set of predictor processes.

As described in [3], decision support systems for situation
assessment scenarios have to be adaptive because (1) the
data-to-decision interval is very short, and (2) the evolution
of the situation is usually unpredictable. Thus, the set of
predictors interested in particular data will change between
iterations, due to the dynamic behavior of target objects.
Usually, a prediction process interested in surveillance data
from a sensor in one iteration, may not be interested in
surveillance data from the same sensor in the next iteration,
because its target object moved out of range. This dynamic
binding and un-binding of processes requires a flexible envi-
ronment for both expressing and analysing the scenarios.

In such a rich environment of heterogeneous processes
with dynamic interconnections, a message passing system [2]
ensures flexibility and scalability, while employing parallel
processing can improve performance. Therefore, in building
our decision support framework, we got inspired by actor-
based systems [1][4][10], i.e., systems of concurrently execut-
ing objects (i.e. actors) that communicate exclusively via
asynchronous messages. Each actor buffers the messages it
receives in a mailbox and processes them sequentially, one
at a time [7]. Where the components in the process chain of
Figure 1 can each be represented by an actor, using asyn-
chronous communication avoids unnecessary stalls due to
differences in execution time of the various components.

Our design focuses on generality, flexibility, and perfor-
mance, hence our goal to implement this approach into a
framework. To the best of our knowledge, ours is the first
framework for decision-support in the security domain which
combines heterogeneous processes, actor-based systems, and
parallelism, to provide high performance in terms of both
speed and scalability.

4. CHALLENGES AND APPROACH
The usability of decision support frameworks in real-life

situations is often hindered by their performance, as they
become too complex to cope with decision taking in due
time. Our goal is to address this challenge at a structural
level, aiming to improve the per-step performance of data
collection, analysis, and decision making by design.

Consequently, we impose the processing time of the deci-
sion taking pipeline (Figure 1) to be within given time con-
straints, as seen in Equation 2, where T ∗ is the maximum
period between observations.

Tseq ≤ T ∗ (2)

Note that the actual time constraints are entirely depen-
dent on the situation. For example, for our target tracking
in an urban environment, if we want to track a car driving at
an average speed of 30 km/h and the data processing takes
10 minutes (that is, Tseq = 10min), the car could move 5 km
away from the last known position, making any suspect ap-
prehension unfeasible. When the execution time is reduced
to Tseq ≤ 2min, the car only moves 1 km, making it still
possible for law enforcement to apply the suggested action,
and reducing the unpleasant consequences in the area. In a
scenario of wildlife tracking, the average speed of moving ob-
jects is closer to 5 km/h, making the range of movement in
10 minutes roughly 800 meters; this is an acceptable range.

However, because the density of sensors covering the area is
likely to be much lower than in a city, chances are high to
miss the few available sensors. Again, reducing Tseq is de-
sired to decrease the chance of missing the important sensor
observations and with it increase the likelihood of success.

It is difficult to determine an acceptable threshold for the
interval of observation. In our experience so far, this thresh-
old is a combination of situation specific variables, like aver-
age speed of the target object and density of the sensors in
the area, and possible/desirable decisions. Therefore, build-
ing a framework where performance and scalability are ad-
dressed by design, and can be further tuned by using a better
computational solution, is the right way forward.

When analyzing the pipeline for decision support, we iden-
tify two types of tasks that are both time consuming and in-
volve large sets of data, and therefore may hinder processing
speed:

• sorting and filtering surveillance data, and

• analyze the surveillance data and produce relevant tar-
get information.

For large-scale scenarios, like decision support for security
domains usually are, Tseq (see Equation 2) is rapidly increas-
ing since both S and N tend to grow. As increasing T ∗ is
not really an option for real-life situations, we conclude that
a sequential solution will not scale. Instead, we must reduce
Tseq.

