
Generalized Synchronizations and Capacity Constraints
for Java Modelling Tools

Giuliano Casale
Imperial College London, UK
g.casale@imperial.ac.uk

Mattia Cazzoli
Politecnico di Milano, Italy

mattia.cazzoli@mail.polimi.it

Shuai Jiang
Imperial College London, UK

shuai.jiang14@imperial.ac.uk
Vitor S. Lopes

Imperial College London, UK
v.soares-

lopes@imperial.ac.uk

Giuseppe Serazzi
Politecnico di Milano, Italy

giuseppe.serazzi@polimi.it

Lulai Zhu∗

Imperial College London, UK
lulai.zhu15@imperial.ac.uk

ABSTRACT
Java Modelling Tools (JMT) is a suite of performance evaluation
tools based on queueing network models. Recently JSIMgraph, the
JMT discrete-event simulation tool, has been extended to express
features of current computing systems such as Big data applica-
tions. The goal of this demonstration is to showcase novel support
in JMT for fork-join synchronization, dynamic scaling of paral-
lelism levels, memory and group capacity constraints.

Keywords
Queueing network, simulation, synchronization, JMT

1. INTRODUCTION
Java Modelling Tools (JMT) is an integrated framework of tools

for performance evaluation of computer systems based on queueing
network models [1]. This features primarily discrete-event simula-
tion and mean value analysis algorithms, among others. In the most
recent releases (JMT 0.9.4 and 1.0.0) we have substantially ex-
tended the expressiveness of the simulation models in JSIMgraph,
JMT’s queueing network simulator, in order to simplify the mod-
elling of complex systems with advanced synchronization types
and more flexible capacity constraints. While still classifiable as
queueing networks, the resulting models extend the types of nodes
that are typically considered in queueing network theory. More-
over, certain components that facilitate the modelling of specific
technologies such as Hadoop/MapReduce have been added to JMT.

1.1 Advanced Synchronization Strategies
JSIMgraph has supported since several years the definition of

fork-join subsystems. Two simulation components, the Fork and
the Join nodes, disassemble a job into tasks then re-assemble them
∗The authors thank Phumin Phuangjaisri and Marco Gribaudo for
contributions and helpful discussions. This research has been par-
tially funded by the European Union’s Horizon 2020 research and
innovation programme under grant agreement No. 644869 (DICE).

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICPE’17 April 22-26, 2017, L’Aquila, Italy
c© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4404-3/17/04.

DOI: http://dx.doi.org/10.1145/3030207.3053666

in the original job, respectively. More precisely, once a job enters
a Fork, it generates an identical user-customizable number of tasks
to each output link. Later on, the Join node waits for all such tasks
to arrive in order to merge them back in the original job. An ex-
tension of this mechanism was provided with two main goals: i)
allow the customization of the number of tasks sent on each indi-
vidual link outgoing from the Fork node; ii) allow flexibility in the
synchronization policy adopted at the Join node.

1.1.1 Advanced Fork Strategies
The new Branch Probabilities Fork Strategy enables the user to

specify the probability that the k-th outgoing link from the Fork
node will receive one or more tasks. For each link, the user may
also specify the distribution of the number of tasks sent on that link
for each forked job. A different set of probabilities can be specified
for each job class. Such fine-grained settings allows to precisely
control the generation of synchronized batches going from a source
(the fork) to processing systems.

The Random Subset Fork Strategy allows users to specify the
probability that the Fork sends tasks to k outgoing branches, which
will be then chosen randomly among the n available output branches
of the Fork. This abstraction may be useful, for instance, to repre-
sent systems where work is replicated across a subset of servers to
mitigate the risk of contention.

Two additional fork strategies, called Class Switch and Multi-
Branch Class Switch strategies, allow JSIMgraph to instantaneously
change the class of all the sibling tasks, differentiating it from the
class of the job from which they were forked. In the Multi-Branch
case, a different mix of classes can be generated on each outgoing
link of the Fork.

1.1.2 Advanced Join Strategies
The standard join strategy waits for all the forked tasks to wait at

the same join node prior to merge them all and output the original
job. Novel variants of this policy are the Quorum strategy, which
allows Join nodes to wait only k out of n forked tasks prior to
re-assembling the original job, ignoring the subsequent arrivals of
other tasks from the same job, and the Guard policy which further
refines this notion by allowing to wait for a specific mix of jobs,
where a mix is a given combination of job classes.

1.1.3 Semaphore Synchronization
The Semaphore is a new JSIMgraph node inspired by the slow

start mechanism present in Hadoop/MapReduce (HMR). In HMR a
job is sequentially processed in map and reduce phases. A number
of key-value pairs are produced at the end of the map phase, then

169



sorted and shuffled, and finally delivered to the reducers. With slow
start, the reducers can reduce network contention by starting to col-
lect some of the produced key-value pairs before the map phase is
concluded. This mechanism is triggered when a certain percentage
of the total number of mappers has completed.

