
Open Source In-Memory Data Grid Systems:
Benchmarking Hazelcast and Infinispan

Haytham Salhi
hsalhi89@gmail.com

Faculty of Engineering and
Technology

Birzeit University, Palestine

Feras Odeh
ferasodh@gmail.com
Faculty of Engineering and

Technology
Birzeit University, Palestine

Rabee Nasser
rabinasser@gmail.com
Faculty of Engineering and

Technology
Birzeit University, Palestine

Adel Taweel
ataweel@birzeit.edu
Department of Computer

Science, Faculty of
Engineering and Technology
Birzeit University, Palestine

ABSTRACT
In this paper, we studied the performance of two popular
open source distributed cache systems (Hazelcast and In-
finispan) indifferently. The conducted performance analysis
shows that Infinispan outperforms Hazelcast in the simple
data retrieval scenarios as well as most of SQL-like queries
scenarios, whereas Hazelcast outperforms Infinispan in SQL-
like queries for small data sizes.

Keywords
Benchmarking, Hazelcast, Infinispan

1. INTRODUCTION
In computing, a cache is a software component that stores

portions of datasets which would otherwise either take a long
time to calculate, process, or originate from an underlying
backend system [8]. A cache system could be used either
to decrease application latencies or gain additional perfor-
mance [8].

In this paper, the performance of Hazelcast (version 3.6.1)
and Infinispan (version 8.1.2.Final) was studied, with spe-
cific focus on two key factors: number of concurrent clients
and size of processed data. The study focused on the data
retrieval aspects, that they are the most common opera-
tions in the use cases of distributed caches. Yardstick was
used as a primary benchmarking framework [5], however,
an additional mechanism was also developed, to benchmark
distributed caches, to enable capturing the varying number
of clients and data sizes to ensure proper synchronization of
run-times.

Other benchmarking tools have been considered, which

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICPE’17 April 22-26, 2017, L’Aquila, Italy
c© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4404-3/17/04.

DOI: http://dx.doi.org/10.1145/3030207.3053671

some have been specially extended to produce metrics for
database operations within transactions to detect anoma-
lies from workload processing, e.g. ”Yahoo! Cloud Serving
Benchmark” (YSCB) [6, 4] extended to YSCB+T [7]. How-
ever, Yardstick [5] has been chosen because it provides a
more extensible feature-rich open source framework to de-
velop and customize. Also Yardstick provides benchmarks
that are relatively easier and faster to develop than other
frameworks, e.g. Java Microbenchamrking Harness (JMH) [2],
Radar Gun [3], and YSCB [6, 4]. The results show that there
is a clear relationship between the performance of data re-
trieval operations and the number of concurrent clients and
size of data.

2. FACTORS OF INTEREST
The performance of a distributed cache system depends

on several different factors. Since the dependent variable of
interest is the performance of data retrieval operations, in
this experiment, we are particularly concerned with the ef-
fect of two key independent variables as follows: (1) Number
of concurrent clients: 1, 2, 4, 8, 16, 32, 64, and 128. (2)
Data sizes: 100, 1000, 10000, 100,000, and 1,000,000.
The developed benchmarks and shell scripts, used in this
experiment, can be found on our public Github1 repository.

3. BENCHMARKING RESULTS
Figures 1 and 2 draw obtained results, each representing

the behaviour of performance for each of the two studied
systems. The Y-axis represents the throughput (ops/sec),
while the X-axis shows the number of concurrent clients.

For get query, as shown in Figure 1, the throughput of
Infinispan is generally better than Hazelcast. However, for
SQL-like queries, which are more complex than the prim-
itive get query, the throughput of both systems is signifi-
cantly smaller compared to the case for get query. There is
a significant drop in throughput for both systems for changes
in data size from 100 to 100000. The results also show that
the effect of the number of concurrent clients becomes less
significant for larger data sizes.
1https://github.com/ferasodh/
Distributed-Caches-Benchmarking-Experiment

163

http://dx.doi.org/10.1145/3030207.3053671
https://github.com/ferasodh/Distributed-Caches-Benchmarking-Experiment
https://github.com/ferasodh/Distributed-Caches-Benchmarking-Experiment


Figure 1: Behaviour of get operation performance in term
of throughput (ops/sec) as a function of number of clients
(each colour represents a data size; as shown the larger the
data size the smaller the average throughput).