To reduce the processing time of the data collection and
filtering, we distribute the workload, i.e., we move the sort-
ing and filtering closer to the physical location of the sensors,
allowing this iterative process to be done in parallel by the
sensors. This is possible because each sensor operates in-
dependently, so the communication to and from the sensors
can be asynchronous. Distribution also allows us to effi-
ciently handle the dynamics in the scenario by connecting
and disconnecting to the relevant sensors and only using the
data that is relevant for the current situation. The distribu-
tion improves performance, but introduces a new challenge:
resource discovery - i.e., determining which are the relevant
sensors. We address this additional challenge in the next
section.

For the task of analyzing surveillance data and produc-
ing target information, synchronization between parts of the
analysis process is required, making it less suitable for a dis-
tributed approach. Instead we apply parallelism to speedup
the task itself. For example, a tracking algorithm that needs
to predict the most likely next position of the object must
consider multiple options, for each option a number of steps
evaluate the options to determine its likelihood and finally
the different options are compared against each other. In be-
tween the different steps (e.g. create new potential option,
is this option possible or block by construction, use surveil-
lance data to determine the current direction and compare
against this option) some or more synchronization is re-
quired but the different options can be evaluated in parallel.
Figure 3 shows the setup of the process chain that uses the
distribution of the S sensors and a distribution for the N
active object tracking. Note that, for simplicity, this figure
does not show the parallel design of the analysis steps.

To summarize, with the new processing pipeline based on
parallel processing, Equation 2 is rewritten as Equation 3.
Where time indicator Tcommunication is the cost of moving

181

the process blocks to distributed or parallel nodes, intro-
ducing more communication and communication over longer
distances.

max(max
S

(Tsensor), Tcontext,max
N

(Tpredict))

+ max
N

(Tvalidate + Taction) + Tcommunication ≤ T ∗ (3)

Our work focuses on designing and implementing a generic
decision support framework able to handle such a hybrid so-
lution of distribution combined with parallel computing for
surveillance situations. In the following sections, we discuss
the framework’s requirements and specifications, its archi-
tecture, and present a first implementation able to integrate
and interpret the data from the active sensors towards rec-
ommending a decision.

5. FRAMEWORK DESIGN
Figure 3 presents the architecture of the proposed frame-

work. To allow our framework to run efficiently, we must
make sure that modules operate without fast processes suf-
fering long idle times due to slower processes. Therefore,
our framework uses asynchronous communication in a data-
flow like model: as soon as the data is available, it is further
communicated to the processing pipeline. With independent
sensors, the lack of ordering due to asynchronous commu-
nications poses no challenges to consistency. Further, to
handle the dynamic nature of decision support systems and
the distribution of work, resource discovery and dynamic
(dis)connecting of resources is required (illustrated by the
solid and dashed lines in Figure 3).

5.1 Resource discovery and Dynamic
(dis)connecting of resources

The challenge of resource discovery is solved by introduc-
ing a yellow pages service. As the name suggests, this ser-
vice acts the same as a lookup table to find addresses of the
available processes grouped on their type. When a process X
(e.g. a tracking process) needs data from a different type of
process Y (e.g. sensor), X will use the yellow pages to dis-
cover and localize the instances of Y and use the addresses
information to establish a communication link.

It is expected that the system will have many more sen-
sor processes available than the ones the tracking process
is actually interested in (i.e., those that are in the area of
interest). In our tracking example, a tracking algorithm is
interested in sensor data of red cars, but data from a sen-
sor 300 miles from the current position is irrelevant at this
moment. As the tracked object moves over time, previously
irrelevant sensors can suddenly become relevant and vice
versa, meaning that the tracking algorithm needs to be able
to connect and disconnect to relevant sensors on demand.

Filtering and selection of available sensor processes based
on the interest of the tracking process is called negotiation,
and it is designed to avoid unnecessary communication: a
data request message is sent to all sensors, but those sensors
outside the area of interest will simply ignore it and send
no response. Negotiation is an instance of the more generic
mechanism of dynamic, on-demand activation and deacti-
vation of connections, which allows different processes to
connect and disconnect via asynchronous message passing.

