
SQL Query Volume Performance Estimation Tool(DEMO)

Rekha Singhal
TCS Research
Mumbai, India.

rekha.singhal@tcs.com

Chetan Phalak
TCS Research
Mumbai, India.

chetan1.phalak@tcs.com

ABSTRACT
Typically, applications are tested on small data size for both
functional and non functional requirements. However, in
production environment, the applications, having SQL queries,
may experience performance violations due to increase in
data volume. There is need to have tool which could test
SQL query performance for large data sizes without elon-
gating application testing phase. In this paper, we have
presented a tool for estimating SQL query execution time
for large data sizes without actually generating and loading
the large volume of data. The model behind the working
of the tool has been validated with TPC-H benchmarks and
industry applications to predict within 10% average predic-
tion error. The tool is built using underlying popular open
source project CoDD with better project management and
user interfaces.

1. INTRODUCTION
Most of the reporting and analytic applications constitut-

ing SQL queries may experience performance degradation
in production environment. One of the prime reason is the
increase in the data volume in production system whereas,
the application was tested on small data size during its de-
velopment. A naive approach to ensure performance assur-
ance is to generate large data size, load it in the database
and execute application’s SQL queries to check the perfor-
mance violations. However, this increases the cost to de-
ployment by elongating the application testing phase and
huge investment in building large size infrastructure in test-
ing environment. There is a need to have tool which could
estimate a SQL query execution time in testing phase for
large data size without actually generating and loading the
large volume of data. In this paper we have presented a tool
which could estimate a SQL query (or set of SQL queries)
execution time for large data sizes in relational databases
without elongating testing cycle time significantly. The tool
may be used by an application developer in testing environ-
ment to estimate a SQL query execution time in isolation

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICPE’17 April 22-26, 2017, L’Aquila, Italy
c© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4404-3/17/04.

DOI: http://dx.doi.org/10.1145/3030207.3053663

Figure 1: Extension to CoDD for SQL Query Per-
formance Estimation

for large data volume without actually generating it in the
same environment. Currently, model is built assuming se-
rial execution of SQL query execution plan, however, work
has been done on extending it for parallel execution as well.
The model behind the working of the tool has been vali-
dated for TPC-H benchmarks and industrial applications to
predict within 10% average prediction error [4]. The output
of model and tool for a given SQL query and projected data
size is shown in Fig 2. The tool has provision for application
project management to manage the testing of different ap-
plication components for different data sizes. The tool has
automated various processes of building and applying the
model for SQL query performance estimation. The tool sup-
ports database volume extrapolation across different types of
relational databases such as Postgres and Oracle. Our tool
is an extension of popular open source project Constructing
Dataless Database (CoDD) [1] as shown in Fig 1. The paper
is organized as follows. Section 2 presents in brief the model
used by the tool for estimating SQL execution time for large
data sizes. Section 3 talks about the tool in detail includ-
ing its features and implementation. Finally the paper is
concluded in Section 4.

2. SQL QUERY VOLUME PERFORMANCE
MODEL

The model for estimating a SQL execution time for large
data volume has following steps.

• Define elementary steps in a SQL query execution plan
as shown in Fig 2. Build models for estimating time
taken by each elementary step, as function of the in-
put(s) data size, in the testing environment- IO model
is built as function of data size for estimating data
access time using Full scan, Index scan, Primary In-
dex and Secondary Index scan [3]. Operator Model

165



Figure 2: SQL query Execution Plan with Estimated
Execution Time and Elementary Steps

is built as function of data sizes of its inputs for Ag-
gregate, Hash Join, Sort, Sort Merge Join and Nested
Loop join [4]. Synthetic SQLs are executed on small
data size to collect IO access and SQL operator specific
measurements in the underlying database.

• Build database volume emulator for the projected data
size with given data growth patterns across relational
tables [2, 1].

• For each SQL query- Get the SQL query execution
plan from DB volume emulator.Map the SQL execu-
tion plan to set of the defined elementary steps. Es-
timate input(s) data size for each elementary step i.e.
cardinality [4]. Predict the SQL query execution time
as summation of estimated execution time of each of
its elementary steps.

3. TOOL ARCHITECTURE
The tool is divided into two components GUI and Core

engine as shown in Fig 3. User connects to GUI to pro-
vide inputs required for tool execution and receive output
generated by tool. Core engine connects to databases to
set and fetch required content. GUI consists of three sub-
components- ’Repository’ which store environment access
credentials, model’s synthetic SQL queries and scripts for
building model(s), ’Session handler’ manages user’s session
with core engine and ’Output screen’ where user gets out-
put of the tool. Core engine is set of four engines. ’Model
builder’ generates small size database, build model and stores
model parameters in ’Repository’. ’Replicator’ creates con-
tent less replica of testing DB schema, which is called as
emulated schema. ’Statistics Extrapolator’ takes scale fac-
tor as input and extrapolates the emulated schema statistics
by the scale factor. ’SQL response time estimator’ estimates
execution time of set of SQL queries received from the user
and sends the output to GUI for user.

3.1 Features
User Interaction: The tool facilitates easy interface for

interaction with the tool such as Add/remove/open projects
workspace, Enter environment credentials, selective table(s)
volume emulation and different ways of input/output
Platform Independent: The tool is fully developed in
java and distributed in form of jar (java archive) file. All
components of tool including GUI screens, four types of en-
gines and database connectors are developed in java. Tool

Figure 3: SQL Query Volume Performance Estima-
tion Tool Architecture

package also contains other supporting files placed in repos-
itory. This repository contains only text files and jar files.
All these facts make the tool platform independent.
Project Management: The provision of separate project
workspace for different kind of databases or different schemas
of one database helps user to easily distinguish and organize
the various types of work in cohesive unit. Workspaces are
very helpful in cases of complex scenarios when user need
to maintain lots of emulated DBs with variant properties or
configuration for different components of a large application.

4. CONCLUSIONS
In this paper, we have presented a tool architecture for es-

timating a SQL query (or set of SQL queries) execution time
for large data volume in application testing environment.
The tool is based on model which can emulate large data
volume using database statistics and estimate SQL query
execution time using IO access and Operator models as func-
tion of emulated data sizes [4]. The presented tool is an ex-
tensive extension of open source database volume emulator
CoDD [1]. The tool supports project management, platform
independence, database independence and GUI interface.

5. REFERENCES
[1] I. N. Rakshit S. Trivedi and J. R. Haritsa. Codd:

Constructing dataless databases. In In Proceedings of
DBTest, 2012.

[2] R. Singhal and M. Nambiar. Extrapolation of sql query
elapsed response time at application development stage.
In In Proceedings of INDICON IEEE Proceedings, 2012.

[3] R. Singhal and M. Nambiar. Measurement based model
to study the effect of increase in data size on query
response time. In In Proceedings of Peformance and
Capacity CMG, 2013.

[4] R. Singhal and M. Nambiar. Predicting sql query
execution time for large data volume. In In Proceedings
of IDEAS ACM Proceedings, 2016.

166




