DESIDE:Discrete Event Simulation Developers
Environment

Benny Mathew

Dheeraj Chahal

{benny1.m|d.chahal}@tcs.com
TCS Innovation Labs
Mumbai, India

ABSTRACT

Performance prediction of an application early in its Sys-
tems Development Life Cycle (SDLC) is essential due to
stringent application performance Service Level Agreements
(SLAs). Accurate sizing during requirement analysis phase
helps in meeting application SLAs and also in reducing ex-
pensive performance tuning efforts, hardware upgrades and
redesign after the application has been developed and mi-
grated to production environment. There is growing need
to use scientific and accurate application performance pre-
diction techniques to reduce cost and increase profitability.
We present our tool called DESiDE that uses systematic pro-
filing of components of previously developed applications to
accurately size infrastructure for new application during re-
quirement or design phase using discrete event simulation.

Keywords

Performance prediction; discrete event simulations

1. INTRODUCTION

Often it is required to estimate the total cost of imple-
menting an IT solution at the time of requirement analysis.
Cost of the required infrastructure is one of the factors that
contribute to the overall cost of the solution. Estimating in-
frastructure cost accurately when the solution artifacts are
not ready is a challenging task. Infrastructure requirements
are bound by application performance SLAs. Hence applica-
tion performance modeling is essential and inevitable during
the requirement gathering phase.

There exists performance prediction tools like TeamQuest’s
Predictor ' and Netuitive . These tools can be used only
after the system goes live. Some other products like OP-
NET 2 have built in models of web, application and database

lwww.teamquest.com
2www.netuitive.com
3http://www.opnet.com

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICPE’17 April 22-26, 2017, L’Aquila, Italy

(© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4404-3/17/04.

DOL: http://dx.doi.org/10.1145/3030207.3053672

173

servers. However technical architects find it difficult to relate
their application requirements to default options provided in
these products.

Roy et al. [3] proposed a technique to break down exist-
ing applications into components and carry out performance
testing of each of these components followed by analytical
approach to predict performance of new applications using
the data available from these components.

Another popular approach is use of discrete event simula-
tion (DES) for prediction instead of analytical approach so
that systems can be modeled with higher complexity. There
are many freeware and open source tools for DES like JMT
[2] and OMNET *. These tools have enough APTs required
for DES but sometimes there is a need to manipulate the
dependent libraries to perform complex modeling e.g. dy-
namic addition and removal of a resource and all its sched-
uled events, time of day and day of week aware simulations,
metrics like 90 percentile wait times, application code im-
plementation in the simulator etc.

We address these limitations and enhances the capabilities
of the existing DES tools in our tool called DESiDE. DE-
SiDE also has capabilities to carry out several what-if stud-
ies such as how much benefit can be derived by improving
infrastructure specifications or if the workload is expected to
change in future, how that is going to affect the application
performance.

2. DESIDE ARCHITECTURE AND
FEATURES

DESIDE Architecture is as shown in Figure 1. It com-
prises of 4 layers. The interface layer helps connect to differ-
ent input/output modes like XML, Excel (through Apache-
POI library) and databases. The Simulation Model layer
comprising of built-in as well as user created resource and en-
tity models. DESIDE has a few built-in models that can be
reused or extended. The built-in server model has attributes
like number of CPUs, speed factor and queuing discipline.
The supported queuing disciplines are FIFO, LIFO, SIRO
(Service in Random Order), priority, pre-emptive priority
and processor sharing. The built-in load generator model is
used to model workloads in terms of transactions and inter-
arrival times.

The Core Simulation Layer provides libraries to manage,
run and collect statistics required discrete event simulations.
The random variate library supports rich set of continuous

“https://omnetpp.org/

and discrete distributions that help to model random be-
havior of the system. This is particularly useful to model
inter-arrival times, service time, packet size and error con-
ditions. The inherent variation in demand can also be de-
fined in terms of one of the available distributions. Load de-
pendent demand is also supported in DESIiDE using linear,
quadratic, cubic and quartic curve fitting functions defined
in random variate library. The flow between servers is spec-
ified using entity flow APIs provided by the routing library.
If there are more than one destination resource, the rout-
ing library provides four options: probabilistic, RR (Round
Robin), SNF (Shortest Number), and named resource. In
the named resource option, the source server itself specifies
the destination server. The future event library contains the
list of scheduled events and controls the simulation. Metrics
library not only computes mean, variance but also reports
the confidence level.