Figure 3: The multiple pipelines of processes in a surveillance
system, using our framework. The collection of surveillance data
can run in parallel with the execution of the prediction step; after-
wards, only the relevant sensors are connected to the validation
step. These pipelines are executed for every time step.

5.2 Distinguish information flows
As the system is designed to scale with the number of re-

quests, keeping track of the origins of a request and its own
flow of information through multiple processes (i.e. distin-
guish information flows) is another very important feature
that has to be handled by the framework. In the tracking
example, a request to follow a black van is a completely dif-
ferent flow than that of tracking a red car, and the estimated
next position of the red car is of no relevance to the operator
interested in the black van. Therefore, each process needs
some notion of task management : each request from a pro-
cess will trigger a new task (or replace a task) in the current
process, and any result produced in this task is therefore
directly linked the request.

To summarize, our framework consists of a yellow pages
service that allows the initial resource filtering based on a
given set of features (i.e., type), a negotiation mechanism
that reduces the list of producers to only the relevant ones
(given a specific scenario), and a task manager that allows
information flows cross paths without interference (see Fig-
ure 4).

6. IMPLEMENTATION
Our proposed framework is based on the principles of

the Dynamic Process Integration Framework (DPIF) [6] –
a framework that allows modular algorithms to connect and
allow human experts to interact with one or more of the
modules – adapted to high-performance situations, that al-
lows us to find resources using a service oriented approach.

182

Figure 4: Overview of the framework design. Each process (A,
B and C) is connected to a task; processes negotiate before es-
tablishing a connection to exchange information asynchronously
through Akka messaging. The Yellow Pages helps discovering and
locating other processes; the task management ensures separation
of the information flows from and to a process.

For the communication between process blocks we use
Akka2, an actor-based middleware [1] that supports asyn-
chronous communication [10], a feature we require to make
the large variety of (types of) processes inter-operable with-
out creating serious performance bottlenecks. Using an actor-
based middleware allows us to represent each process block
as an actor or group of actors, where actors use asynchronous
communication among themselves. For example, a valida-
tion process gathers movement prediction, surveillance data,
and context data from various resources and pushes its vali-
dated predictions to the next step in the process chain. The
validation process can be represented by a group of actors,
validating, in parallel, all different predictions of the target
movement.

For process blocks to discover and be discovered by re-
sources they have to be aware of their process types and the
required types of input resources [6]. The process type is
registered at the yellow pages service along with the address
of the actor performing this type of process. Other processes
that require data from this process type as input can now
lookup the entries in the yellow pages and use the addresses
to establish a communication link to these actors to create
an information flow.

The yellow pages service running in the system is globally
accessible and allows resource discovery with simple search
requests. The retrieved addresses from the yellow pages can
be used to establish a peer-to-peer communication between
processes. In the initial design of the framework, the yellow
pages is a central service, but future designs will support a
distributed and fault-tolerant service.

6.1 Information Flows
Since process types and their required inputs are not situ-

ation specific, and the request from within a situation assess-

2Akka’s webpage: http://akka.io/.

Figure 5: Two target objects move over time in the area of inter-
est (the red and yellow dots). There are five sensors, S1−S5, and
the task management ensures a clean separation of information
flows as two different target objects cross paths and need different
data from the same sensors.

ment is, additional filtering is required on top of the basic
search provided by the yellow pages, namely negotiation.
After a list of potential information suppliers is requested
from the yellow pages, the requester sends its criteria (e.g.
location, maximum response time) to participate in the in-
formation flow to the suppliers. The suppliers will match
the criteria against their own settings and decide if they can
participate in the proposed information flow, by replying
with a accept or reject. The requester now has a set of rele-
vant suppliers and can continue with his specific task. This
negotiation procedure is a process running separately from
the actual algorithm to reduce interference.

Arrangements to work together on a specific topic for a
specific situation (contracts) established in time step t may
or may not be useful in the next time step t+1, depend-
ing on the algorithm and the situation. As an extension
to the above described negotiation procedure, reevaluating
active contracts allows an updated set of criteria to keep
the list of suppliers up to date with respect to relevance.
In other words, when the process decides that the criteria
for the input data have changed, the negotiation procedure
is repeated; existing contract are reevaluated and potential
new information suppliers are considered. The negotiation
allows the system to only connect to the relevant resources,
reducing the communication links.