Assuming to represent key-value pairs as forked tasks of an high-
level HMR job, one may attempt to model slow start using a Quo-
rum strategy, where k out of n key-value pairs are transferred to the
reduce phase. This is however incorrect since the Quorum strategy
would ignore the remaining n − k tasks, removing them from the
simulation once they reach the Join node. Thus the first k tasks
would be merged into a job circulating outside the Fork-Join sec-
tion sent to the reducers, whereas n− k valid tasks are still cycling
inside the section while finishing service at the mappers.

The Semaphore instead provides a node that temporarily blocks
a set of tasks inside a Fork-Join subsystem. For each forked job
the Semaphore will wait for exactly k tasks. Once they have all
entered the Semaphore, they will be released as tasks, i.e., without
any Join. Any subsequent task forked from the the same job that
arrives to the Semaphore is not delayed.

1.1.4 Scaler
The Scaler is a new JSIMgraph node motivated by the problem

of modelling the Directed Acyclic Graph (DAG) used to model
Apache Spark jobs. Spark jobs comprise a series of operators on
data, arranged according to a DAG. DAGs are split into map and
reduce stages that are then scheduled for execution.

The DAG structure of Spark jobs can be captured by JMT: a
network of queues normally represents the processing elements,
whereas the degree of parallelism in each stage and the synchroni-
sation between stages may be controlled using the advanced Fork-
Join policies. However, it is foreseeable that large DAGs where
stages see frequent changes in the parallelism level of the applica-
tion may become cumbersome to model.

The Scaler addresses this design issue by providing in a single
element a Join followed by a Fork. Hence, the Scaler receives k
tasks and outputs n tasks. The advantage of the Scaler is to offer
in a single element the ability to change parallelism level from k
to n, instead of having to include separate Join and Fork elements,
which would complicate the graphical representation of the model
and slow down the simulation.

1.2 Advanced Capacity Constraints
A finite capacity region (FCR) is a subnetwork with constraints

on the number of jobs that can be inside it at any given time. Such
limits can refer to the total number of jobs in the network, or to
the jobs of specific classes, or both. This has been a standard ele-
ment of JMT since the early releases, which can be used to model
features such as resource pooling and software limits to thread par-
allelism. However, in practice it is often the case that also memory
is a limiting factor in deciding whether to schedule a thread by a
software system or not. Moreover, constraints may exist only to
prevent only certain specific mixes of classes to run altogether. The
latest version of JMT supports these extensions.

1.2.1 Memory Capacity Constraints
A memory constraint associates to each class a memory weight.

Each FCR has a total memory capacity M which is temporarily
depleted by jobs that enter the FCR. If the kth job inside the FCR
carries a memory weight mk, then the available memory is M −∑

k mk. A new job is admitted to the FCR only if it satisfies all
finite capacity constraints and its memory requirement fits in the
available memory. Note that the notion of memory is here entirely

Figure 1: JSIMgraph template: RAID disk modelling

deterministic, as JMT does not support yet the definition of a time-
varying memory weight. Clearly, this new feature can help in mod-
elling the memory behavior of software systems. A new metric,
called FCR Memory Weight, provides the current memory value of∑

k mk, i.e., the currently allocated memory inside the FCR.

1.2.2 Group Capacity Constraints
As mentioned, a FCR constraints the total and per-class number

of jobs inside the region. However, it is possible that in some cases
the user wants to constraint certain groups of jobs belgoning to a
subset of classes. For example, one could set that if a group is
formed by two classes A and B and a capacity constraint is set to 5
jobs, then the sum of A and B jobs inside the FCR must not exceed
5 at any time. This feature is helpful in particular for cases where
a single class A is split into multiple classes A0, A1, . . . by means
of a ClassSwitch simulation element. By listing the said classes
in a group, a constraint can be put in place effectively limiting the
parallelism of class A without having to change all classes Ai back
into A, prior to entering the FCR.

1.3 Templates
Templates are a new feature for JSIMgraph. They are download-

able modules used to automate the sequence of operations required
to create a complex simulation model for a specific technology.
They can be dynamically retrieved either from the official server
from servers run by third parties who want to enrich the JMT func-
tionalities. Currently, the offered templates range from creation
of three-tier application models, to modelling of RAIDs and the
CEPH storage system. A user interface allows to browse a tree of
the available templates, as shown in Figure 1.

2. REFERENCES
[1] M. Bertoli, G. Casale, and G. Serazzi. Java modelling tools:

an open source suite for queueing network modelling and
workload analysis. In Proc. of QEST, 119–120. IEEE, 2006.

[2] M. Bertoli, G. Casale, and G. Serazzi. The jmt simulator for
performance evaluation of non-product-form queueing
networks. In Proc. of the 40th Annual Simulation Symposium
(ANSS), 3–10, 2007.

170