The CERN’s COLT ° library provides random number gen-
eration and various mathematical libraries that can be used
by end-user to build resource models.

3. MODELING IT SYSTEMS USING
DESIDE

3.1 Modeling IT Servers

We first build resource models representing each tier of an
IT system by extending the built-in server models and cre-
ating models of web server, application server and database
server.

3.2 Component Based Modeling of Workload

We then build a component repository using various ref-
erence IT applications. Transactions of each reference ap-
plication are broken down into smaller components. Ser-
vice demand of each component is then measured with re-
spect to CPU, memory, disk and network utilization. Model-
ing transactions at such granular level promotes reusability.
This means that new transactions can be modelled just by
reusing existing components. These components with their
measured demand are stored in a component repository for
reuse.

3.3 Simulating IT Systems

Once the server models are ready (section 3.1) and the
component repository(section 3.2) is populated with demand
data from many representative applications, we can use them
to predict performance of an application that is still in de-
sign stage. Transactions of the new application are mod-
eled using component repository. The application complex-
ity factor is used to adjust the difference in complexity of
the application and the component used from the repository
for modeling. Likewise, server speed factor is used to adjust
relative speed of the target server as compared to the server
on which measurements were taken.

4. EVALUATION

As an example we show the evaluation of JPetStore [1]
application. We modeled three JPetStore transactions Tx1,
Tx2 and Tx3 in DESiDE using components from component
library and simulated the same with the page sequence and

®https://dst.Ibl.gov/ ACSSoftware/colt/

174

Simulation
Layer

Resource Model Entity Model
Simulation Manager
Routin Metrics and BELT L]
& Statistics
CERN — COLT Library

Figure 1: DESIDE Architecture

Variate

Core Simulation
Layer

= = Measured = Simulated /

7
/ ’

,
7
’/
200 >
P /
150 2
D
100 =

= = Measured === Simulated

&G
&

2

g
S~
~

Response Time [ms)
Response Time (ms)
o
3

@
8
o
S

=)

. Husers 0
(2) (b)
10) (400.00
Measured W Simulated
9
g = = Measured === Simulated 350.00
T = 300.00
E7 <
o 2 75000 -
= 5
=5 2 200.00 -
&2
= - 5
g LT F1000
g 3 =
g, F 10000 —
1 50.00 7' I»
0 . T 1 ooo om (00 W N
0 100 200 300 10 20 30 50 100 150 200 250
¥ Husers N #users

(d)

Figure 2: Measured vs simulation (a) Response time of
Tx1 (b) Response time of Tx2 (c) Response time of Tx3 (d)
Throughput

percentage of transaction mix as described below.

Tx1: HomePage->Searchpage->SearchAction (50%)

Tx2: HomePage->CategoryPage->SelectCategory (30%)
Tx3: HomePage->LoginPage->LoginAction (20%)

The performance comparison of experimental and simula-
tion data using DESIDE is as shown in the Figure 2.

5. REFERENCES

[1] iBATIS JPetStore.
http://sourceforge.net/projects/ibatisjpetstore/.
[2] M. Bertoli, G. Casale, and G. Serazzi. JMT:
Performance Engineering Tools for System Modeling.
SIGMETRICS Perform. Eval. Rev., 36(4):10-15, Mar.
2009.
N. Roy, A. Dubey, A. Gokhale, and L. Dowdy. A
capacity planning process for performance assurance of
component-based distributed systems. In Proceedings of
the 2Nd ACM/SPEC International Conference on
Performance Engineering, ICPE 11, pages 259-270,
New York, NY, USA, 2011. ACM.