Filtering on the relevance of suppliers is an important step
in the creation of information flows. However, since security
domains tend to cover large areas it is unlikely for a single
information flow to be active in the entire system. With
multiple information flows, their communication paths are
expected to cross every now and then. By introducing task
management, we keep track of the active tasks of every ac-
tor, where a task is a wrapper around a local instance of the
process that is part of a specific information flow. Any re-
ceived data is routed by the task management to the correct
task, the task in turn needs to transfer the data to the cor-
rect part of the process. As illustrated in Figure 5: object
one on Track 1 is covered by sensors S1 - S5; as object 2

183

on Track 2 crosses the path of object 1, they can both use
the data from the same sensors without mixing the actual
information flows.

Since both the negotiation and the task management func-
tionality are agnostic to that of the processes, the framework
require each process to be wrapped inside a container of
generic components (the orange box in Figure 4). The con-
tainer exists of a task management, the negotiation, an in-
terface with fixed set of process calls, and the yellow pages
mechanism (the yellow box). Each process is required to
implement a common interface, accessible by the task, with
fixed structure to communicate with other processes, using
primitives like request for input data, receive input data,
and report output data. As the container is agnostic to the
implementation of the process, a few configuration parame-
ters, like input and output data formats used by the process
(described in more detail in section 7), allow the framework
to be adapted to many situations.

6.2 Scaling up
For large-scale scenarios, like decision support for secu-

rity domains usually are, the framework has to be scalable
to run hundreds or thousands of processes that are scattered
across big areas (like a country’s road network). Akka al-
ready has support for a large distributed setup, i.e., using
multiple compute nodes for hosting and processing the ac-
tions of thousands of actors, as well as efficient asynchronous
communication between actors.

Increasing the number of sensors, S, and/or the number
of objects being tracked, N , leads to a proportional increase
in the number of processes, and therefore actors. Scaling up
the number of processes is relatively easy: once the yellow
pages system contains the addresses of the actors running
the desired process type, any process can exchange data on-
demand with other processes. Our current implementation
of the framework uses a central yellow pages service acces-
sible by all running actors, this service can easily store tens
of thousands of addresses, without any penalty on perfor-
mance. Future implementations will have a distributed yel-
low pages, thus avoiding any potential bottleneck caused by
quick developing scenarios, where a lot of processes require
resource localization very often.

The components of the framework have a small footprint,
and the communication over per process is small as well;
however, the interaction of all these actors can pose scalabil-
ity challenges to the system. Meaning, when Tcommunication

becomes the dominant factor in Equation 3, thus the com-
munication overhead exceeds the computation times. To
further reduce the framework’s overhead, each actor runs
its different tasks concurrently, by spawning more actors.
The implementation of a process can apply a similar strategy
when it requires a parallel solution, to improve performance.

In summary, our choice for Akka as a backbone of our
framework, as well as the distribution of processes over ac-
tors, the simple, query-driven design of the yellow pages
system, and the on-demand activation and deactivation of
the inter-process links allow for smooth scaling up of the sys-
tem. The use of parallel and distributed computing, as well
as the concurrent design of processes, allows our framework
to reach high performance.

Figure 6: The process configuration file of a Licence Plate Cam-
era that requires the target object’s license plate and the area of
interest (that will be used in the negotiation phase). Its response
is a location, a timestamp and a certainty-of-observation value.

7. FEATURES AND USABILITY
To be applicable for a variety of decision support scenar-

ios, our framework is designed to require little setting up
effort for different scenarios. Because each process requires
the same set of basic components – the means to find other
resources and the actual communication to these resources,
these components (described in section 5) do not have to
be altered in any way. What the components do require is
a configuration of inputs and outputs. In other words, the
inputs and outputs define a resource type.

