
PerfExt++: Performance Extrapolation of IO Intensive
Workloads

Dheeraj Chahal Mukund Kumar Manoj Nambiar

{d.chahal|mukund.k@tcs.com|m.nambiar}@tcs.com
TCS Innovation Labs

Mumbai, India

ABSTRACT
We present a tool, PerfExt++, for cross platform perfor-
mance extrapolation of IO intensive workloads. The tool is
based on trace and replay mechanism and has the capability
to record and replay the temporal and spatial characteristics
of IO workloads. We show the design and implementation
of PerfExt++, which requires minimal intervention from the
user to predict and extrapolate performance metrics across
platforms.

Keywords
Performance prediction; IO traces; extrapolation

1. INTRODUCTION
Application migration is inevitable when it outgrows the

storage resources allocated to it. The migration process in-
volves moving the application from source system contain-
ing low-end storage devices having high utilization and la-
tency to a newer target system with better storage devices
like high-end hard disk drives (HDDs) or solid state drives
(SSDs). The application migration is a non-trivial and time
consuming process as it requires performance characteriza-
tion of the application on potential target systems.
Trace and replay is a preferred technique as it does not re-
quire deploying the actual application or database on the
target system as performance is dependent on the access
pattern than actual data. Traces are portable and deter-
ministic in nature and hence prove to be a better technique
than modeling techniques in some situations [1]. However,
trace collection tools like strace or blktrace slowdown the
execution of application hence result in overhead at large
workloads or concurrencies (no. of users). One solution is
to collect application traces only at low concurrencies and
then extrapolate for larger concurrencies.
Our contribution is a tool called PerfExt++ that can be
used for performance prediction of IO intensive applications
across multiple target systems containing advanced storage

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICPE’17 April 22-26, 2017, L’Aquila, Italy
c© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4404-3/17/04.

DOI: http://dx.doi.org/10.1145/3030207.3053669

devices. The tool captures traces at low concurrencies on
the source system and replays on target systems. The per-
formance data of traces on target system is extrapolated for
higher concurrencies. Moreover, the approach followed in
the tool does not require deploying applications or databases
on target systems.
The extrapolation using PerfExt++ is based on the assump-
tion that there are no software bottlenecks in the application
of interest and the first bottleneck arises due to the hardware
resource limitations.

2. OUR APPROACH
Our approach consists of three important steps :

1) Systematically collecting the traces of an IO intensive ap-
plication for varying concurrencies on the source system.
2) Replaying the collected straces on the target systems and
collecting the performance data.
3) Extrapolating the performance data for larger concurren-
cies on the target system.
These three steps are implemented in PerfExt++ as below:

2.1 Trace Collection
The IO trace of the application is captured using the strace

utility available in linux systems. Trace contains all IO sys-
tem calls: read(), write(), pread(), pwrite(), open(), close(),
fsync(), lseek(). To capture the trace of an application on
database server, our tool filters all the thread IDs initiated
by MySQL and strace is attached to each of these thread
IDs. A trace file is generated corresponding to each thread
ID. All the trace files are merged and sorted based on times-
tamp value of each system call to maintain the same order of
execution while replaying. IO traces are collected for multi-
ple concurrency levels.

2.2 Trace Replay
Once the trace collection is over, the tool copies all the

database and trace files to a temporary directory on the
target system. Any reference to a database file in the trace is
replaced with the path to temporary directory on the target
system. Traces collected on the source system are replayed
on the target system using IOreplay [3] and performance
data is recorded for each trace replay. Using the timestamp
value associated with system call in the trace, we ensure
that IO calls are executed at the same time interval as in
the original system so that workload is replicated correctly
on the target system.

171

(a) Trace collection view of GUI (b) Response time and bottleneck resource prediction

(c) Throughput and bottleneck resource prediction

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400 450

Th
ro

ug
hp

ut
(T

x/
s)

No. of users

Actual
Predicted

(d) Throughput prediction on SSD for TPCC

Figure 1: PerfExt++ GUI showing trace collection view, extrapolated performance metrics and comparison of predicted and
actual throughput on SSD for TPCC application.

2.3 Performance Extrapolation
For extrapolating the performance data of an application

from small number of users to a large number of users, we use
previously developed tool called PerfExt [2]. PerfExt takes
perfromance data from trace runs on the target system as
input for a small number of users in terms of throughput and
resource utilization. Linear regression and S-curve technique
is used to predict the throughput. PerfExt has been tested
successfully with a number of sample multi-tier applications
and is able to provide accuracy of about 90% in throughput
and utilization metrics. PerfExt has been integrated with
PerfExt++, which has cross platform prediction capabilities.

3. PerfExt++: SALIENT FEATURES
PerfExt++ GUI (Figure 1a) allows user to create a project

and add or create applications for the project.The work-
load details which are essentially the transactions or mix of
transactions can be mapped to the applications created for
a project. Current deployment infrastructure details and
target infrastructure details like server IPs (web, applica-
tion, database etc.), user credentials, storage sub systems
of the source and the target system being used by the ap-
plication of interest are requested from the user. User can
map different workloads to the physical servers. PerfExt++

can be used to collect traces of a particular workload by
attaching to processes running on the source system (Fig-
ure 1a). Traces are archived in the repository on the source
system. Collected IO profile traces are then replayed on tar-
get systems using trace replay feature and performance data
is collected. The tool also provides an interface to monitor
resource utilization in real-time while traces are running.
Both cross-platform and same platform predictions are pos-
sible using embedded extrapolation tool PerfExt. GUI dis-

plays extrapolated performance metrics including response
time, throughput, resource utilization (CPU, Disk) on mul-
tiple servers in a tabular as well as graphical representation
(Figure 1b and 1c).

4. EVALUATION
PerfExt++ has been evaluated successfully for application

migration studies of TPCC1, JPetStore2 and TCS client ap-
plications from low-end HDD to high-end HDD, high-end
HDD to SSDs etc. Figures 1b and 1c shows prediction of
response time for JPetStore application respectively on high-
end HDD using trace from low-end HDD. Figure 1d shows
comparison of predicted and actual throughput on SSD us-
ing trace from HDD.

5. REFERENCES
[1] D. Chahal, R. Virk, and M. Nambiar. Performance

extrapolation of io intensive workloads: Work in
progress. In Proceedings of the 7th ACM/SPEC on
International Conference on Performance Engineering,
ICPE ’16, pages 105–108, New York, NY, USA, 2016.
ACM.

[2] S. Duttagupta and R. Mansharamani. Extrapolation
tool for load testing results. In Performance Evaluation
of Computer Telecommunication Systems (SPECTS)
2011 International Symposium on, pages 69–76, June
2011.

[3] ioreplay. http://code.google.com/p/ioapps/wiki/
ioreplay,2016.{Online;accessed-2016-08-06}.

1http://www.tpc.org/tpcc/
2https://github.com/mybatis/jpetstore-6

172

