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ABSTRACT
Timing analysis of embedded systems is an operation per-
formed when there are tasks that have to execute with a well
precise deadline, and need to be scheduled, such as those on
real-time systems. The diffusion of embedded systems to dif-
ferent kind of application areas is driving platforms toward
heterogeneous multi-core architectures, that require a tim-
ing analysis done by using measurement based techniques.
Measurements collection, when done via an instrumentation
of the application, can cause an overhead in the execution
time, footprint and necessary space to store data, that can
affect the behaviour of the system. In such a scenario, this
work proposes a framework that allows a user to quickly
perform instrumentation choices, by using a concept named
Time Band, and to have a direct feedback about the impact
of its choices on some performance parameters. Time Band
is then applied to Rapitime, a diffused timing analysis tool,
and first tests have been done on IA-32 and PowerPC archi-
tectures, showing the advantages of different techniques the
can be applied to realize the framework.
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1. INTRODUCTION
The analysis of a system from the point of view of tim-

ing, named timing analysis, relates to the set of operations
performed to collect information about its timing perfor-
mance. Worst Case Execution Time (WCET), Worst Case
Response Time (WCRT) and High-Watermark Execution
Time (HWET) are three parameters used in different con-
texts, for example in real-time systems design and general
embedded systems development. Several tools have been de-
veloped in order to support timing analysis, each one target-
ing one or more of the representative times indicated above.
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Such tools rely on different techniques to make evaluation
or estimation, for example static analysis or measurement
based ones. In this context, the latter have gained a strong
attention in the last years [5], mainly because the static anal-
ysis generally requires a model of the processor that could be
not available or too complex, in particular when considering
the complex architectures (e.g. multi-core) recently adopted
also in the embedded systems domain. On the contrary, the
measurement based analysis helps to support the calcula-
tion of representative times by keeping into account the real
target behaviour. In this context, Rapitime [3] represents a
tool that performs a measurement based analysis: it makes
use of measurements taken from the system at runtime, and
joins them with a static description of the application, in
order to delineate the worst case path that leads to WCET.
The measures are constituted of timestamps related to exe-
cution of the code, taken after a source code instrumentation
phase and using Instrumentation Points (Ipoints) inserted
in the application: the level of instrumentation can be se-
lected by the designer. However, since in the embedded
systems domain resources can be very limited, the use of
Ipoints can easily lead to a meaningful overhead, mainly re-
lated to Timestamp Acquisition (TA) and their Storage, the
two operations required by the instrumentation action. So,
this overhead can distort the real behaviour of the system
and, more in general, can drive to the variation of other
features such as Memory Footprint (MFP) and Execution
time (ET), and also provide a certain Storage Impact (SI).
For such a reason, there is the need for a solution that of-
fers a direct feedback, among the possible instrumentation
strategies, about the impact on the parameters that char-
acterize the application (MFP, ET, and SI) and the level of
accuracy that can be obtained. Moreover, such a solution
should provide, while satisfying typical embedded systems
non-functional requirements (e.g. MFP, ET, and SI), a set of
timestamps sufficient to provide the required monitoring ac-
tion (a feature called ”monitorability”). In this context, this
work provides the preliminary vision of a framework, and
related techniques/tools, that, starting from measurement
based timing analysis tools, offers this kind of solution.

2. PROPOSED APPROACH
The work proposes a framework that supports the de-

signer for timing analysis on embedded systems. Specifically,
it offers a direct feedback among instrumentation choices,
their impact on the parameters that characterize an appli-
cation (MFP, ET and SI) and the level of accuracy. The
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work is presented basing on Rapitime tool. A new concept,
named Time Band, is proposed: it refers to a source code
instrumentation with different detail degrees. For each Time
Band, a proper instrumentation will be obtained, that gives
some information and causes certain overhead. Basing on
this concept, the user will have the possibility to use the
framework in two ways: the first by inserting information
about platform and application (such as allowed ET over-
head, MFP increase and SI), defining the type of measure
required, and waiting for an automatic generated configura-
tion suitable for his constraints; the second by acting directly
on Time bands selection and code segments in order to drive
the instrumentation and, consequently, the accuracy and the
overhead. In order to identify a good instrumentation so-
lution, and to address the problem of overhead limitation,
a runtime variable configuration is proposed, with imple-
mentation in four versions using four different techniques
reported in the poster.

3. RUNTIME VARIABLE CONFIGURATION
Four techniques are proposed to support the identification

of an instrumentation solution able to fit monitorability and
non functional requirements. In the following, a timestamp
is considered as an instance of an Ipoint, while N is supposed
to be the total number of Ipoints that are inserted in the
code. The techniques are the following ones: (i) Conditional,
(ii) Function Pointer, (iii) Assembly Nop and (iv) Function
Copy.
In the first one, a conditional expression checks if an Ipoint

is enabled by using an array of size N called enabled Ipoints:
if yes, the timestamp is stored. A considerable overhead has
been observed, also when all Ipoints are disabled: this is
mainly due to the added instructions for conditional checks.
The second technique is similar to conditional but it uses

function pointers. Two functions are considered: store time-
stamp and do nothing ; the latter has the same signature of
the former, but it has an empty body. enabled Ipoints is
a function pointer array that points to store timestamp if
Ipoint is enabled, otherwise it points to do nothing.
In the third technique, the Nop assembler instruction is

considered: Nop is a common word to indicate no opera-
tion. After code instrumentation, it is possible to substi-
tute all calls to store timestamp with Nops and then restore
only the desired ones. This solution shows a problem: on
the tested IA-32 architecture, an overhead on ET similar to
those obtained with a function call has been noted. This
overhead is architecture dependent. Therefore, this way can
be investigated only in the case the architecture provides a
very low overhead.
In the last technique, named Function Copy, every func-

tion has a copy. The original one is not instrumented, named
function name NO INSTR while the copy, function name -
INSTR, yes: a function pointer is used to switch between
these two ones.

4. VALIDATION
Some validation activities have been performed by insert-

ing the different techniques in the cjpeg application, a pro-
gram to compress an image file in JPEG format, taken from
MiBench benchmark suite [4]. These first activities are re-
lated to the evaluation of the impact of the techniques on
the original program: they have been done considering only

empty instrumentation. Experiments have been performed
on two platforms: the first is a laptop with a Linux 64-bit
OS running on Intel Core i7-2630QM processor with 4 GB
RAM memory, while the second a PowerPC G4 architec-
ture[1] with 512 MB RAM memory, where execution has
been simulated by using QEMU [2]. Results are reported
in Table 1. Original row is the original application, Time
Full refers to the application instrumented with the Time
Full profile of Rapitime, that offers the maximum level of
accuracy, but also the maximum ET, MFP and SI over-
head, and the four following rows represent the four differ-
ent techniques to perform the runtime variable configuration
proposed approach. The PPC Nop implementation is sched-
uled for a future work because the assembly is different than
x86.

Table 1: Empty instrumentation measures
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