7.1 Configuration
The system configuration is the key element that allows

the whole system to function, since it describes the type of
resources in the system, and their potential interconnections
(i.e. the output of a process is a potential input/resource for
other processes). It further describes the format in which
data is delivered by specifying the parameters of requests
and answers; these parameters form a sort of standard of
communication between processes, which ensures coherent
data interpretation.

For example, at high level, a Licence Plate Camera com-
ponent type is defined by a license plate and the coordinates
of an area of interest as inputs, and the location of the li-
cense plate as output. Figure 6 shows an example of how the
configuration file of the Licence Plate Camera surveillance
process looks like. The license plate is stored in the License-
Plate variable in the request for data, to be able to filter
its surveillance data. The camera produces the observed
location plus a value reflecting the certainty of the obser-
vation. The second value in the request (AreaOfInterest)
can be used in the negotiation phase. Next to the variables,
arguments can be passed to the process, like the position
of a device and the procedure for connecting to it. Since a
camera does not require any input resources, no variables of
this type are shown in the example, but the configuration of
input variables uses a syntax similar to that of the output
variables.

7.2 Simulation
To test and evaluate the system, a simulator is used to

mimic the real world. This simulator generates objects (ve-
hicles in the case of the tracking scenario) that randomly

184

Figure 7: The simulation randomly generates M objects, ex-
cept for a few ”known” objects (top left). The objects (the blue
lines) move through the world while the sensors (the red areas)
periodically check the objects in their line of sight.

Figure 8: Screenshot of the operator view, showing the predicted
next position of the requested car using a heat map.

move through an area, following context information in the
form of a road map.

When starting the simulator, different parameters can be
set - e.g., the number of objects in the environment and a
set of objects with their starting positions. For example, ve-
hicle with license plate XX-00-YY should start at position
A. Next to this required vehicle, the simulator should fill
the area with other random vehicles up to a total of N ob-
jects. With the use of context data (e.g. road maps, traffic
information, obstruction due to construction) all N objects
navigate through the environment using random choices of
turns.

In the context of target tracking, each sensor connects
to the simulator, requests all objects within its range, and
applies its own filter on this subset of objects to try and
find the objects it is asked to look for, similar to how it
will operate in real-life situations. Figure 7 illustrates the
simulated world, using the configuration from the top left
corner of the image to generate 200 objects of which only 3
have a known starting position, the rest receive a randomly
generated starting position and random license plate. Figure
8 shows an example how the result of the tracking system can
be used to help the operator make a decision, by showing a
heat map of the predicted movements based on the observed
surveillance data. Where the heat map is constructed of a
set of points, each with a likelihood of the target being there,
displayed with a colour indicating the likelihood as warmth
(red: very likely, blue: not likely).

Figure 9: From left to right: a synthetic scenario with one junc-
tion, a more complex synthetic scenario, and a real life scenario
of a small city.

For the setup of the simulator multiple information and
configuration files are required: (1) files or database contain-
ing the context data, (2) the set of structured objects, and
(3) some tuning parameters (e.g. number of noise objects,
the frequency of updating the objects, the maximum speed
of an object).

8. VALIDATION
For evaluation, we use the specific case-study of target

tracking in urban environments and we focus on correctness.
The idea for this validation is to change the environment
(i.e. the road map) to a case that has known results - that
is, it is either obvious or known in advance how the situation
evolves and must be resolved. If correct, the simulator will
match the ground truth in its behavior.

At the moment, no ground truth data is available (and
generating it is another research problem in itself). There-
fore, to validate the correct functionality of our simulator
and system, we use synthetic scenarios. These synthetic
scenarios are simplified environments - e.g., a main road
with a single junction, were it splits into two side roads
(left most image in Figure 9). In such cases, a full 1-to-1
comparison can be made between the expected results and
those automatically calculated. When we observe that the
tracker properly follows the car into the right direction, the
communication between sensors, context bank and tracking
algorithm is correct. As for the decision model, it should
choose to close down the one side road and not both or the
main road, to actually minimize the impact on normal traf-
fic. Once these synthetic microtests are passed correctly, we
further validate against realistic scenarios, which use real
road maps and data (two examples are shown in Figure 9).
In this case, validation is done by randomly sampling inter-
mediate results and comparing them against the real-world
and/or simulated results.