Figure 2: General behaviour of SQL-like performance in
term of throughput (ops/sec) as a function of number of
clients for all data sizes.

4. DISCUSSION
There are several factors that affect the performance of In-

finispan and Hazelcast that could be reasons for performance
bottlenecks. Some of these factors are discussed below:

• Data serialization: For each request a cache system
processes, nearly 20% of the processing time is spent
in serialization and deserialization in most configura-
tions [1], which can be computationally expensive.

• In-memory objects format: In Hazelcast, the de-
fault format is the binary format. However, this for-
mat is not efficient if the application is processing large
number of SQL-like queries, where then serialization
and deserialization happen on the server side [9].

• Indexing is one of the most significant factors in query
performance. Although single-attribute indexes were
added to both systems, the engine for Infinispan, which
is based on hibernate search and Apache Lucene, is
more optimized than Hazelcast default indexing mech-
anism, thus may have resulted in improved perfor-
mance.

5. CONCLUSION AND FUTURE WORK
The above results show that studying performance anal-

ysis of cache systems with dynamically varying number of
concurrent clients and data sizes is critical in determining
a more accurate performance readings. Measuring perfor-
mance with static independent variable or factors may pro-
vide misleading results, particularly in systems where cache
is a critical part of a system function or design. These re-
quire building benchmarking tools that consider such dy-
namically changing variables to reflect and replicate real-life
usage of systems.

In addition, the results show that Infinispan (version 8.1.2.Fi-
nal) outperforms Hazelcast (version 3.6.1) in all the tested
cases except in SQL-like queries with small data sizes. They
show also that the concurrent clients, where each client opens
its own connection, has a considerable impact on the per-
formance of get and SQL-like queries. The data size, on the
other hand, has very small impact on the performance of
get query but large impact on the performance of SQL-like
queries.

Further, based on the mechanism followed in this exper-
iment, a more integrated benchmarking framework, as pro-
posed above, needs to be developed which takes into account
the varying number of concurrent clients and data sizes for
distributed caches. To test more accurately, future work
may include developing new techniques that improves the
performance with respect to data representation and com-
munication protocols.

6. REFERENCES
[1] Infinispan.

http://www.aosabook.org/en/posa/infinispan.html#fn10.
Accessed on: 25/06/2016.

[2] Jmh - java microbenchmark harness.
http://tutorials.jenkov.com/java-performance/jmh.html.
Accessed on: 28/05/2016.

[3] Radargun documentation.
https://github.com/radargun/radargun/wiki. Accessed on:
28/05/2016.

[4] Yahoo! cloud serving benchmark.
https://github.com/brianfrankcooper/YCSB/wiki. Accessed
on: 28/05/2016.

[5] Yardstick - benchmarking framework.
https://github.com/yardstick-benchmarks/yardstick.
Accessed on: 28/05/2016.

[6] Cooper, B. F., Silberstein, A., Tam, E., Ramakrishnan,
R., and Sears, R. Benchmarking cloud serving systems
with ycsb. In Proceedings of the 1st ACM symposium on
Cloud computing (2010), ACM, pp. 143–154.

[7] Dey, A., Fekete, A., Nambiar, R., and Röhm, U. Ycsb+t:
Benchmarking web-scale transactional databases. In
Proceedings of Data Engineering Workshops (ICDEW),
2014 IEEE 30th International Conference on (2014), IEEE,
pp. 223–230.

[8] Engelbert, C. White paper: Caching strategies. Tech. rep.,
Hazelcast Company.

[9] Evans, B. White paper: An architect’s view of hazelcast.
Tech. rep., Hazelcast Company.

164

http://www.aosabook.org/en/posa/infinispan.html#fn10
http://tutorials.jenkov.com/java-performance/jmh.html
https://github.com/radargun/radargun/wiki
https://github.com/brianfrankcooper/YCSB/wiki
https://github.com/yardstick-benchmarks/yardstick

	Introduction
	Factors of Interest
	Benchmarking Results
	Discussion
	Conclusion and Future Work
	References



