
(h|g)opper: Performance History Mining and Analysis

Christoph Laaber
Department of Informatics

University of Zurich
Switzerland

laaber@ifi.uzh.ch

Philipp Leitner
Department of Informatics

University of Zurich
Switzerland

leitner@ifi.uzh.ch

ABSTRACT
Performance changes of software systems, and especially
performance regressions, have a tremendous impact on users
of that system. Historical data can help developers to rea-
son about how performance has changed over the course of
a software’s lifetime. In this demo paper we present two
tools: hopper to mine historical performance metrics based
on benchmarks and unit tests, and gopper to analyse the
data with respect to performance changes.

1. INTRODUCTION
Performance is an important factor when building and

maintaining software systems. Therefore performance chang-
es - either regressions or improvements - are of interest to
software developers. Nevertheless performance changes, in
particular regressions, are often not recognized for a long
time [2]. While application performance management tools
such as NewRelic1 provide monitoring capabilities of de-
ployed systems, performance testing presents the developer
early feedback about a system’s performance. However, per-
formance testing is not as well understood among develop-
ers as unit testing is [3]. Statistical methods such as t-tests
and change point analysis provide the means for detecting
performance changes. A different approach to looking at
performance test results is applying a cost model to detect
potential performance regressions [1].

Reasoning about performance changes over a software’s
lifetime might give developers insight into which kind of
changes led to a particular change. Ideally developers can
deduct which changes can possibly introduce performance
changes and use that information to their advantage.

This demo paper introduces two command-line tools for
mining historical performance data based on tests and analys-
ing the acquired results with respect to performance changes.
Both, hopper2 and gopper3 are available online.

1https://newrelic.com
2https://github.com/sealuzh/hopper
3https://github.com/sealuzh/gopper

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICPE’17 April 22-26, 2017, L’Aquila, Italy
c© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4404-3/17/04.

DOI: http://dx.doi.org/10.1145/3030207.3053662

Figure 1: Sample Workflow

2. MINING PERFORMANCE DATA
Figure 1 depicts an example workflow for mining and

analysing historical performance data, similar in idea to the
methods used in previous research [1]. The first stage - on
the left in Figure 1 - of the presented tool chain is hopper,
a tool to extract historical performance data of Java soft-
ware projects. hopper (i) walks through the history of a
project version by version, (ii) retrieves performance met-
rics by executing tests for each version, and (iii) stores these
results in a file. The supported types of applications are de-
scribed along three dimension: build-system, version-type,
and test-type. Maven (MVN)-based projects are supported
with version-types based on git commits and Maven ver-
sions. Gradle-based projects are only supported with git
commit version-types. hopper can currently execute two
types of tests: Java Microbenchmarking Harness (JMH) per-
formance benchmarks4, and JUnit tests.

Input.
As input, hopper takes a configuration file, a set of pa-

rameters and a project (as part of the config-file). The
config-file defines the name and location of the project, test-
type-specific parameters and which version range the min-
ing should be applied to. Program parameters specify con-
fig and output file path, which test-type to execute, which
version-type and which build-system to use. In addition
more fine-grained options are available, such as (i) whether
versions that did not change executable code are skipped,
(ii) execution of every xth version, (iii) whether the versions
are incrementally build, and (iv) if only a subset of all tests
should be executed.

The bash command in Listing 1 executes the unit tests of
protostuff 5 for every 5th chronological git version. A config-
file similar to the one in Listing 2 is required. It declares
a version range from 277eded to 5bbf909. The tag execs

specifies the number of test executions per version. For ex-
ecuting benchmarks, the tags jmh_root for the JMH tests

4http://openjdk.java.net/projects/code-tools/jmh/
5https://github.com/protostuff/protostuff

167

Listing 1: hopper Bash Command
python . / Hopper . py −f /tmp/ con f i g . xml \

−o /tmp/ r e s u l t s . cvs −t un i t −b commits \
−−sk ip 5

Listing 2: hopper Config-File
<h i s t o r i a n type=”MvnCommitWalker”>

<p r o j e c t name=”p r o t o s t u f f ” d i r=”/tmp/ps ”>
< j u n i t><execs>20</ execs></ j un i t>
<ve r s i on s>

<s t a r t>277 eded</ s t a r t>
<end>5bbf909</end>

</ v e r s i on s>
</ p r o j e c t>

</ h i s t o r i a n>

and jmh_arguments for the JMH command line arguments
(e.g. warmup/measurememt, forks) are required.