We note here that, the system we have built so far works
correctly and fully automated for the simple microtests. Sample-
based validation for larger synthetic cases is work in progress.
Furthermore, we note that empirical validation cannot guar-
antee the full correctness of the system, but rather its com-
pliance to the expected outcome for a large number of (sim-
ple) situations. For example, see Figure 10: the simulator
correctly reads the data from the sensors and computes the
predictions for the future position of the tracked object, but
it can only take a clear decision in the situation on the left,
not in the situation on the right.

We conclude that the simulator is accurate in following
the targets on the map, which essentially proves that it is
able to manage several processes and sensors correctly. We
emphasize that this matches its goal to support decision

185

Figure 10: Left: the simulator correctly predicts the trajectory
of the object (high intensity on the heat-map); a decision can be
made to shut off the road before the junction. Right: the simu-
lator detects the T-junction and predicts both rows as probable
destinations. No single-road can be selected to be closed before
the a new measurement is made.

making by providing the operator enough data to make an
informed decision based on high-probability predictions.

9. PERFORMANCE ANALYSIS
For the framework to be applicable in the targeted security

domains, scalability is mandatory. Therefore, we present a
first attempt to analyze the scalability of the system.

Our metrics for scalability are processing time and infor-
mation transfer time. Processing time is defined as the time
between arrival of new information and the time an (up-
dated) output is ready. For the transfer time, the definition
is less straightforward, because it could involve more than a
mere exchange of information from A to B. Thus, to transfer
information in a situation where the processes are already
connected, the transfer time equals the time to exchange the
information (exchange cost). To transfer information when
no connection exists, the transfer time includes both the
time to find potential receivers and establish a connection
(negotiation cost), and the actual sending of the informa-
tion (exchange cost). We therefore define the transfer time
as the sum of the negotiation cost and data exchange cost,
where the negotiation cost for an established connection is
zero.

For measuring the processing time of the system we ran
experiments with varying numbers of sensors (S) and tracked
target objects (N) between 1 to 30. In each experiment, we
simulated the movement of 50 objects randomly through an
urban environment (see the rightmost scenario in Figure 9)
to provide the sensors with data. We position the sensors to
cover the whole area, to ensure a known number of connec-
tions (meaning the negotiation has a known outcome namely
all sensors will be connected).

Running an experiment with S = 5, N = 5 means that 5
objects (out of the total 50) are tracked during the whole
experiment, and all 5 of the validation blocks receive in-
formation from each of the 5 sensors active in the system.
Projecting this setup on the pipeline of Figure 3 we can
calculate the number of transmitted messages for each new
output, namely S+4 messages: from each sensor, the move-
ment prediction and the context collection to the validation,
in between the two validation blocks and one from validation
to the action suggestion step. So in a setup of S = 5, N = 5
we have 5 × (5 + 4) = 45 messages for each iteration. For a
large setup of S = 30, N = 30, we have 1020 messages each
iteration. Based on these numbers we expect an exponential
growth in communication time.

Figure 11: Processing time in seconds for target tracking – time
from arrival of new surveillance data to the time a new output is
ready, using 1 and 8 processors. Note the increasing number of
sensors S and tracks N, where each sensor connects to all available
tracks.

For the experiments we used two hardware configurations:
Name Clock Freq. Processors

single-core Intel Xeon 2.5GHz 1 core
CPU E5-2450

multi-core Intel Xeon 2.5GHz 8 cores
CPU E5-2450

Figure 11 shows the median processing time of our simu-
lation over 1000 iterations.

We observe that already with a single sensor and track
the multi-core configuration (8 processors) outperforms the
single-core configuration (1 processor), since the different
blocks in the pipeline can now run in parallel allowing, for ex-
ample, a next iteration to start before the previous finished.
Furthermore between S = 1, N = 1 and S = 20, N = 20
the processing time increases with only 1.5 seconds against
336.5 seconds for the 1 processor experiment. These perfor-
mance numbers demonstrate that (a) performance is chal-
lenging for a system with relatively low density of objects,
tracks, and sensors, and (b) that our proposed decision sup-
port system is able to make use of system parallelism. For
the S = 30, N = 30 experiment, both hardware configura-
tions show a huge increase in processing time, which is not
surprising given the fact that we move from 480 to 1020 mes-
sages per iterations and the number of processing blocks in
this setup adds up to 151 blocks. Clearly, although our sys-
tem can still scale to cope with such data-intensive, complex
cases, the time-to-decision can becomes unacceptable. To
address this challenge, our current work focuses on increas-
ing system efficiency through better parallelisation strate-
gies.

We also note that gathering the results from the S =
30, N = 30 scenario on the single-core configuration was
very difficult because only 25% of the iteration finished suc-
cessfully, due to the lack of computation and/or memory

186

resources. It is important to note that no such issues ap-
peared when switching to the 8-core configuration. These
results demonstrate both the importance of scalability for
such decision support systems, and the ability of the pro-
posed framework to automatically use more resources, when
available.

10. CONCLUSION
In the security domain, many complex situations need to

combine unstructured data and complex processes to effec-
tively support the decisions of a human operator. Simi-
lar scenarios (with even larger variability and complexity)
emerge today in the Internet-of-Things (IoT) domain.

In this work, we presented a generic, scalable framework
for decision support in complex situations. Our contribu-
tions are: (1) identifying the functional and computational
requirements of such a framework, (2) proposing a first ar-
chitecture for this framework, (3) implementing a first func-
tional prototype for semi-automated decision support, and
(4) defining and testing validation scenarios for surveillance
applications.

Our results so far are promising in terms of correctness
and simple-case performance. Our immediate future work
focuses on complex scenario implementation and testing,
thus identifying and tackling the complex scalability chal-
lenges and boundaries for real situations. Furthermore, we
currently investigate the applicability and the limitations of
our framework for IoT applications.

11. REFERENCES
[1] C. Hewitt, P. Bishop and R. Steiger. A Universal

Modular ACTOR Formalism for Artificial Intelligence,
IJCAI, pp 235âĂŞ245, 1973.

[2] J. Burns, A formal model for message passing systems,
Computer Science Department, Indiana University,
1980

[3] R. Sprangue, A framework for the development of
decision support systems, MIS, pp 1-26, 1980

[4] G. Agha, ACTOR: A Model of Concurrent
Computation in Distributed Systems, MIT Press series
in artificial intelligence, 1986

[5] F. Gustafsson, F. Gunnarsson, N. Bergman, U. Forssell,
J. Jansson, R. Karlsson and P. Nordlund, Particle
Filters for Positioning, Navigation, and Tracking IEEE
Transactions on Signal Processing, 50(2):425âĂŞ437,
2002.

[6] A.Penders, G. Pavlin and M. Kamermans, A
collaborative approach to construction of complex
service oriented systems, IDC, pp 55-66, 2010.

[7] S. Tasharof, P. Dinges and R. Johnson, Why Do Scala
Developers Mix the Actor Model with Other
Concurrency Models?, ECOOP, pp 302âĂŞ326, 2013.

[8] H. Koen, P. de Villiers, G. Pavlin, A. de Waal, P. de
Oude and F. Mignet, A framework for inferring
predictive distributions of rhino poaching events through
causal modelling, Fusion, 2014.

[9] R. Claessens, A. de Waal, P. de Villiers, A. Penders, G.
Pavlin and Karl Tuyls, Multi-Agent Target Tracking
using Particle Filters enhanced with Context Data,
AAMAS, 2015

[10] A. Rosà, L. Chen and W. Binder, Profiling Actor Utiliza-
tion and Communication in Akka, Erlang, pp 24-32, 2016

187