Output.
hopper saves the metrics obtained from the test executions

to a CSV-file. Each line represents the information of a
single execution, consisting of the version of the software
(e.g. the commit hash), the executed test and the measured
performance metric (e.g. throughput or runtime).

3. ANALYSING PERFORMANCE DATA
The second stage - on the right in Figure 1 - deals with

data transformation and analysis with respect to perfor-
mance changes.

Subprograms.
gopper currently implements six subprograms: (i) merge

- merging multiple performance metric files into a single
file, (ii) filter - filtering test results by minimum mean
value, minimum median value and/or minimum versions,
(iii) analyse - analysing test results for performance changes
with either Bayesian Change Point Analysis or Welch’s t-
test, (iv) toCangePoints - transforming test results to change
points, (v) plot - plotting test result data with (if available)
their change points, and (vi) save - saving the transforma-
tions and change points to files.

Input.
Input to gopper is a config-file and a non-empty list of sub-

programs. The config-file defines: (i) "In" - the input file(s),
(ii) "Out" - the output files for the transformed test results,
identified change points and printed plots, (iii) "Analyse"

- the analysis function and their parameters for analysing
performance changes between consecutive project versions,
and (iv) Transform - the transformation functions and their
parameters for filtering test results.

Listings 4 and 3 show a simple example that use the result
from stage 1 (see Figure 1: Performance Results), filter those
where the mean value is below 0.01, calculate the change
points, plot the test results (see Figure 2), and save the
transformed test results and change points.

Output.
Three kinds of output are supported by gopper : plots,

test results and change points. Plots are either time series
with a single performance value per version (e.g. unit test
execution times), or box plots with multiple values per ver-
sion (e.g. throughput benchmarks). The plot in Figure 2
shows the performance results for one particular unit test.
On the y-axis we see the execution time in seconds and the
x-axis shows the different versions from older (left side) to
newer (right side). The analysis function (t-test) discovered
a change point between version 714e618 and 1dfc05f, which

Figure 2: Unit Test Execution Plot with one Change
Point

Listing 3: gopper Bash Command
gopper −c /tmp/ con f i g . j son \

f i l t e r ana lyse toChangePoints p l o t save

Listing 4: gopper Config-File
{ ”In ”: [”/ tmp/ r e s u l t s . csv ”] ,

”Out ”: {
”TestResu l t s ”: [”/ tmp/ r e s u l t s a l t e r e d . csv ”] ,
”ChangePoints ”: [”/ tmp/ cps . j son ”] ,
”Plot ”: ”/tmp/ p l o t s ” } ,

”Analyse ”: {
”Name”: ” t t e s t ” ,
”Params ”: [0 . 9 9 , t rue] } ,

”Transform ”: [{
”Name”: ”minMean” ,
”Params ”: [0 . 0 1] }]}

is marked in red in the plot. Furthermore gopper supports
saving the transformed input file in the same format (CSV)
as hopper and a JSON file that shows the change points
detected with the corresponding tests it occurred in.

4. CONCLUSION AND FUTURE WORK
hopper calculates performance metrics based on repeated

execution of tests over the history of a system. As a second
step gopper takes that data, analyses it, and plots the re-
sults. For the future, we want to add Infrastructure-as-Code
(e.g. Docker, Chef) scripts to ease the installation process.
The robustness of the statistical tests needs some additional
work, such that reported change points are more reliable.
Moreover we want to focus on reproducible results in virtual
environments, such that parallelization of test executions on
e.g. cloud instances is possible.

5. REFERENCES
[1] Juan Pablo Sandoval Alcocer, Alexandre Bergel, and Marco

Tulio Valente. “Learning from Source Code History to Iden-
tify Performance Failures”. In: Proceedings of the 7th ACM/
SPEC International Conference on Performance Engineer-
ing (ICPE). 2016, pp. 37–48.

[2] Christoph Heger, Jens Happe, and Roozbeh Farahbod. “Au-
tomated Root Cause Isolation of Performance Regressions
during Software Development”. In: Proceedings of the 4th
ACM/SPEC International Conference on Performance En-
gineering (ICPE). 2013, pp. 27–38.

[3] Philipp Leitner and Cor-Paul Bezemer.“An Exploratory Stu-
dy of the State of Practice of Performance Testing in Java-
Based Open Source Projects”. In: Proceedings of the 8th
ACM/SPEC International Conference on Performance En-
gineering (ICPE). 2017.

168

